
AI Planning
Lecture 3

Rostislav Horčík

Czech Technical University in Prague
Faculty of Electrical Engineering
xhorcik@fel.cvut.cz

Propositional representation

Grounding

Action schema a[~v] = 〈prea[~v], adda[~v],dela[~v]〉

To find applicable actions in state s, we must find all tuple of
objects ~b s.t. prea[~b] ⊆ s.

This is NP-hard problem (evaluation of conjuctive query).

Thus most planners ground the first-order representation to
the propositional level.

Grounding: for each action schema a[~v] precompute all
possible grounded actions a[~b] for a tuple of objects ~b.

1

Example

Objects – locations l1, l2, l3, truck t1, package p1

Predicates – unary L, T,P, binary At, In

Action schema – pick[t,p, l]

• prepick[t,p, l] = {T(t),P(p), L(l),At(t, l),At(p, l)}
• addpick[t,p, l] = {In(p, t)}
• delpick[t,p, l] = {At(p, l)}

Grounding: pick[t1,p1, l1],pick[t1,p1, l2],pick[t1,p1, l3]

2

STRIPS

Definition
A STRIPS planning task is a tuple Π = 〈F,A, s0,g〉 where

• F is a set of facts,
• the initial state s0 ⊆ F,
• the goal g ⊆ F,
• and A is a set of actions.

Each action a ∈ A is a triple a = 〈prea, adda,dela〉 of three sets
of facts.

Π induces LTS ΘΠ = 〈S,A, T,G〉 where

• S = 2F = {s | s ⊆ F},
• G = {s ⊆ F | g ⊆ s},
• s a→ t iff prea ⊆ s and t = (s \ dela) ∪ adda. 3

Example

Let Π = 〈F,A, s0,g〉 be a STRIPS planning task where

• F = {b, c,d},
• s0 = {b},
• g = {c,d},
• actions A consists of actions

a1 = 〈{b}, {d}, ∅〉
a2 = 〈{b,d}, {c}, {b}〉
a3 = 〈{b}, {c}, ∅〉

4

Complexity

Theorem (Bylander 94)
The problem deciding whether there is a plan for a given
STRIPS planning task is PSPACE-complete.

5

Mutex group

Definition
A set of facts M is said to be a mutex group if |M ∩ s| ≤ 1 for all
reachable states s.

Example
M = {At(t1, l1),At(t1, l2),At(t1, l3)} is a mutex group.

Truck t1 can be at most in a single location.

To represent a state, it suffices to store only which atom from
M holds (or if none of them).

6

FDR states

Suppose M1, . . . ,Mk is a family of pairwise disjoint mutex
groups such that

⋃k
i=1Mi = F.

We can represent any reachable state s as a function
νs : {1, . . . ,n} → F ∪ {⊥} such that νs(i) ∈ Mi ∪ {⊥}.

Definition
Let V be a set of variables each v ∈ V with its domain dom(v).

• A partial function s : V →
⋃
v∈V dom(v) is called a partial

state if s(v) ∈ dom(v) for each v ∈ V .
• If s is total, we call s a state.
• Let s, t be two partial states. We say that t extends s if
s ⊆ t.

7

FDR

Definition
FDR planning task (aka SAS+) is Π = 〈V,A, s0,g〉 where

• V is a set of variables,
• the initial state s0,
• the goal g is a partial state,
• A is a set of actions.

Each action a ∈ A is a pair a = 〈prea, effa〉 where prea, effa are
partial states.

8

LTS induced by FDR

FDR task Π induces an LTS ΘΠ = 〈S,A, T,G〉 where

• S is the set of all states,
• G = {s ∈ S | g ⊆ s},
• A is the set of actions from Π,
• For s, t ∈ S and a ∈ A, there is a transition s a→ t iff
prea ⊆ s and

t(v) =

effa(v) if effa(v) is defined,

s(v) otherwise.

9

Example

FDR task Π = 〈V,A, s0,g〉 where

• V = {v1, v2} with dom(v1) = {X, Y, Z} and dom(v2) = {0, 1},
• s0 = {〈v1, X〉, 〈v2, 1〉},
• g = {〈v1, Z〉},
• A = {a1, . . . ,a5}:

1. prea1 = {〈v1, X〉, 〈v2, 1〉} and effa1 = {〈v1, Y〉, 〈v2, 0〉}.
2. prea2 = {〈v1, Y〉, 〈v2, 1〉} and effa2 = {〈v1, X〉, 〈v2, 0〉}.
3. prea3 = {〈v1, Y〉, 〈v2, 1〉} and effa3 = {〈v1, Z〉, 〈v2, 0〉}.
4. prea4 = {〈v1, Z〉, 〈v2, 1〉} and effa4 = {〈v1, Y〉, 〈v2, 0〉}.
5. prea5 = {〈v2, 0〉} and effa5 = {〈v2, 1〉}.

10

STRIPS2FDR

Let Π = 〈F,A, s0,g〉 be a STRIPS task.

