
Combinatorial Optimization

CoContest Semester Project Assignment:

TurkeyBox™

Industrial Informatics Department
Czech Technical University in Prague

https://industrialinformatics.fel.cvut.cz/

March 1, 2025

Abstract

This document introduces the assignment for the CoContest semester project.

1 Motivational Example

Theodor Krocan operates a successful business delivering orders (without any questions) to its
parcel box at the Kr̊ut́ı Hora. Since the parcel box is unmanned, has limited capacity, and the
shipments come only once a month, Theodor needs to reason about which customers’ orders he
will fulfill to maximize his profit. Namely:

• Parcel box consists of a list of lockers of different sizes, each with its own security code.

• Each customer orders a list of items. Multiple items can be stored inside a single locker, but
they have to fit given the locker’s size.

• One locker can contain only items of a single customer.1

• Each customer can be assigned multiple lockers.

The customer pays a partial price for each item delivered. However, if Theodor is able to fulfill
their entire order, the customer will provide an additional bonus/bribe to incentivize such priority.

This problem will be solved in two phases. In the first phase (optimal), all the lockers have
the same width, and all the items have the same width as well. Thus, it is only necessary to
determine to which locker the item is assigned, while the sum of the item’s heights cannot exceed
the locker’s height.

In the second phase (threshold, ranking), the lockers are rectangular with arbitrary width
and height, and so are the items. Thus, not only does Theodor need to determine to which locker
he will put the item, but he also needs to consider whether the assigned items will fit not only
the height of the locker but also its width. Also, he must determine the position of each item to
ensure they fit into the locker (no overlap).

2 Formal Problem Statement

You are given list ofM lockers, (B1, . . . , BM ) and list ofN customers (C1, . . . , CN ). Each customer
i is associated with their bonus pay Pi and list of ni items (Oi

1, . . . , O
i
k, . . . , O

i
ni
). Each item’s

1Otherwise, rogue Pilsnerians would steal each others’ stuff

1

https://industrialinformatics.fel.cvut.cz/
https://mapy.cz/s/henevuhazo


partial price is pik. Let π
i
k ∈ {0, 1, . . . ,M} be assignment of item Oi

k to one of the lockers (or none,
when πi

k = 0). All parameters are non-negative integers.
The task is to determine the assignment of subset of the items to lockers πi

k (with 0 means
unassigned) so Theodor maximizes:

A =

N∑
i=1

∑
k:πi

k ̸=0

pik +

N∑
i=1

Pi · Jall items of Ci are deliveredK

2.1 Optimal

Each locker Bm is associated with its height Hm and each item Oi
k with its height hi

k. A feasible
assignment needs to satisfy:

• Single customer per locker

(πi
k ̸= πj

l ) ∨ (πi
k · πj

l = 0) ∀i, j ∈ {1, . . . , N} : i ̸= j,∀k ∈ {1, . . . , ni} ,∀l ∈ {1, . . . , nj}

• Locker is not overfilled ∑
πi
k:π

i
k=m

hi
k ≤ Hm ∀m ∈ {1, . . . ,M}

2.2 Threshold and Ranking

Each rectangular locker Bm is associated not only with height Hm but also with width Wm,
and similarly each rectangular item Oi

k with its height hi
k and width wi

k. Your solutions have to
determine the position of each item Oi

k’s bottom-left corner xi
k (width axis), yik (height axis) so

that the items do not overlap. Since the items can be rotated by 90 degrees in your solution
(width essentially becomes height and vice versa), each item is also associated with flag rik (that
you will set to 1 if rotated, 0 if not). A feasible assignment needs to satisfy:

• Single customer per locker

(πi
k ̸= πj

l ) ∨ (πi
k · πj

l = 0) ∀i, j ∈ {1, . . . , N} : i ̸= j,∀k ∈ {1, . . . , ni} ,∀l ∈ {1, . . . , nj}

• Locker is not overfilled (including rotation, when the item’s dimensions are swapped)

