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Deep Machine Learning 

Jan Čech

“A quick tour from old principles to the most recent neural architectures”



Deep Learning

 Outline of lectures:
1. Introduction, basic principles, layers, neural architectures, image 

recognition
2. Object detection, Semantic/Instance segmentation, further insight 

(Deep fakes, Adversarial examples, Visualization, Style transfer)
3. Generative modeling – GANs, Diffusion models
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Deep learning – top awards in science

 Deep learning pioneers received 
Alan Touring Prize in 2018

 Nobel Prize in Physics 2024
– "for foundational discoveries 

and inventions that enable 
machine learning with artificial 
neural networks" 
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What is the “Deep Learning” ? 

 Deep learning (by G. Hinton, DL pioneer, Touring+Nobel prize)
= both the classifiers and the features are learned automatically
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 Andrew Ng (founder of Google Brain, chief of Baidu AI research)
– “Very large neural networks we can now have and … huge amounts 

of data that we have access to.”
 Jeff Dean (head of Google AI)

– “When you hear the term deep learning, just think of a large deep 
neural net. Deep refers to the number of layers typically and so 
this kind of the popular term that’s been adopted in the press. I think 
of them as deep neural networks generally.”

 Yoshua Bengio (DL pioneer, Turing Award Holder 2018)
– “Deep learning algorithms seek to exploit the unknown structure in 

the input distribution in order to discover good representations, 
often at multiple levels, with higher-level learned features defined in 
terms of lower-level features.”

 Yann LeCun (DL pioneer, Turing Award Holder 2018)
– “Deep learning [is] … a pipeline of modules all of which are 

trainable. … deep because [has] multiple stages in the process of 
recognizing an object and all of those stages are part of the training.”
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What is the “Deep Learning” ? Other definitions…



Deep Learning omnipresent

 Besides the Computer Vision DL is extremely successful in, e.g.
– Automatic Speech Recognition 

• Speech to text, Speaker recognition 
– Natural Language Processing (LLMs)

• Machine translation, Question answering, Chatbots (GPT)
– Robotics / Autonomous driving (e.g., Reinforcement learning)

• Touring Award 2024 (Adrew G. Barto, R. S. Sutton)
– Data Science / Bioinformatics (e.g., Alphafold)

• Nobel Prize in Chemistry 2024 (D. Baker, D. Hassabis, J. Jumper)

 Shift of paradigm started in Computer Vision
• Large-scale image category recognition (ILSVRC’ 2012 challenge)

INRIA/Xerox 33%, 
Uni Amsterdam 30%, 
Uni Oxford 27%, 
Uni Tokyo 26%,
Uni Toronto 16% (deep neural network) [Krizhevsky-NIPS-2012]
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https://papers.nips.cc/paper_files/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html


Explosion of interest in “Deep Learning” after 2012

Data Source: https://hai.stanford.edu/, https://github.com/BIGBALLON/CVPR2022-Paper-Statistics

 Paper title keywords, CVPR 2019/2022

 Number of attendees/submissions in major Computer Vision and Machine 
Learning grows exponentially
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https://hai.stanford.edu/


Examples of Deep learning in Computer Vision

 Image classification [Krizhevsky-NIPS-2012]
– Input: RGB-image
– Output: Single label (Probability Distribution over Classes)

– ImageNet dataset (14M images, 21k classes, Labels by Amazon 
Mechanical Turk)

– ImageNet Benchmark (1000 classes, 1M training images)
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https://papers.nips.cc/paper_files/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html


Examples of Deep learning in Computer Vision

 Object Detection
– Multiple objects in the image [RCNN, YOLO, …]

– E.g. Face [Hu-Ramanan-2017], Text localization [Busta-2017]
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https://arxiv.org/abs/1504.08083
https://arxiv.org/abs/1506.02640
https://arxiv.org/abs/1612.04402
http://openaccess.thecvf.com/content_ICCV_2017/papers/Busta_Deep_TextSpotter_An_ICCV_2017_paper.pdf