Define ΠFDR = 〈F,AFDR, sFDR0 ,gFDR〉 where

• dom(p) = {0, 1} for p ∈ F,
• sFDR0 = {〈p, 1〉 | p ∈ s0} ∪ {〈p, 0〉 | p 6∈ s0},
• gFDR = {〈p, 1〉 | p ∈ g},
• AFDR = {aFDR | a ∈ A} where

• preaFDR = {〈p, 1〉 | p ∈ prea} and
• effaFDR = {〈p, 1〉 | p ∈ adda} ∪ {〈p, 0〉 | p ∈ dela},

• cost(aFDR) = cost(a) for a ∈ A.

11

FDR2STRIPS

Let Π = 〈V,A, s0,g〉 be an FDR task.

Define ΠSTR = 〈F,AFDR, s0,g〉 where

• F = {〈v,d〉 | v ∈ V,d ∈ dom(v)},
• for a ∈ A we have

• preaFDR = prea,
• addaFDR = effa, and
• delaFDR = {〈v,d〉 | 〈v, e〉 ∈ effa,d 6= e}.

12

Simulations

How to construct heuristic

Let Π be a planning task Π, ΘΠ its induced LTS and s a state.

We relax/simplify ΘΠ so that its relaxed version Θ′ can be
solved in a reasonable time.

Next, we need a map α : S→ S′ translating states in Θ to Θ′.

Finally, we find an optimal α(s)-plan π′ for Θ′.

Heuristic value h(s) = cost(π′).

13

Simulation

Definition
Let Θ = 〈S,A, T,G〉 and Θ′ = 〈S′,A′, T ′,G′〉 be two LTSs. A pair
〈R, β〉 where R ⊆ S× S′ and β : A→ A′ is called a simulation of
Θ by Θ′ if for all s, t ∈ S and s′ ∈ S′, we have

1. if s R s′ and s ∈ G, then s′ ∈ G′,

2. if s R s′ and s a→ t, then there is t′ ∈ S′ such that s′ β(a)→ t′

and t R t′,
3. cost(β(a)) ≤ cost(a) for all a ∈ A.

We extend the map β : A→ A′ to sequences of actions. If
π = a1, . . . ,an, then β(π) = β(a1), . . . , β(an).

14

Simulation preserves plans

Lemma
Let 〈R, β〉 be a simulation of an LTS Θ = 〈S,A, T,G〉 by an LTS
Θ′ = 〈S′,A′, T ′,G′〉. Further, let s0 ∈ S and s′0 ∈ S′ such that
s0 R s′0. If π is a s0-plan for Θ, then β(π) is a s′0-plan for Θ′ as
well.

Corollary
Let 〈R, β〉 be a simulation of an LTS Θ by an LTS Θ′ and s0 R s′0.
Let π′ be an optimal s′0-plan for Θ′ and cost(π′) its cost. Then
cost(π′) ≤ cost(π) for any s0-plan π for Θ.

15

Admissible heuristic

Let 〈R, β〉 be a simulation of Θ by Θ′ and α : S→ S′.

α is compatible with R if α ⊆ R.

α is LTS homomorphism if α = R.

Theorem
Let Π be a planning task, ΘΠ = 〈S,A, T,G〉 its LTS,
Θ′ = 〈S′,A′, T ′,G′〉 an LTS, h′ the perfect heuristic for Θ′, 〈R, β〉 a
simulation of ΘΠ by Θ′, and α : S→ S′ compatible with R.
Define h(s) = h′(α(s)) for s ∈ S. Then h is admissible.

16

Delete relaxation

Delete relaxation

Definition
Let Π = 〈F,A, s0,g〉 be a STRIPS task. For action
a = 〈prea, adda,dela〉 ∈ A, the corresponding delete relaxed
action a+ = 〈prea, adda, ∅〉. The cost cost(a+) = cost(a).

The delete relaxation of Π is the STRIPS task Π+ = 〈F,A+, s0,g〉
where A+ = {a+ | a ∈ A}.

Lemma
Let Π = 〈F,A, s0,g〉 be a STRIPS task, Π+ = 〈F,A+, s0,g〉 its
delete relaxation, and β : A→ A+ defined by β(a) = a+. Then
〈⊆, β〉 is a simulation of ΘΠ by ΘΠ+ .

17

Heuristic

For a state s in Π, we define a heuristic h+(s) = h∗+(s) where
h∗+ is the perfect heuristic for Π+.

Corollary
h+ is admissible.

Theorem
h+ is consistent.

18

Plan existence

Let Π+ = 〈F,A+, s0,g〉 be a delete relaxation.

For a state s ⊆ F, let As = {a ∈ A | prea ⊆ s}.

We define an operator Γ: 2F → 2F by

Γ(s) = s ∪
⋃
a∈As

a+(s) = s ∪
⋃
a∈As

adda.

s ⊆ Γ(s) ⊆ Γ(Γ(s)) ⊆ · · ·

The above sequence has a fixed point, i.e., there is k ∈ N such
that Γk+1(s) = Γk(s).

19

Complexity

Theorem
Let Π be a STRIPS task. The plan existence problem for Π+

belongs to P.

Theorem
Let Π be a STRIPS task. The decision problem whether
h+(s) ≤ m for a given m ∈ N is NP-complete.

20

	Propositional representation
	Simulations
	Delete relaxation