(πi
k = m ∧ m > 0 ∧ rik = 0) =⇒ (0 ≤ xi

k ≤ Wm − wi
k ∧ 0 ≤ yik ≤ Hm − hi

k)

∀i ∈ {1, . . . , N},∀k {1, . . . , ni}

(πi
k = m ∧ m > 0 ∧ rik = 1) =⇒ (0 ≤ xi

k ≤ Wm − hi
k ∧ 0 ≤ yik ≤ Hm − wi

k)

∀i ∈ {1, . . . , N},∀k {1, . . . , ni}

• Items in the same locker do not overlap (in 2D geometric sense)

(πi
k = πi

l ∧ πi
k, π

i
l > 0) =⇒ noOverlap(Oi

k, O
i
l) ∀i ∈ {1, . . . , N},∀k, l {∈ 1, . . . , ni} : k ̸= l

2



(a) Instance with 4 customers (b) Optimal solution using 5 lockers

Figure 1: Example for 1D optimal phase

(a) Solution with objective value = 2303 (b) Solution with objective value = 2734

Figure 2: Solution examples for 2D threshold and ranking phase

3



3 Rules

If you decide to choose CoContest as your semestral project, then you are expected to implement a
correct solver for TurkeyBox™ problem. The implementation will be submitted to BRUTE https:

//cw.felk.cvut.cz/brute/ where it will be automatically evaluated (the number of submissions
is not limited). The grading is a combination of the ability to find good solutions and the achieved
rank relative to other students (w.r.t. the objective function). Therefore, you can acquire a small
number of points even if your solver is not very efficient relative to other students.

In BRUTE, you will find 3 tasks related to the contest. Each task has specific instances, rules,
and grading. The contest is split into different tasks to avoid re-evaluation of the instances (which
is time-consuming) and so that you can implement a specific solver for each task.

1. SP CC O: you have to formulate ILP model using Gurobi for the first phase (i.e., one-
dimensional) problem. If your solver solves all the instances in this task optimally, then
you will get 3 points for this task. If the solver returns a suboptimal solution for ANY
instance in this phase, then the evaluation of your solver is stopped, and you will get 0 points
in this task.

2. SP CC T: the goal is to find the best possible feasible solution within the specified time
limit for the second phase (i.e., two-dimensional) problem. The optimal solutions are not
required, and you are encouraged to implement clever heuristics solving these instances. For
each instance in this task, you will obtain some fraction of the point if your solution’s cost
is not worse than our threshold (4 points at max).

3. SP CC R: similarly as in SP CC T, in this task, we are also interested in finding the best
possible feasible solution within the specified time limit. However, your solver’s evaluation
will depend on how good your solver is relative to other students’ solvers, i.e., the number
of points obtained will depend on your rank (4 points at max).

Some general contest rules also apply:

1. Usage of the single-purpose problem-specific solvers is prohibited (i.e., a MILP solver is
allowed, but somebody’s else code for solving ”TurkeyBox™” like problem is not).

2. Every participant is required to write their own code. However, sharing ideas and discussing
the problem is encouraged.

4 Input and Output Format

In SP CC O, your solver will be called as

$ ./your-solver PATH_INPUT_FILE PATH_OUTPUT_FILE

whereas in SP CC T and SP CC R we include a time limit

$ ./your-solver PATH_INPUT_FILE PATH_OUTPUT_FILE TIME_LIMIT

• PATH INPUT FILE and PATH OUTPUT FILE: similarly as in homeworks, these parameters rep-
resent the path to the input and output files, respectively (see below for a description of the
file formats).

• TIME LIMIT: a float representing the time limit in seconds given to your solver. Your solver
will be killed after the time limit is reached, and you will be awarded 0 points. Hence, your
solver’s output is considered only if your program exits with status code 0 before it times
out.

4

https://cw.felk.cvut.cz/brute/
https://cw.felk.cvut.cz/brute/


4.1 Optimal

The input file has the following form (we use one space as a separator between values on one line):
M N
n1 . . . nN

H1 H2 . . . HM

P1 p11 h1
1 p12 h1

2 . . . p1n1
h1
n1

...
PN pN1 hN

1 pN2 hN
2 . . . pNnN

hN
nN

The output file has the following format:

obj
π1
1

...
π1
n1

π2
1

...
πN
nN

where obj is the total profit. All values are integer.

