AI Planning Lecture 3

Rostislav Horčík

Czech Technical University in Prague Faculty of Electrical Engineering xhorcik@fel.cvut.cz

Propositional representation

Grounding

Action schema $a[\vec{v}] = \langle \operatorname{pre}_a[\vec{v}], \operatorname{add}_a[\vec{v}], \operatorname{del}_a[\vec{v}] \rangle$

To find applicable actions in state s, we must find all tuple of objects \vec{b} s.t. $\operatorname{pre}_a[\vec{b}] \subseteq s$.

This is NP-hard problem (evaluation of conjuctive query).

Thus most planners ground the first-order representation to the propositional level.

Grounding: for each action schema $a[\vec{v}]$ precompute all possible grounded actions $a[\vec{b}]$ for a tuple of objects \vec{b} .

1

Example

```
Objects – locations l_1, l_2, l_3, truck t_1, package p_1

Predicates – unary L, T, P, binary At, In

Action schema – pick[t, p, l]

• pre<sub>pick</sub>[t, p, l] = \{T(t), P(p), L(l), At(t, l), At(p, l)\}

• add<sub>pick</sub>[t, p, l] = \{In(p, t)\}

• del<sub>pick</sub>[t, p, l] = \{At(p, l)\}
```

Grounding: $pick[t_1, p_1, l_1]$, $pick[t_1, p_1, l_2]$, $pick[t_1, p_1, l_3]$

STRIPS

Definition

A STRIPS planning task is a tuple $\Pi = \langle F, A, s_0, g \rangle$ where

- F is a set of facts,
- the initial state $s_0 \subseteq F$,
- the goal $g \subseteq F$,
- and A is a set of actions.

Each action $a \in A$ is a triple $a = \langle pre_a, add_a, del_a \rangle$ of three sets of facts.

 Π induces LTS $\Theta_{\Pi} = \langle S, A, T, G \rangle$ where

- $\cdot S = 2^F = \{ s \mid s \subseteq F \},\$
- $G = \{ s \subseteq F \mid g \subseteq s \},$
- $s \stackrel{a}{\rightarrow} t$ iff $pre_a \subseteq s$ and $t = (s \setminus del_a) \cup add_a$.

Example

Let $\Pi = \langle F, A, s_0, g \rangle$ be a STRIPS planning task where

- $F = \{b, c, d\},\$
- $s_0 = \{b\},\$
- $g = \{c, d\}$,
- · actions A consists of actions

$$a_1 = \langle \{b\}, \{d\}, \emptyset \rangle$$

$$a_2 = \langle \{b, d\}, \{c\}, \{b\} \rangle$$

$$a_3 = \langle \{b\}, \{c\}, \emptyset \rangle$$

Complexity

Theorem (Bylander 94)

The problem deciding whether there is a plan for a given STRIPS planning task is PSPACE-complete.

Mutex group

Definition

A set of facts M is said to be a mutex group if $|M \cap s| \le 1$ for all reachable states s.

Example

 $M = \{At(t_1, l_1), At(t_1, l_2), At(t_1, l_3)\}$ is a mutex group.

Truck t_1 can be at most in a single location.

To represent a state, it suffices to store only which atom from *M* holds (or if none of them).

6

FDR states

Suppose M_1, \ldots, M_k is a family of pairwise disjoint mutex groups such that $\bigcup_{i=1}^k M_i = F$.

We can represent any reachable state s as a function ν_s : $\{1, \ldots, n\} \to F \cup \{\bot\}$ such that $\nu_s(i) \in M_i \cup \{\bot\}$.

Definition

Let V be a set of variables each $v \in V$ with its domain dom(v).

- A partial function $s: V \to \bigcup_{v \in V} \text{dom}(v)$ is called a partial state if $s(v) \in \text{dom}(v)$ for each $v \in V$.
- If s is total, we call s a state.
- Let s, t be two partial states. We say that t extends s if $s \subseteq t$.

7

Definition

FDR planning task (aka SAS⁺) is $\Pi = \langle V, A, s_0, g \rangle$ where

- V is a set of variables,
- the initial state s_0 ,
- the goal g is a partial state,
- · A is a set of actions.

Each action $a \in A$ is a pair $a = \langle \operatorname{pre}_a, \operatorname{eff}_a \rangle$ where $\operatorname{pre}_a, \operatorname{eff}_a$ are partial states.

