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Lecture Outline

1. Deep neural networks for Object detection
2. Deep neural networks for Segmentation
3. “Deeper” insight into the Deep Nets
4. Foundation models
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Deep Neural Networks 
for Object Detection



Convolutional Networks for Object Detection

 What is the object detection?
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Image recognition
• What?
• holistic

Grocery store

Object detection
• What + Where?
• Bounding boxes

Semantic segmentation
• What + Where?
• Pixel-level accuracy

Instance segmentation
• What instance + Where 
• Pixel-level accuracy



How to measure detector accuracy?

 Ground-Truth bounding boxes, Detections – predicted bounding boxes
 Intersection over Union (IoU), a.k.a. Jaccard index

 A detection is correct (= true positive) if it has enough overlap with the 
ground-truth
– Typically, IoU > 50%
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How to measure detector accuracy?

 Mean Average Precision (mAP)

– Average Precision (Area under the precision-recall curve)

– Mean over all classes
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Pascal VOC 2007 challenge 
(N = 11, r = 0:0.1:1)
(C = 20)
Classes: Person, bird, cat, car, ...

True positive: IoU > 50%



1. Scanning window + CNN

 CNN - Outstanding recognition accuracy of holistic image recognition 
[Krizhevsky-NIPS-2012]

 A trivial detection extension - exhaustive scanning window 
1. Scan all possible bounding boxes 
2. Crop bounding box, warp to 224x224 (fixed-size input image)
3. Run CNN

 Works, but 
– prohibitively slow…

Oquab et al. Learning and Transferring Mid-Level Image Representations using Convolutional
Neural Networks, CVPR, 2014.
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https://papers.nips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
https://doi.org/10.1109/CVPR.2014.222


2. Region proposals + CNN

 CNN not evaluated exhaustively, but on regions where objects are likely 
to be present

 Region proposals (category independent):
– Selective search [Uijlings-IJCV-2013]

– Edgeboxes [Zitnick-ECCV-2014]
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https://doi.org/10.1007/s11263-013-0620-5
https://doi.org/10.1007/978-3-319-10602-1_26


2. Region proposals + CNN

 R-CNN   “Regions with CNN feature”
– Girshick et al. Rich feature hierarchies for accurate object detection and semantic 

segmentation. CVPR 2014.

 Highly improved SotA on Pascal VOC 2012 by more than 30% (mAP)
 Still slow 

– For each region: crop + warp + run CNN  (~2k)
– 47 s/image
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https://www.cv-foundation.org/openaccess/content_cvpr_2014/html/Girshick_Rich_Feature_Hierarchies_2014_CVPR_paper.html


2. Region proposals + CNN

 Idea (1): 
– Do not run the entire CNN for each ROI, but

• run convolutional (representation) part once for the entire image and
• for each ROI pool the features and run fully connected (classification) part 

– He et al. Spatial Pyramid Pooling in Deep Convolutional Networks for Visual 
Recogniton. ECCV 2014.

– Arbitrary size image => fixed-length representation
– Implemented by max-pooling operations
– Speeds testing up
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https://arxiv.org/abs/1406.4729


2. Region proposals + CNN

 Idea (2):
– Refine bounding box by regression
– Multi-task loss: classification + bounding box offset 

 Fast R-CNN (= R-CNN + idea 1 + idea 2)
– Girshick R. Fast R-CNN, ICCV 2015.

– End-to-end training 
– Speed up, but  proposals still expensive 
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https://arxiv.org/abs/1504.08083


2. Region proposals + CNN
 Idea (3):

– Implement region proposal mechanism by CNN with shared 
convolutional features (RPN + fast R-CNN)

⇒Faster R-CNN 
– Ren et al. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal

Networks. NIPS 2015.

– Region proposal network: object/not-object + bb coord. (k-anchor boxes)

– Training: simple alternating optimization (RPN, fast R-CNN)
– Accurate: 73.2% mAP (VOC 2007), Fast: 5 fps
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https://papers.nips.cc/paper/2015/hash/14bfa6bb14875e45bba028a21ed38046-Abstract.html


2. Region proposals + CNN + Instance segmentation
 Mask R-CNN

– He et al., Mask R-CNN. ICCV 2017

– Faster R-CNN + fully convolutional 
branch for segmentation

– ROI alignment
• Improved pooling with interpolation

– Running 5 fps

+ keypoint localization (pose estimation) 
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COCO dataset “Common Object in Context” (>200K images, 91 categories)

[video1]   [video2]

https://arxiv.org/abs/1703.06870
https://youtu.be/OOT3UIXZztE
https://youtu.be/KYNDzlcQMWA?t=29


3. Detection CNN without region proposals

 YOLO “You Only Look Once”
– Redmond et al. You Only Look Once: Unified, Real-Time Object Detection. CVPR 2016.