4.2 Threshold and Ranking

The input file has the following form (we use one space as a separator between values on one line):
M N
n1 . . . nN

W1 H1 W2 H2 . . . WM HM

P1 p11 w1
1 h1

1 . . . p1n1
w1

ni
h1
n1

...
PN pN1 wN

1 hN
1 . . . pNnN

wN
nN

hN
nN

The output file has the following format:

obj
π1
1 x1

1 y11 r11
...
π1
n1

x1
n1

y1n1
r1n1

π2
1 x2

1 y21 r21
...
πN
nN

xN
nN

yNnN
rNnN

where obj is the total profit. Note that when the item is not assigned (πi
j = 0), values x, y, r

may be arbitrary. Nevertheless, all values are integer.

Optimal Example

This example corresponds to the motivation example Fig 1.

Input:

5



5 4

7 10 6 8

105 91 151 128 100

82 26 55 21 29 2 10 24 67 18 28 30 50 6 8

32 22 16 23 56 5 20 15 36 19 13 4 54 13 13 14 6 6 4 21 4

57 8 47 19 21 30 60 20 7 3 4 15 5

53 24 18 18 49 3 31 9 15 20 70 17 50 25 4 26 25

Output:

502

3

3

1

1

1

3

3

2

0

0

2

2

0

2

2

0

2

0

5

5

5

5

5

4

4

0

4

0

0

4

4

Threshold / Ranking Example

This example corresponds to the motivation example Fig 2 (for clarity, long lines are separated).

Input:

4 5

27 21 27 27 30

20 15 15 13 13 11 10 7

69 15 4 1 8 7 2 43 2 4 19 2 3 23 3 4 44 4 2 32 3 3 36 3 3 34 6 2 32 2 6 19

3 5 45 2 2 29 3 2 40 1 5 22 4 3 40 1 4 41 4 3 25 4 3 45 3 3 31 6 2 20

6



3 4 18 5 2 38 2 7 32 2 6 48 2 6 23 5 1 15 3 4

64 16 5 2 8 6 2 27 4 4 48 4 2 48 4 3 34 2 2 23 4 4 23 2 7 38 2 7 41 3 3 49

5 3 25 4 3 9 6 2 46 3 2 14 3 2 48 3 2 35 3 2 35 6 2 15 3 2 42 3 2 20 2 6

93 15 4 3 25 3 5 46 3 3 23 4 3 9 2 3 23 3 3 18 2 2 15 6 2 10 4 3 49 2 4 12 3

3 36 2 2 11 7 2 23 3 4 9 4 2 36 1 5 49 2 7 23 3 3 32 3 3 21 2 4 17 1 4

21 3 3 37 3 3 34 3 3 17 4 3 36 2 3 18 1 5

73 28 2 3 30 3 2 30 4 3 42 3 3 11 1 4 18 4 3 17 7 2 8 2 7 40 5 2 30 1 4 29

4 3 43 3 5 46 3 2 12 4 2 24 3 3 39 3 2 41 4 3 47 3 3 27 3 2 38 5 2 40

5 3 26 2 3 15 4 4 45 4 2 39 2 2 42 2 5 28 3 3

944 33 2 2 36 7 2 43 5 2 46 3 2 30 5 3 28 4 1 41 2 5 21 2 4 10 7 2 30 3 4

36 2 6 38 2 6 24 3 2 24 3 4 16 5 1 33 2 3 14 1 4 8 4 2 10 4 1 42 3 3

20 2 6 24 4 2 48 3 2 48 3 3 42 3 4 27 1 5 26 4 2 33 7 2 17 2 2 34 5 2

7


	Motivational Example
	Formal Problem Statement
	Optimal
	Threshold and Ranking

	Rules
	Input and Output Format
	Optimal
	Threshold and Ranking