Examples of Deep learning in Computer Vision

 (3D) Pose estimation
– [Hu-2018], [OpenPose]
– [Cech-2016]
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https://arxiv.org/abs/1811.10742
https://github.com/CMU-Perceptual-Computing-Lab/openpose
https://www.sciencedirect.com/science/article/pii/S026288561500133X


Examples of Deep learning in Computer Vision

 Image Segmentation (Semantic/Instance Segmentation)
– Each pixel has a label  [Long-2015], [Mask-RCNN-2017]
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Semantic segmentation Instance segmentation

https://arxiv.org/abs/1411.4038
https://arxiv.org/abs/1703.06870


Examples of Deep learning in Computer Vision

 Motion 
– Tracking [Neoral-Serych-2024]
– Optical Flow [Neoral-2018]

• Predict pixel level displacements between consecutive frames
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https://github.com/serycjon/MFT
https://arxiv.org/abs/1811.01602


Examples of Deep learning in Computer Vision

 Stereo (depth from two images)
 Depth from a single (monocular) image [Godard-2017]
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http://visual.cs.ucl.ac.uk/pubs/monoDepth/


Examples of Deep learning in Computer Vision

 Image based novel view synthesis 
– Given: a set of sparse images => arbitrary view (smooth camera path)
– NeRF (Neural Radiance Field for View Synthesis), [Mildenhall-2020]
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[video] [video] [video]

https://www.matthewtancik.com/nerf
http://cseweb.ucsd.edu/%7Eviscomp/projects/LF/papers/ECCV20/nerf/website_renders/colorspout_200k_rgb.mp4
http://cseweb.ucsd.edu/%7Eviscomp/projects/LF/papers/ECCV20/nerf/website_renders/orchid.mp4
http://cseweb.ucsd.edu/%7Eviscomp/projects/LF/papers/ECCV20/nerf/website_renders/benchflower_100k_rgb.mp4


Examples of Deep learning in Computer Vision

 Medical Imaging – Computer Aided Diagnosis
– X-ray, mammography, etc. 

– AI as good as doctors at checking X-rays – study  (BBC news)
– Commercial tools, Startups
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https://www.bbc.com/news/articles/ckdpg5p820xo


Examples of Deep learning in Computer Vision

 Faces 
– Recognition / Verification
– Gender/Age
– Landmarks, pose
– Expression, emotions

…already in commerce
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Examples of Deep learning in Computer Vision

 Lip reading [Chung-2017]
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[YouTube]

https://arxiv.org/abs/1611.05358
https://youtu.be/5aogzAUPilE


Examples of Deep learning in Computer Vision

 Image-to-Image translation [Isola-2017]

 Deblurring, Super-resolution [Šubrtová-2018]
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16x16 256x256 (predicted)     256x256 (ground-truth)

https://phillipi.github.io/pix2pix/
http://hdl.handle.net/10467/76125


Examples of Deep learning in Computer Vision

 Generative models
– Generating photo-realistic samples from image distributions
– Variational Autoencoders, GANs [Nvidia-GAN]
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(Images synthetized by a random sampling)

https://research.nvidia.com/publication/2017-10_Progressive-Growing-of
https://youtu.be/G06dEcZ-QTg


Examples of Deep learning in Computer Vision

 Generative models (cont.)
– Large text2image models, 2022+ (DALL-E2, Imagen, Midjourney, 

Stable Diffusion – open source, model available) 
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https://github.com/CompVis/stable-diffusion


Examples of Deep learning in Computer Vision

 Real image manipulation / editing
– Instruct Pix2Pix (textual image manipulation) [Brooks-2023]

– Hairstyle Transfer [Šubrtová-2021]
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[video]

https://www.timothybrooks.com/instruct-pix2pix/
https://cmp.felk.cvut.cz/hairstyles/
https://cmp.felk.cvut.cz/hairstyles/static/project_page/both.mp4