LTS induced by FDR

FDR task Π induces an LTS $\Theta_{\Pi} = \langle S, A, T, G \rangle$ where

- · S is the set of all states,
- $G = \{ s \in S \mid g \subseteq s \},$
- A is the set of actions from Π ,
- For $s, t \in S$ and $a \in A$, there is a transition $s \stackrel{a}{\to} t$ iff $pre_a \subseteq s$ and

$$t(v) = \begin{cases} eff_a(v) & \text{if } eff_a(v) \text{ is defined,} \\ s(v) & \text{otherwise.} \end{cases}$$

9

Example

FDR task $\Pi = \langle V, A, s_0, g \rangle$ where

- $V = \{v_1, v_2\}$ with $dom(v_1) = \{X, Y, Z\}$ and $dom(v_2) = \{0, 1\}$,
- $s_0 = \{\langle v_1, X \rangle, \langle v_2, 1 \rangle\},\$
- $g = \{\langle v_1, Z \rangle\}$,
- $A = \{a_1, \ldots, a_5\}$:
- 1. $\operatorname{pre}_{a_1} = \{\langle v_1, X \rangle, \langle v_2, 1 \rangle\}$ and $\operatorname{eff}_{a_1} = \{\langle v_1, Y \rangle, \langle v_2, 0 \rangle\}$.
- 2. $\operatorname{pre}_{a_2} = \{\langle v_1, Y \rangle, \langle v_2, 1 \rangle\}$ and $\operatorname{eff}_{a_2} = \{\langle v_1, X \rangle, \langle v_2, 0 \rangle\}.$
- 3. $\operatorname{pre}_{a_3} = \{\langle v_1, Y \rangle, \langle v_2, 1 \rangle\} \text{ and } \operatorname{eff}_{a_3} = \{\langle v_1, Z \rangle, \langle v_2, 0 \rangle\}.$
- 4. $\operatorname{pre}_{a_4} = \{\langle v_1, Z \rangle, \langle v_2, 1 \rangle\}$ and $\operatorname{eff}_{a_4} = \{\langle v_1, Y \rangle, \langle v_2, 0 \rangle\}.$
- 5. $pre_{a_5} = \{\langle v_2, 0 \rangle\}$ and $eff_{a_5} = \{\langle v_2, 1 \rangle\}$.

STRIPS2FDR

Let $\Pi = \langle F, A, s_0, g \rangle$ be a STRIPS task.

Define $\Pi^{\text{FDR}} = \langle F, A^{\text{FDR}}, s_0^{\text{FDR}}, g^{\text{FDR}} \rangle$ where

- · dom $(p) = \{0, 1\}$ for $p \in F$,
- $s_0^{\text{FDR}} = \{\langle p, 1 \rangle \mid p \in s_0\} \cup \{\langle p, 0 \rangle \mid p \not\in s_0\},\$
- $g^{FDR} = \{\langle p, 1 \rangle \mid p \in g\},$
- $A^{FDR} = \{a^{FDR} \mid a \in A\}$ where
 - $pre_{a^{FDR}} = \{\langle p, 1 \rangle \mid p \in pre_a\}$ and
 - $eff_{a^{FDR}} = \{\langle p, 1 \rangle \mid p \in add_a\} \cup \{\langle p, 0 \rangle \mid p \in del_a\},\$
- $cost(a^{FDR}) = cost(a)$ for $a \in A$.

FDR2STRIPS

Let $\Pi = \langle V, A, s_0, g \rangle$ be an FDR task.

Define $\Pi^{STR} = \langle F, A^{FDR}, s_0, g \rangle$ where

- $F = \{\langle v, d \rangle \mid v \in V, d \in dom(v)\},\$
- for $a \in A$ we have
 - $pre_{a^{FDR}} = pre_a$,
 - $add_{a^{FDR}} = eff_a$, and
 - · $del_{a^{FDR}} = \{\langle v, d \rangle \mid \langle v, e \rangle \in eff_a, d \neq e\}.$

Simulations

How to construct heuristic

Let Π be a planning task Π , Θ_{Π} its induced LTS and s a state.

We relax/simplify Θ_{Π} so that its relaxed version Θ' can be solved in a reasonable time.

Next, we need a map $\alpha \colon S \to S'$ translating states in Θ to Θ' .

Finally, we find an optimal $\alpha(s)$ -plan π' for Θ' .

Heuristic value $h(s) = cost(\pi')$.

