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Propositional representation



Action schema a[v] = (pre,[V], addq[V], delq[V])

To find applicable actions in state s, we must find all tuple of
objects b st. prea[E] Cs.

This is NP-hard problem (evaluation of conjuctive query).

Thus most planners ground the first-order representation to
the propositional level.

Grounding: for each action schema a[V] precompute all
possible grounded actions a[b] for a tuple of objects b.



Objects - locations 4, [». [3, truck t;, package p-
Predicates — unary L, T, P, binary At, In
Action schema - pick]t, p, (]
© prepilt, p, I = {T(t), P(p), L(D), At(t, [), At(p, [)}
* addpic[t, p, [ = {In(p, 1)}
* delpicklt, p, ] = {At(p, 1)}

Grounding: picR[t1, p1, L], pick[t1, p1, L], picR[t1, p1, 3]



STRIPS

Definition
A STRIPS planning task is a tuple N = (F, A, so, g) where

- Fis a set of facts,

- the initial state sy C F,

- thegoal g C F,

- and A is a set of actions.

Each action a € Ais a triple a = (pre,, addg, delg) of three sets
of facts.

Minduces LTS ©n = (S,A, T, G) where

- S=2={s|sCF}
"G={sCFlgcCs}
- s S tiffpre, Csandt=(s\ dely) Uadd,. 3



Let M = (F,A,So, g) be a STRIPS planning task where

- F={b,c,d},
- So = {b},
g = {Cv d}:

- actions A consists of actions

a1 = ({b},{d},0)
a; = ({b,d},{c},{b})
as = <{b}7 {C}>®>



Complexity

Theorem (Bylander 94)
The problem deciding whether there is a plan for a given
STRIPS planning task is PSPACE-complete.



Mutex group

Definition
A set of facts M is said to be a mutex group if [MNs| <1 for all
reachable states s.

Example
M = {At(t, L), At(ts, [),At(t1, 3)} is @ mutex group.

Truck t; can be at most in a single location.

To represent a state, it suffices to store only which atom from
M holds (or if none of them).



FDR states

Suppose My,..., Mg is a family of pairwise disjoint mutex
groups such that Uf-; M; = F.

We can represent any reachable state s as a function

vs: {1,...,n} = FU{L} such that vs(i) e M; U {L}.
Definition

Let V be a set of variables each v € V with its domain dom(v).

- A partial function s: V — |, ¢, dom(v) is called a partial
state if s(v) € dom(v) for each v e V.
- If sis total, we call s a state.

- Let s,t be two partial states. We say that t extends s if
sCt.



Definition
FDR planning task (aka SAST) is M = (V, A, so, g) where

- Vis a set of variables,
- the initial state s,
- the goal g is a partial state,

- Alis a set of actions.

Each action a € Ais a pair a = (pre,, effq) where pre,, eff, are
partial states.



LTS induced by FDR

FDR task M induces an LTS ©n = (S,A, T, G) where

- Sis the set of all states,
"G={seS|gCs},
- Ais the set of actions from 1,

- Fors,t € Sand a € A, there is a transition s - t iff
pre, C s and

) = effa(v) if effg(v) is defined,
s(v) otherwise.



FDR task M = (V, A, so,g) where

-V ={vy,v2} with dom(v;) = {X,Y,Z} and dom(v,) = {0, 1},
* Sp = {<V1>X>’ <V2>1>}r
©9={wn,2}

1. preg, = {(v1,X), (v2, 1)} and effq, = {{v1,Y), (v2,0)}.
2. preg, = (v1,Y), (v2,1) } and effq, = {(v1,X), (v2,0)}.
3. preg, = (W1, Y),(v2,1)} and effq, = {(v1,2), (v2,0)}.
4. preg, = {{(v1,2),(v2, 1)} and effq, = {{v1,Y), (v2,0)}.
5. preg, = (v2,0)} and effy, = {(v2, 1)}
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STRIPS2FDR

Let M = (F,A,so,g) be a STRIPS task.