Examples of Deep learning in Computer Vision

 Action/Activity recognition
 Neural Style Transfer
 Image Captioning/Visual 

Question Answering
 and many more…
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[deepart.io]

a brown dog wearing glasses while 
sitting at a desk

[GPT-4][BLIP]

https://deepart.io/
https://openai.com/research/gpt-4
https://github.com/salesforce/BLIP


History: (Artificial) Neural Networks

 Neural networks are here for almost 70 years
– Rosenblatt-1956 (perceptron)

– Minsky-1969 (xor issue, => skepticism)
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History: Neural Networks

Rumelhart and McClelland – 1986:  
– Multi-layer perceptron, 
– Back-propagation (supervised training)

• Differentiable activation function
• Stochastic gradient descent

Empirical risk

Update weights:
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What happens if a network is deep?
(it has many layers)



Backpropagation – Training of NNs
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What was wrong with back propagation?

 Local optimization only (needs a good initialization, or re-initialization)
 Prone to over-fitting 

– too many parameters to estimate
– too  few labeled examples

 Computationally intensive
=> Skepticism: A deep network often performed worse than a shallow one
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Figure credit: Enrico Francesconi

https://link.springer.com/article/10.1007/s10506-022-09309-8


Why does it work now?

 However nowadays:
– Large collections of labeled data available

• ImageNet (14M images, 21k classes, hand-labeled)
– Reducing the number of parameters by weight sharing

• Convolutional layers – [LeCun-1989]
– Novel tricks to prevent overfitting of deep nets
– Fast enough computers (parallel hardware, GPU)

=> Optimism: It works!
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Zip codes recognition, 
LeCun 1989

https://direct.mit.edu/neco/article-abstract/1/4/541/5515/Backpropagation-Applied-to-Handwritten-Zip-Code?redirectedFrom=fulltext


Computational power
32

A100 80GB



Deep convolutional neural networks

 An example for Large Scale Classification Problem:
– Krizhevsky, Sutskever, Hinton: ImageNet classification with deep 

convolutional neural networks. NIPS, 2012. 
• Recognizes 1000 categories from ImageNet
• Outperforms state-of-the-art by significant margin (ILSVRC 2012)
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• 5 convolutional layers, 3 fully connected layers
• 60M parameters, trained on 1.2M images (~1000 examples for 

each category)
• Cross-Entropy loss (softmax log-loss)

“Alex-Net”

https://papers.nips.cc/paper_files/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html


Deep CNNs – basic building blogs

 A computational graph (chain/directed acyclic graph) connecting layers
– Each layer has: Forward pass, Backward pass
– The graph is end-to-end differentiable

1. Input Layer
2. Intermediate Layers

1. Convolutions
2. Max-pooling
3. Activations

3. Output Layer 
4. Loss function over the output layer for training
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Convolutional layer

 Input: tensor (W×H×D)
– “image” of size W×H with D channels 

 Output: tensor (W’×H’×D’)

 A bank of D’ filters of size (K×K×D) is convolved with the input to produce 
the output tensor 
– Zero Padding (P), extends the input by zeros
– Stride (S), mask shifts by more than 1 pixel
– K×K×D×D’ parameters to be learned
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dot product



Max-pooling layer

 Same inputs (W×H×D) and outputs (W’×H’×D) as convolutional layer 
 Same parameters: Mask Size (K), Padding (P), Stride (S)

 Same sliding window as in convolution, but instead of the dot product, 
pick maximum 

 Non-linear operation
 No parameters to be learned
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max



Activation functions

 Non-linearity, applied to every singe cell of the tensor
 Input tensor and output tensor of the same size

 ReLU is the simplest (used in the AlexNet, good baseline)
 Saturating non-linearity (sigmoid, tanh) causes “vanishing” gradient
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Multiclass Classification loss

 Cross-Entropy loss (softmax log loss)

– Softmax output as discrete PDF over classes
e.g., (0.1, 0.05, 0.7, 0.05, 0.1)

– Ground-truth classes “one-hot encoding”
e.g., (0, 0, 1, 0, 0)
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Deep convolutional neural networks 

 Additional tricks:  “Devil is in the details”
– Rectified linear units instead of standard sigmoid