Simulation

Definition

Let $\Theta = \langle S, A, T, G \rangle$ and $\Theta' = \langle S', A', T', G' \rangle$ be two LTSs. A pair $\langle R, \beta \rangle$ where $R \subseteq S \times S'$ and $\beta \colon A \to A'$ is called a simulation of Θ by Θ' if for all $s, t \in S$ and $s' \in S'$, we have

- 1. if s R s' and $s \in G$, then $s' \in G'$,
- 2. if s R s' and $s \xrightarrow{a} t$, then there is $t' \in S'$ such that $s' \xrightarrow{\beta(a)} t'$ and t R t',
- 3. $cost(\beta(a)) \le cost(a)$ for all $a \in A$.

We extend the map $\beta: A \to A'$ to sequences of actions. If $\pi = a_1, \ldots, a_n$, then $\beta(\pi) = \beta(a_1), \ldots, \beta(a_n)$.

Simulation preserves plans

Lemma

Let $\langle R, \beta \rangle$ be a simulation of an LTS $\Theta = \langle S, A, T, G \rangle$ by an LTS $\Theta' = \langle S', A', T', G' \rangle$. Further, let $s_0 \in S$ and $s_0' \in S'$ such that $s_0 R s_0'$. If π is a s_0 -plan for Θ , then $\beta(\pi)$ is a s_0' -plan for Θ' as well.

Corollary

Let $\langle R, \beta \rangle$ be a simulation of an LTS Θ by an LTS Θ' and s_0 R s_0' . Let π' be an optimal s_0' -plan for Θ' and $cost(\pi')$ its cost. Then $cost(\pi') \leq cost(\pi)$ for any s_0 -plan π for Θ .

Admissible heuristic

Let $\langle R, \beta \rangle$ be a simulation of Θ by Θ' and $\alpha \colon S \to S'$.

 α is compatible with R if $\alpha \subseteq R$.

 α is LTS homomorphism if $\alpha = R$.

Theorem

Let Π be a planning task, $\Theta_{\Pi} = \langle S, A, T, G \rangle$ its LTS, $\Theta' = \langle S', A', T', G' \rangle$ an LTS, h' the perfect heuristic for Θ' , $\langle R, \beta \rangle$ a simulation of Θ_{Π} by Θ' , and $\alpha \colon S \to S'$ compatible with R. Define $h(s) = h'(\alpha(s))$ for $s \in S$. Then h is admissible.

Delete relaxation

Delete relaxation

Definition

Let $\Pi = \langle F, A, s_0, g \rangle$ be a STRIPS task. For action $a = \langle \operatorname{pre}_a, \operatorname{add}_a, \operatorname{del}_a \rangle \in A$, the corresponding delete relaxed action $a^+ = \langle \operatorname{pre}_a, \operatorname{add}_a, \emptyset \rangle$. The cost $\operatorname{cost}(a^+) = \operatorname{cost}(a)$.

The delete relaxation of Π is the STRIPS task $\Pi^+ = \langle F, A^+, s_0, g \rangle$ where $A^+ = \{a^+ \mid a \in A\}$.

Lemma

Let $\Pi = \langle F, A, s_0, g \rangle$ be a STRIPS task, $\Pi^+ = \langle F, A^+, s_0, g \rangle$ its delete relaxation, and $\beta \colon A \to A^+$ defined by $\beta(a) = a^+$. Then $\langle \subseteq, \beta \rangle$ is a simulation of Θ_{Π} by Θ_{Π^+} .

Heuristic

For a state s in Π , we define a heuristic $h^+(s) = h_+^*(s)$ where h_+^* is the perfect heuristic for Π^+ .

Corollary

 h^+ is admissible.

Theorem

h⁺ is consistent.

Plan existence

Let $\Pi^+ = \langle F, A^+, s_0, g \rangle$ be a delete relaxation.

For a state $s \subseteq F$, let $A_s = \{a \in A \mid pre_a \subseteq s\}$.

We define an operator $\Gamma \colon 2^F \to 2^F$ by

$$\Gamma(s) = s \cup \bigcup_{\alpha \in A_s} \alpha^+(s) = s \cup \bigcup_{\alpha \in A_s} add_{\alpha}.$$

$$S\subseteq \Gamma(S)\subseteq \Gamma(\Gamma(S))\subseteq \cdots$$

The above sequence has a fixed point, i.e., there is $k \in \mathbb{N}$ such that $\Gamma^{k+1}(s) = \Gamma^k(s)$.

Complexity

Theorem

Let Π be a STRIPS task. The plan existence problem for Π^+ belongs to P.

Theorem

Let Π be a STRIPS task. The decision problem whether $h^+(s) \leq m$ for a given $m \in \mathbb{N}$ is NP-complete.