====== Lectures ====== ^ Date ^ Week ^ Title ^ Resources ^ | 24.09.2025 | 1 | __Machine learning 101__: engineering view on models, loss, learning, learning issues, regression, classification | {{ :courses:becm33dpl:lectures:01_machinelearning101.pdf}} | | 01.10.2025 | 2 | __Linear classifier:__ two-class and multi-class linear classifier on RGB images | {{ :courses:becm33dpl:lectures:02_linearclassifier.pdf}} | | 08.10.2025 | 3 | __Maximum Likelihood Estimation (MLE), KL Divergence:__ Where does loss function come from, why overfitting exists? | {{ :courses:becm33dpl:lectures:03_maximumlikelihoodkldivergence.pdf}} | | 15.10.2025 | 4 | __Neural Networks:__ Perceptron, MLP, Backpropagation, Vector-Jacobian product, Autograd | {{:courses:becm33dpl:lectures:04_neuralnetworks.pdf}} | | 22.10.2025 | 5 | // Lecture cancelled (ICCV 2025) // | | 29.10.2025 | 6 | __The story of the cat's brain surgery:__ cortex + convolutional layer and its Vector-Jacobian-Product (VJP), fun with backpropagation | {{:courses:becm33dpl:lectures:05_cnns.pdf}} | | 05.11.2024 | 7 | **Midterm test** | {{ :courses:b3b33urob:lectures:vir_2022_midterm_test.pdf |}} \\ {{ :courses:b3b33urob:lectures:vir_2022_midterm_solution.pdf |}} \\ {{ :courses:b3b33urob:lectures:vir_2022_training_questions_midterm_test.pdf |}} \\ {{ :courses:becm33dpl:lectures:dpl_2025_midterm_test.pdf |}} \\ //Deep learning and Halloween:// \\ {{ :courses:becm33dpl:lectures:drawing01.jpg?100x100}} {{ :courses:becm33dpl:lectures:drawing02.jpg?100x100}} {{ :courses:becm33dpl:lectures:drawing03.jpg?100x100}} {{ :courses:becm33dpl:lectures:drawing04.jpg?100x100}} | | 12.11.2025 | 8 | __Activation, Normalization and Regularization__: activation functions, BatchNorm, Dropout, weight decay | {{:courses:becm33dpl:lectures:06_normalization.pdf}} | | 19.11.2025 | 9 | __Optimization:__ SGD, momentum, RMSProp, Adam | {{:courses:becm33dpl:lectures:07_optimization.pdf}} | | 26.11.2025 | 10 | __Backbone architectures:__ ResNet, EfficientNet, Transformers | {{:courses:becm33dpl:lectures:08_backbonearchitectures.pdf}} | | 03.12.2025 | 11 | __Task-specific architectures:__ Object detection, pose estimation, generative networks | {{:courses:becm33dpl:lectures:09_taskspecificarchitectures.pdf}} | | 10.12.2025 | 12 | __Reinforcement learning:__ Approximated Q-learning, DQN, DDPG, Derivation of the policy gradient (REINFORCE), A2C, TRPO, PPO, Reward shaping, Inverse RL, Applications, | | 17.12.2025 | 13 | __Implicit layers:__ Backpropagation through unconstrained and constrained optimization problems, ODE solvers, roots, fixed points + existing end-to-end differentiable modules cvxpy, gradSLAM, gradMPC, gradODE, pytorch3d| | 07.01.2026 | 14 | **Final test** |