=> Mitigate vanishing gradient problem
– Convolutional layers followed by max-pooling

• Local maxima selection in overlapping windows (subsampling)
=> dimensionality reduction, shift insensitivity

– Dropout 
• 50% of hidden units are randomly omitted during the training, but 

weights are shared in test time
• Averaging results of many independent models (similar idea as in 

Random forests)
=> Probably very significant to reduce overfitting

– Data augmentation 
• Images are artificially shifted and mirrored (10 times more images)
=> transformation invariance, reduce overfitting
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Deep convolutional neural networks
40

 Supervised training
– The training is done by a standard back-propagation
– enough labeled data: 1.2M labeled training images for 1k categories
– Learned filters in the first layer

• Resemble cells in primary visual cortex

 Training time:
– 5 days on NVIDIA GTX 580, 3GB memory (Krizhevsky, today faster)
– 90 cycles through the training set

 Test time (forward step) on GPU
– Implementation by Yangqing Jia, http://caffe.berkeleyvision.org/
– 5 ms/image in a batch mode 

[Hubel-Wiesel-1959]  Learned first-layer filters

http://caffe.berkeleyvision.org/


Early experiments 1: Category recognition

 Implementation by Yangqing Jia, 2013, http://caffe.berkeleyvision.org/
– network pre-trained for 1000 categories provided

 Which categories are pre-trained?
– 1000 “most popular” (probably mostly populated)
– Typically very fine categories (dog breeds, plants, vehicles…)
– Category “person” (or derived) is missing
– Recognition accuracy subjectively surprisingly good…
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http://caffe.berkeleyvision.org/


44

It is not a texture only...



Early experiments 2: Category retrieval
 50k randomly selected images from Profimedia dataset
 Category: Restaurant (results out of 50k-random-Profiset)
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Early experiments 2: Category retrieval

 Category: stethoscope (results out of 50k-random-Profiset)
47



Early experiments 3: Similarity search

 Indications in the literature that the last hidden layer carry semantics
– Last hidden layer (4096-dim vector), final layer category responses 

(1000-dim vector)
– New (unseen) categories can be learned by training (a linear) 

classifier on top of the last hidden layer
• Oquab, Bottou, Laptev, Sivic, CVPR, 2014

– Responses of the last hidden layer can be used as a compact 
global image descriptor

• Semantically similar images should have small Euclidean distance
• Novak, Cech, Zezula, ICSSA, 2015
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image

4096-dim 
descriptor

https://openaccess.thecvf.com/content_cvpr_2014/html/Oquab_Learning_and_Transferring_2014_CVPR_paper.html
https://link.springer.com/chapter/10.1007/978-3-319-25087-8_22


Early experiments 3: Similarity search

 Qualitative comparison: (20 most similar images to a query image)
1. MUFIN annotation (web demo), http://mufin.fi.muni.cz/annotation/,

[Zezula et al., Similarity Search: The Metric Space Approach. 2005.]
• Nearest neighbour search in 20M images of Profimedia
• Standard global image statistics (e.g. color histograms, gradient 

histograms, etc.)
2. Caffe NN (last hidden layer response + Euclidean distance),

• Nearest neighbour search in 50k images of Profimedia
• 400 times smaller dataset !
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MUFIN results 

http://mufin.fi.muni.cz/annotation/


5050

Early experiments 3: Similarity search
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5151

Early experiments 3: Similarity search

MUFIN results 
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525252

Early experiments 3: Similarity search
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5353

Early experiments 3: Similarity search

MUFIN results 
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545454

Early experiments 3: Similarity search
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5555

Early experiments 3: Similarity search

MUFIN results 
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565656

Early experiments 3: Similarity search
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575757

Early experiments 3: Similarity search

MUFIN results 
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58585858

Early experiments 3: Similarity search
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Novel tricks

 Network initialization
– Mishkin, Matas. All you need is a good init. ICLR 2016
– Weights initialization: zero mean, unit variance, orthogonality

 Batch normalization
– Iosse, Szegedy. Batch Normalization: Accelerating Deep Network 

Training by Reducing Internal Covariate Shift. NIPS 2015
– Zero mean and unit variance weights are “supported” during training 

to avoid vanishing gradient
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⇒Small sensitivity to learning rate 
setting (can be higher, faster training 
– 10 times fewer epochs needed)

⇒Regularizer (dropout can be 
excluded/smaller) (better optimum 
found)

https://arxiv.org/abs/1511.06422
https://arxiv.org/abs/1502.03167


Novel tricks II.