– A single net predicts bounding boxes and class probabilities directly 
from the entire image in a single execution
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Output layer:
• Tensor 7x7x30

7x7 spatial grid
30=2*5+20

2: number of bboxes per cell
5: (x,y,w,h, overlap score)
20: number of classes

https://arxiv.org/abs/1506.02640


3. Detection CNN without region proposals

 YOLO properties:
1. Reasons globally

• Entire image is seen for training and testing, contextual information is 
preserved (=> less false positives)

2. Generalization
• Trained on photos, works on artworks

3. Fast (real-time)
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mAP (VOC 2007) FPS (GPU Titan X)
YOLO 63.4% 45
fast YOLO 52.7% 150



3. Detection CNN without region proposals

 YOLOv2, YOLO 9000
– Redmon J., Farhadi A. YOLO9000: Better, Faster, Stronger. CVPR 2017 

– Several technical improvements:
• Batch normalization, Higher resolution input image (448x448), Finer 

output grid (13x13), Anchor boxes (found by K-means)
– Hierarchical output labels:

– Trained on COCO and ImageNET datasets
– Able to learn from images without bounding box annotation (weak 

supervision)
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https://arxiv.org/abs/1612.08242
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3. Detection CNN without region proposals

 YOLOv2, YOLO 9000 summary

– The most accurate, the fastest…
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http://youtu.be/VOC3huqHrss

[video]

http://youtu.be/VOC3huqHrss


3. Detection CNN without region proposals

 RetinaNet (Lin et al., ICCV-2017, IEEE TPAMI 2020)
– Feature pyramid network

– Focal Loss
• Imbalance between positive and negative (background) classes (1:1000)
• Assign more weight on hard examples
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Cross-entropy loss
Focal loss

https://arxiv.org/abs/1708.02002


Object Detection with Transformers

 End-to-end Object Detection with Transformers (DETR) [Carion-ECCV-2020]

– CNN as a feature extractor, nowadays image patches instead
– Transformer encoder – decoder architecture
– FFN – 3-layer perceptron to predict (bbox + object class/no-object)
– Bipartite matching between prediction and ground-truth bboxes for training

• Hungarian algorithm to maximize the matching score
• Invariant to permutation of predicted objects
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https://arxiv.org/abs/2005.12872


DETR – for segmentation

 Observation: encoder self-attention shows individual instances

 Segmentation head on the attention maps
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Detection DNN - summary

1. Exhaustive scanning windows + CNN

2. Region proposals + CNN
1. R-CNN
2. Fast R-CNN
3. Faster R-CNN
4. Mask R-CNN

3. CNN/DNN without region proposals
1. YOLO
2. YOLO v2, YOLO 9000
3. RetinaNet
4. DETR

More recently – (SWIN) transformer backbone + detection/segmentation head
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Deep Neural Networks for Semantic 
Segmentation



Fully Convolutional Net (FCN)

 Shelhammer et al. Fully Convolutional Networks for Semantic 
Segmentation, TPAMI 2017  (originally CVPR, 2015)
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 Fully Convolutional (no fully connected layers)
– The output size proportional to input size

 Upsampling at the last layer 
– Deconvolution layer (= transposed convolution, 

fractional-strided convolution)
– [Dumoulin, Visen, 2018]

https://arxiv.org/abs/1411.4038
https://arxiv.org/abs/1603.07285


U-Net

 Ronneberger, et al. U-Net: Convolutional Networks for Biomedical Image 
Segmentation, Medical Image Computing and Computer-Assisted 
Intervention, 2015
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 Bahnik et al., Visually Assisted Anti-
Lock Braking System. IEEE IV, 2020
– Surface segmentation

https://arxiv.org/abs/1505.04597
https://doi.org/10.1109/IV47402.2020.9304807


DeepLab v3+

 Chen et al., Encoder-Decoder with Atrous Separable Convolution for 
Semantic Image Segmentation, ECCV 2018. 