Define MFOR = (F, AFDR 'sfDR "gFDRY where

- dom(p) = {0,1} for p € F,
SEPR = {(p, 1) | p € So} U{(p,0) | p &S0},

g% = {{p,7) | p € g},
- AFDR = [gFDR | @ € A} where

* pregor = {{p,1) | p € pre,} and
- effgrr = {(p, 1) | p € adda} U {(p,0) | p € delg},

- cost(aPR) = cost(a) for a € A.
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FDR2STRIPS

Let M = (V,A,so,g) be an FDR task.

Define M°TR = (F, AFPR ‘54, g) where

- F={{v,d) |veV,dedom(v)},
- for a € A we have
© pregror = preg,
- addgor = eff,, and
- delgrr = {(v,d) | (v, e) € effy,d # e}.
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Simulations




How to construct heuristic

Let M be a planning task N, ©p its induced LTS and s a state.

We relax/simplify ©p so that its relaxed version ©’ can be
solved in a reasonable time.

Next, we need a map «: S — S’ translating states in © to ©'.
Finally, we find an optimal «(s)-plan #’ for ©'.
Heuristic value h(s) = cost(x’).
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Definition

Let © = (S,A,T,G) and © = (S, A", T, G’) be two LTSs. A pair
(R,B) where RC S x S"and 3: A — A’ is called a simulation of
© by © if forall s,t € Sand s’ € §/, we have

1. ifsRs"and s € G, then s’ € &,

,/3()

2. ifsRs and s & t, then there is t’ € S such that s t/

andtR t/,
3. cost(B(a)) < cost(a) forall a € A.

We extend the map 3: A — A’ to sequences of actions. If

T =a,...,0p then B(r) = B(a1), ..., B(an).
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Simulation preserves plans

Lemma

Let (R, B) be a simulation of an LTS © = (S,A, T,G) by an LTS
©' = (S,A',T',G). Further, let so € S and sj € S’ such that

So R sy. If wis a sg-plan for ©, then p(x) is a sy-plan for ©' as
well.

Corollary

Let (R, B) be a simulation of an LTS © by an LTS ©" and so R s,
Let 7’ be an optimal si-plan for © and cost(n’) its cost. Then
cost(n’) < cost(w) for any so-plan = for ©.
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Admissible heuristic

Let (R, 3) be a simulation of © by ® and a: S — S
o is compatible with R if o C R.

a 15 LTS homomorphism if & = R.

Theorem

Let N be a planning task, ©n = (S,A, T, G) its LTS,

O = (S,A,T',G') an LTS, h' the perfect heuristic for @', (R, 3) a
simulation of ©n by ©', and a: S — S’ compatible with R.
Define h(s) = h’(a(s)) for s € S. Then h is admissible.



Delete relaxation




Delete relaxation

Definition

Let M = (F,A,so,g) be a STRIPS task. For action

a = (prey,addg, delg) € A, the corresponding delete relaxed
action a*t = (pre,,addg, ). The cost cost(a™) = cost(a).

The delete relaxation of M is the STRIPS task M* = (F, AT, sq, g)
where AT = {a* | a € A}.

Lemma

Let M= (F,A,sSo,g) be a STRIPS task, M+ = (F, At sq,g) its
delete relaxation, and 3: A — A%t defined by 3(a) = a™. Then
(C,pB) is a simulation of ©n by ©On-+.



For a state s in I, we define a heuristic h*(s) = h% (s) where
h% is the perfect heuristic for N+,

Corollary
hT* is admissible.

Theorem
h* is consistent.



Plan existence

Let Mt = (F,A",sg,g) be a delete relaxation.
Forastates CF, letAs ={a € A|pre, Cs}.

We define an operator I': 2F — 2F by

r(s)=su | Ja"(s)=su | J adda.

acAs acAs
SCI(s)cr(r(s)) c---
The above sequence has a fixed point, i.e,, there is k € N such

that M*t1(s) = r*(s).

19



Complexity

Theorem

Let I be a STRIPS task. The plan existence problem for M+
belongs to P.

Theorem
Let I be a STRIPS task. The decision problem whether
h*(s) < m for a given m € N is NP-complete.
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