 Exponential Linear Units (ELU)  [Clevert et al., ICLR 2016]

– Self normalizing properties, batch normalization unnecessary
– Faster training reported

 ADAM optimizer [Kingma and Ba, ICLR 2015]
=  (ADAptive Moments)  
– Often improves over SGD (with momentum), 
– Low sensitivity on learning rate setting
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https://arxiv.org/abs/1511.07289
https://arxiv.org/abs/1412.6980


Novel architectures

 ImageNet Large Scale Visual Recognition Challenge (ILSVRC)
61

CNNHoG + DPM

AlexN
et

VG
G

 N
et

G
oogLeN

et
R

esN
et => “Go deeper”



CNN architectures

 AlexNet
– [Krishevsky et al., NIPS 2012]
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https://papers.nips.cc/paper_files/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html


CNN architectures

 VGG Net: VGG-16, VGG-19  
– [Simonyan and Zisserman, ICLR 2015] 
– Deeper than AlexNet
– Smaller filters (3x3 convolutions), more layers

=> Same effective receptive field, 
but more “non-linearity”
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https://arxiv.org/abs/1409.1556


CNN architectures

 GoogLeNet
– [Szegedy et al., CVPR 2015]
– 22 layers, No Fully-Connected layers
– Accurate, much less parameters
– “Inception” module (Net in net)
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https://paperswithcode.com/paper/going-deeper-with-convolutions


CNN architectures

 ResNet
– [He et al., CVPR 2016]

– Residual modules, 152 layers
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=> Plain deeper 
models are not better 
(vanishing gradient)

https://openaccess.thecvf.com/content_cvpr_2016/html/He_Deep_Residual_Learning_CVPR_2016_paper.html


CNN architectures

 ResNeXt
– [Xie-CVPR-2017]
– Improvement of ResNet
– Cardinality 

• number of branches in a block
– “Increasing cardinality, better than 

going wider or deeper"
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ResNet ResNeXt

https://openaccess.thecvf.com/content_cvpr_2017/html/Xie_Aggregated_Residual_Transformations_CVPR_2017_paper.html


CNN architectures

 DenseNet
– [Huang-CVPR-2017]
– Densifying Skip connections
– Chain of several “dense blocks”
– Argument: Features are reused
– Higher accuracy with fewer 

parameters over ResNet
reported

– Best paper award @ CVPR
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Dense Block

https://paperswithcode.com/paper/densely-connected-convolutional-networks


CNN architectures

 Squeeze-and-Excitation Network (SE-Net)
– [Hu-CVPR-2018, Hu-TPAMI-2019]
– Chain of SE-blocks
– Squeeze:

• Channel descriptor by aggregating over spatial 
dimension

– Excitation
• Small bottleneck fully connected net producing 

scale of each channel
– Capture channel interdependences
– Winner of ILSVRC 2017 (Top-5 err 2.25%)
– Negligible extra computational cost
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https://openaccess.thecvf.com/content_cvpr_2018/html/Hu_Squeeze-and-Excitation_Networks_CVPR_2018_paper.html
https://ieeexplore.ieee.org/document/8701503


CNN architectures
 Computationally efficient architectures

– MobileNet [Howard-2017,  Google Inc.]
• depth wise separable convolutions

– ShuffleNet [Zhang-CVPR-2018, Face++]
• Comparable accuracy with AlexNet, 13x speed up

69

https://arxiv.org/abs/1704.04861
https://arxiv.org/abs/1707.01083


DNN architecture - Transformer

 Taken from Natural Language Processing
 “Attention is all you need” [Wasvani-2017]
 Originally for machine translation (seqence2sequence)