 Atrous Convolutions (= with “holes”, dilated convolutions)
– Same number of parameters with larger receptive field
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5x5 => 3x3 
parameters

https://arxiv.org/abs/1802.02611


Segmentation with Transformers

 Segmentation head on top of the transformer features or attention maps
 SEGMENTER [Strudel-ICCV-2021]

– No convolutions at all

28

https://arxiv.org/abs/2105.05633


Detection/Segmentation frameworks

 Detectron2 (Meta, FAIR)
– Detection, segmentation, 

keypoints
– Large model zoo (Faster RCNN, 

RetinaNet, Mask RCNN, …)
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 YOLOv8 (Ultralytics)
– User-friendly, accurate and fast…



Autonomous student formula (eForce)

 eForce (CTU formula student team)
– Electric vehicle 
– Acceleration ~ 2.5sec 0-100 km/h

 Driverless disciplines
– YOLO-type detection of traffic cones
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[video]

https://youtu.be/kqsdE_h6oeA


“Deeper” Insight into the Deep Nets

31



Deep Fake

 Seamless swapping a face in an image/video, e.g. [Nguyen et al., 2020]
 Auto-encoder architecture

– Single shared encoder (to capture pose / expressions)
– Two decoders (Source and Target to capture person’s identity)
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Training Deployment

 Controversy: 
– fake news, fake porn, …

 Deep fake detection

[YouTube]

ORIGINAL DEEPFAKES

[YouTube]

https://arxiv.org/abs/1909.11573
https://youtu.be/hoc2RISoLWU
https://youtu.be/FzMnDwpKJrI


Deep Network Can Easily Be Fooled

 Szegedy et al. Intriguing properties of neural networks. ICLR 2014
– Small perturbation of the input image changes the output of the 

trained “well-performing” neural network
– The perturbation is a non-random image, imperceptible for human

– Optimum found by gradient descent
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ostrich

NNI

https://arxiv.org/abs/1312.6199


Deep Network Can Easily Be Fooled

 Nguyen et al. Deep Neural Networks are Easily Fooled: High Confidence 
Predictions for Unrecognizable Images. CVPR 2015.
– Artificial images that are unrecognizable to humans, producing high 

output score can be found
– The optimum images found by evolutionary algorithm

• Starting from random noise
• Direct/Indirect encoding
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⇒The images found do not have 
the natural image statistics

https://arxiv.org/abs/1412.1897


Deep Network Can Easily Be Fooled
 Adversarial physical attacks on neural networks

– Adversarial sticker
[Brown-2018]

– Adversarial T-shirt
[Xu-2019]

– Adversarial glasses
[Sharif-2016]
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[video]

https://arxiv.org/abs/1712.09665
https://arxiv.org/abs/1910.11099
http://dx.doi.org/10.1145/2976749.2978392
https://youtu.be/i1sp4X57TL4


Visualization the Deep Nets

 Mahendran A., Vedaldi A. Understanding Deep Image Representations by 
Inverting Them. CVPR 2015. 

– Start from a random Image I
– Best match between features + image regularization (natural image prior)

– Total Variation regularizer (TV)
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https://arxiv.org/abs/1412.0035


Visualizing the Deep Nets

 CNN reconstruction

– Gradient descent from random initialization
– Reconstruction is not unique

 Similarly, find an image that causes a particular neuron fires (maximally 
activate)
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⇒All these images are identical 
for the CNN



Verification what the deep net learned

 Deep nets often criticized for a lack of interpretability
 Grad-CAM: Visual Explanations from Deep Networks [Selvaraju-ICCV-2017]

– GRADient weight Class Activation Mapping
– Trianed model => Coarse localization map highlighting important 

regions for a class c
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VGG “c=cat” VGG “c=dog”

…Feature tensor (last        
convolution layer)

- spans spatial dimensions
- spans channels

https://arxiv.org/abs/1610.02391


Verification what the deep net learned (2)

 For transformers: Self-Attention exploited

 Self-Attention: Query, Key, Value
– Models long-distance relationships between tokens 
– A matrix of size NxN,  where N is the number of tokens
– Self-attention map of the [class] token is used (reshaped to image size)

 Multiple heads, multiple layers 
(recap)
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[class]

Figure credit: Francois Fleuret



Verification what the deep net learned (3)

 Attention Roll-out [Abnar-2020]

 Combination of gradient + attention [Chafer-ECCV-2021]
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Roll-out Chafer-2021

https://arxiv.org/abs/2005.00928
https://github.com/hila-chefer/Transformer-Explainability


Deep Dream

 Manipulate the input image so that response scores are higher for all classes
 Start from an original image
 Regularization with TV prior
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http://youtu.be/EjiyYtQIEpA
[video]

Credit: Eric Wayne

http://youtu.be/EjiyYtQIEpA


Deep Dream

 Maybe…
42

Soft Construction with 
Boiled Beans (1936) 

Swans Reflecting
Elephants (1937)

Apparition of a Face and Fruit 
Dish on a Beach (1937)Hieronymus Bosch,

Garden of Earthly Delights
(~1510), [part]