– Replaces recurrent neural networks (RNNs)
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Image credit: Joseph Ferrer

https://arxiv.org/abs/1706.03762
https://www.datacamp.com/tutorial/how-transformers-work


DNN architectures - Transformers
 Vision Transformers [Dosovitskiy-2021]

– No Convolutions, Encoder only transformer, Parallel processing
– Image is cut into fixed-size patches and the sequence of vectorized

patches (tokens/words) is fed into the transformer

– Outperforms ResNET on ImageNet, but needs 100M image pretraining
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https://arxiv.org/abs/2010.11929


DNN architectures - Transformers

 (Vision) Transformer
– Input tokens treated equally, but order of the sequence is important

• “Dog bites man” vs. “Man bites dog”
⇒Positional Encoding

• Encodes absolute position of each token 
• Using smooth functions (sin, cos) – each token’s position gives a vector
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DNN architectures - Transformers

 (Vision) Transformer
– Main idea: Self-Attention Mechanism

• Inputs (vectors x1, …, xm)
• Parameters (matrices WQ, WK, WV)

73

Courtesy of Shusen Wang



DNN architectures - Transformers

 (Vision) Transformer
– Main idea: Self-Attention Mechanism

• Inputs (vectors x1, …, xm)
• Parameters (matrices WQ, WK, WV)

74

Courtesy of Shusen Wang



DNN architectures - Transformers

 (Vision) Transformer
– Main idea: Self-Attention Mechanism

• Inputs (vectors x1, …, xm)
• Parameters (matrices WQ, WK, WV)
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Courtesy of Shusen Wang



DNN architectures - Transformers

 (Vision) Transformer
– Main idea: Self-Attention Mechanism

• Inputs (vectors x1, …, xm)
• Parameters (matrices WQ, WK, WV)
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Output vectors: 

Courtesy of Shusen Wang



DNN Architectures- Transformers

 SWIN Transformer [Liu-2021] (“Shifted Windows”)
– Improvement of ViT transformer 

• data hungry (needs large set pretraining)
• Image tokens too large – unsuitable for object detection, semantic 

segmentation
– Hierarchical features

• Self attention within windows (linear complexity w.r.t. image size)
• Cross-window connection (cyclic window shifting in subsequent  layers)

– State-of-the-art general purpose backbone (recognition, detection, 
segmentation, ….)
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https://arxiv.org/abs/2103.14030


DNN Architectures – ConvNext

 ConvNeXt [Liu-2022]
– Pure Convolutional Neural Network (again) 
– Similar to ResNet, but tweaked
– Larger kernel size, BatchNorm -> LayerNorm
– ReLU -> GeLU (smoother)
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https://openaccess.thecvf.com/content/CVPR2022/papers/Liu_A_ConvNet_for_the_2020s_CVPR_2022_paper.pdf
https://www.pinecone.io/learn/batch-layer-normalization/


CNN models (comparison)

 [Canziani et al., An Analysis of Deep Neural Network Models for Practical 
Applications, 2017. arXiv:1605.07678v4]

79

https://arxiv.org/abs/1605.07678


CNN models (comparison)

 ImageNet leaderboard (Top-1 accuracy)
80

https://paperswithcode.com/sota/image-classification-on-imagenet


Face interpretation problems

 Face recognition, face verification
– Architecture similar to AlexNet - deep CNN (softmax at the last layer)
[Taigman-ECVV-2014] DeepFace: Closing the Gap to Human-Level 

Performance in Face Verification (authors from Facebook)
[Parkhi-BMVC-2015] Deep Face recognition (authors from Oxford Uni)

- 2.6M images of  2.6k celebrities, trained net available
[Deng-CVPR-2019] ArcFace (faces mapped onto a unit sphere)

 Face represented by penultimate layer response, similarity search, large 
scale indexing
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VGG Face

https://ieeexplore.ieee.org/document/6909616
http://www.bmva.org/bmvc/2015/papers/paper041/index.html
https://openaccess.thecvf.com/content_CVPR_2019/html/Deng_ArcFace_Additive_Angular_Margin_Loss_for_Deep_Face_Recognition_CVPR_2019_paper.html


Face interpretation problems

 Facial landmarks, Age / Gender estimation
– Multitask network 

• Shared representation
• Combination of both classification and regression problems

82

gender

age

landmarks

I

deep CNN



Age estimation – How good the network is?

 Our survey
~20 human subjects , ~100 images of 2 datasets
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MORPH dataset

IMDB dataset



 Better than average human…

 [Franc-Cech-IVC-2018]
 Network runs real-time on CPU

Age estimation – How good the network is?
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MORPH IMDB

https://cmp.felk.cvut.cz/%7Exfrancv/pages/emcnn.html


Predicting Decision Uncertainty from Faces

 [Jahoda, Vobecky, Cech, Matas. Detecting Decision Ambiguity from 
Facial Images. In Face and Gestures, 2018]

 Can we train a classifier to detect uncertainty?

=> YES, we can…
- CNN 25% error rate, while human volunteers 45% 
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Training set: 1,628 sequences
Test set: 90 sequences

https://github.com/JahodaPaul/DecisionAmbiguityRecognition


Sexual Orientation from Face Images

 [Wang and Kosinki. Deep neural networks are more accurate than humans 
at detecting sexual orientation from facial images. Journal of Personality 
and Social Psychology, 2018]

 Better accuracy than human in (gay vs. heterosexual) 
– 81% accuracy (for men), average human accuracy (61%) 
– 71% accuracy (for women) average human accuracy (54%)
– Accuracy further improved if 5 images provided (91%, 83%)
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https://www.gsb.stanford.edu/faculty-research/publications/deep-neural-networks-are-more-accurate-humans-detecting-sexual


General recipe to use deep neural networks
 Recipe to use deep neural network to “solve any problem” (G. Hinton 2013)

– Have a deep net
– If you do not have enough labeled data, pre-train it by unlabeled data; 

otherwise do not bother with pre-initialization
– Use rectified linear units instead of standard neurons (sigmoid)
– Use dropout to regularize it (you can have many more parameters than 

training data)
– If there is a spatial structure in your data, use convolutional layers

 Novel:
– Use Batch Normalization  [Ioffe-Szegedy-NIPS-2015]
– ReLU => ELU, GELU
– Adaptive Optimizers (ADAM)
– Various architectures (AlexNet, VGG, GoogLeNet, ResNet, ResNeXt, 

DenseNet, SE-Net, MobileNet, ShuffleNet, Transformers, Swin, ConvNext)

 Experience:
– Data matters (the more data the better), transfer learning, data 

augmentation 
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 DNNs efficiently learns the abstract representation 
 Low computational demands for running, Training needs GPU
 Many “deep” toolboxes: Caffe (Berkeley), MatconvNet (Oxford), 

TensorFlow (Google), Theano (Montreal), PyTorch (Facebook), …
 NNs are (again) in the “Golden Age” (or witnessing a bubble), as many 

practical problems seem solvable in near future
 Explosion of interest of DNN in literature, graduates get incredible offers, 

start-ups appear all the time

 Do we understand enough what is going on?
http://www.youtube.com/watch?v=LVLoc6FrLi0

Conclusions
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http://www.youtube.com/watch?v=LVLoc6FrLi0


Further Resources

 Deep Learning Textbook
– Ian Goodfellow and Yoshua Bengio and Aaron Courville, Deep

Learning, MIT Press, 2016
– Available on-line for free.

 Lectures / video-lectures
– Stanford University course on Deep Learning (cs231n)
– MIT lectures on Introduction in Deep Learning (MIT 6.S191)

 Various blogs and on-line journals
– Google AI blog (https://ai.googleblog.com/)
– OpenAI blog (https://openai.com/blog)
– MetaAI blog (https://ai.facebook.com/blog/)
– Andrej Karpathy (blog) 
– …
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