Salvador Dalí



Deep Aging

 Our network trained for predicting age (gender and landmarks) was used
43

NN SPCAp
I

[Čech, J. Unpublished experiment, 2015]



Deep Art – Neural Style

 Gatys et al. A Neural Algorithm of Artistic Style. Journal of Vision, 2015.
– Generate high-quality artistic rendering images from photographs
– Combines content of the input image with a style of another image

– More examples at Deepart.io
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Content image

Style images

Result images

https://deepart.io/


Deep Art – Neural Style

 Main idea:
– the style is captured by correlation of lower network layer responses
– the content is captured by higher level responses

 The optimization problem:
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G is a Gram matrix (dot product matrix of vectorized filter responses)



Summary

 Deep fake
 Using Network gradient according to the image for various optimization

– Fooling the net
– Visualization + Interpretation
– Dreaming, Hallucination
– Aging
– Artistic rendering of photographs

=> Understanding of the trained model
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Foundation models



CLIP – Connecting Text and Images

 CLIP [Radford-2021] by OpenAI
– “Contrastive Language–Image Pre-training”
– Learn joint text-image embedding => Text-image (cosine) similarity
– Learned from 400M WebImageText (WIT) dataset
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77 tokens 

https://arxiv.org/abs/2103.00020


CLIP – Connecting Text and Images

 Zero-shot prediction (on par with Resnet on ImageNET benchmark)
– Loop over ImageNET-classes: 

max CLIP( ET(“A photo of a <class>”), EI(I) )

 Trained model publicly available
 Alternative model: ALIGN [Jia-ICML-2021] (by Google), but not public 

– A Large scale ImaGe and Noisy-text embedding
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⇒ 76.2% 
top-1 accuracy on 
ImageNET

https://github.com/openai/CLIP
https://arxiv.org/abs/2102.05918


DINO – self-supervised vision transformer

 DINO (self-Distillation with NO labels) [Caron-ICCV-2021] by Meta

 No labels, random crops of the same image
 Student – Teacher training 

– Student and teacher nets of the same architecture
– Student updated by Cross-entropy loss 
– Teacher’s weights are exponentially moving average of the student
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ema

Figure credit: Rahul Deora

https://arxiv.org/abs/2104.14294


DINO – self-supervised vision transformer
51

 Model learns class-specific features without label supervision

 Universal representation for downstream tasks
– k-NN/linear classifier on the features 78.3/80.1% top-1 accuracy on 

ImageNET
– Transfer learning (fine-tuning on other datasets) 
– Image retrieval
– Segmentation
– …

Self-attention of the [CLASS] token on the heads of last hidden layer [video]

https://youtu.be/8I1RelnsgMw


Segment Anything

 Segment Anything Model (SAM)       
[Kirillov-ICCV-2023] by Meta

 Promptable segmentation 
 Human in the loop training (11M images, 

1B masks)
– 3 stages (assisted-manual 120k, semi-

automatic 180k, fully-automatic 11M)
 Handles natural ambiguity by providing 

multiple solutions (3)
 Lightweight prompt encoder and mask 

decoder
⇒ Interactive segmentation 

(50 ms in web browser)
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https://arxiv.org/abs/2304.02643


Segment Anything

 Qualitative results – various prompts

 Outstanding zero-shot capabilities

[project-page / demo]

53

https://segment-anything.com/


Depth Anything

 Large Monodepth model [Yang-CVPR-2024] by TikTok
 Trained from 1.5M of depth labeled images + 62M of unlabeled images

– Semi-Supervised Learning (SSL): 
• Teacher – trained from labeled, 
• Student – trained from labeled + pseudo-labeled  (from the Teacher)

– Normalizing depth (inverse depth, 0-1 range)
– Strong data augmentation (color jitter, blur, geometry - CutMix)

– Semantic preservation (alignment with DINO features)
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Depth Anything

 Qualitative results
55

[project-page / demo]

https://huggingface.co/spaces/LiheYoung/Depth-Anything


FARL – FAcial Representation Learning

 FARL [Zheng-CVPR-2022] by Microsoft
 Universal representation for face images
 Trained from 20M LAION-Face dataset
 Combines text-image contrastive learning 

and masked image modeling
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 “CLIP for faces”, many downstream tasks (segmentation, landmarks, age) 

[project page]

https://arxiv.org/abs/2112.03109
https://github.com/FacePerceiver/FaRL


Conclusions

 No doubt that the paradigm has shifted
 Turbulent period

– The research is extremely accelerated, many novel approaches
– New results are still astonishing 

 Large foundation models appear and are usually publicly available
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