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Motivation

A Compilation of Robots Falling Down at the DARPA Robotics Challenge
https://youtu.be/g0TaYhjpOfo



http://www.youtube.com/watch?v=g0TaYhjpOfo
https://youtu.be/g0TaYhjpOfo
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Honda Asimo - Fully actuated walking

All New Honda Asimo 2018 at the USA Science and Engineering Festival
https://youtu.be/1url_X_vp7w



https://youtu.be/1urL_X_vp7w
http://www.youtube.com/watch?v=1urL_X_vp7w

Pneumatic passive-based biped

Martijn Wisse
Jan van Frankenhuyzen
2004

McGeer and Passive Dynamic Bipedal Walking
https://youtu.be/WOPED7I5Lac

Delft Biorobotics Laboratory

e
TUDelft

McGeer, T. (1990). Passive dynamic walking. Int.
J. Robotics Res., 9(2), 62-82. Collins, S., Ruina, A., Tedrake, R., & Wisse, M. (2005). Efficient bipedal robots based
on passive-dynamic walkers. Science, 307(5712), 1082-1085. 5



https://youtu.be/WOPED7I5Lac
http://www.youtube.com/watch?v=WOPED7I5Lac
https://docs.google.com/file/d/1iA0ba6lgEnqTpIEJZyX8mJAQbcGNqAHH/preview
https://docs.google.com/file/d/1m1jCOG6GkAt0rYPWRW2vv72PyQPBgC8y/preview
https://docs.google.com/file/d/1L-TuM-X6mcTTAnSFCbDAWNJb-c2JHNtG/preview

Passive dynamic walker

Tad McGeer

School of Engineering Science

Simon Fraser University

Burnaby, British Columbia, Canada VSA 156

Abstract

There exists a class of two-legged machines for which walking
is a natwral dynamic mode, Once started on & shallow slope,
‘@ machine of this class will sette into a steady gait quite

verify
ffc can e readly exploled it prcie mdw.mam

Passive Dynamic
Walking

2. Dynamics vs. Control

Our interest is in dynamic walking machines, which
for our purposes can be classified according to the role
of active control in generating the gait. At one end of
the spectrum is the biped of Mita et al. (1984), whose
motion is generated entirely by linear feedback con-
trol. At the end of one step, joint angles are com-
manded corresponding to the end of the next step,
nnd'.heoonml]amempum null the errors. There is

;;m‘:umeymummmm active nergy
input to produce efficient and dextrous walking over a broad
range of terrain.

1. Static vs. Dynamic Walking

Research on legged locomotion is motivated wﬂy by
fundamental curiousity about its mechanics, an

appearance of a wide variety of legged machines. A
brief classification will indicate where our own work
fits in. First one should distinguish between static and
dynamic machines, The former maintain static equi-
librium throughout their motion. This requires at least
four legs and, more commonly, six. It also imposes a
speed restriction, since cyclic accelerations must be
Jimited in order to minimize inertial effects. Outstand-
ing examples of static walkers are the Odex series
(Russell 1983) and the Adaptive Suspension Vehicle
(Waldron 1986). Dynamic machines, on the other
hand, are more like people; they can have fewer legs
than static machines, and are potentially faster.

“The International Journal of Robotics Rescarch,
Vol 9, No. 2, April 1990,
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no explicit of the trajectory between

these end conditions. Yamada, Furusho, and Sano
(1985) took an approach that also relies on feedback,
bulmtllurmtheltuundlonﬂlf\dlywlﬁnd

rather than just to close the gap between

start and end positions. Meanwhile the stance leg is left
free to rotate as an inverted pendulum, which, as we
;hﬂldnmuakcydgmenlofmvemlhn;&m—

techniques are used in biped walkers by Takanishi
et al. (1985), Lee and Liao (1988), and Zheng, Shen,
and Sias (1988).

By contrast the bipeds of Miura and Shimoyama
(1984) generate their gait by feedforward rather than
feedback; joint torque schedules are precalculated and
played back on command. Again the stance leg is left
free. However, the “feedforward " gait is unstable, so
small feedback corrections are added to maintain the
walking cycle. Most significantly, these are not applied
continuously (i.c., for tracking of the nominal trajec-
tory). Instead the “feedforward ™ step is treated as a
wocmwhm output (the end-of-step state) varies
with the mpul (the start-of-step state). Thus the feed-

lrspondslolnmwmmchn‘by
initial for steps, and
50 over several steps the error is eliminated. In this
paper you will see analysis of a similar process, Raibert
(1986) has developed comparable concepts but with a.
more pure implementation, and applied them with
great success to running machines having from one to
four Jegs.

Al of these machines use active control in some

form to generate the locomotion pattern. They can be

The International Journal of Robotics Research

Fig. 2. General arrangement
of a 2D biped. It includes
legs of arbitrary mass and
inertia, semicircular feet,
and a point mass at the hip.
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Boston dynamics - Atlas

Atlas Gets a Grip | Boston Dynamics - 2023
https://youtu.be/-e1_QhJ1EhQ



https://youtu.be/-e1_QhJ1EhQ
http://www.youtube.com/watch?v=-e1_QhJ1EhQ
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https://youtu.be/XFXj81mvInc
http://www.youtube.com/watch?v=XFXj81mvInc

Do we need modeling?

e Or canwe do with machine learning / deep learning like in grasping?
e Marc Raibert, CEO Boston Dynamics, IROS, Kyoto, October 2022:

o Ineverything you have seen from Boston Dynamics till now, there is zero machine learning /
deep learning.

o  Whenever we had to choose whether to put machine learning or a bunch of engineers on the
problem, so far we always went for the engineers.

e How are Boston Dynamics robots controlled?

o  Principles originate in the early Raibert’s work - modeling and engineering.
o Heavy use of Model Predictive Control (MPC).



Learning humanoids walking

il | !l

. '.””

Walk, Run, Crawl, RL Fun |
Boston Dynamics | Atlas;
March 2025
https://youtu.be/l44_zbEwz_w
?si=JgoBHCKNwXC5IUVS

Atlas is demonstrating policies developed using reinforcement learning with references from human
motion capture and animation.

e Research partnership between Boston Dynamics and the Robotics and Al Institute (RAI Institute).

10



http://www.youtube.com/watch?v=I44_zbEwz_w
https://youtu.be/I44_zbEwz_w?si=JgoBHCKNwXC5IUVS
https://youtu.be/I44_zbEwz_w?si=JgoBHCKNwXC5IUVS

Learning humanoids walking
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Radosavovic, I., Xiao, T., Zhang, B., Darrell, T., Malik, J., & Sreenath, K. (2024). Real-world humanoid
locomotion with reinforcement learning. Science Robotics, 9(89), eadi9579.
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https://docs.google.com/file/d/1opDFZ7WauRmXffRdSETJ7_OhNYax9svy/preview

Resources

Books / book sections
o [Chapter 5 - Balance control in Nenchev, D. N., Konno, A., & Tsuijita, T. (2018). Humanoid robots:
Modeling and control. Butterworth-Heinemann.]
Articles
o McGeer, T. (1990). Passive dynamic walking. Int. J. Robotics Res., 9(2), 62-82.
o Radosavovic, I., Xiao, T., Zhang, B., Darrell, T., Malik, J., & Sreenath, K. (2024). Real-world humanoid
locomotion with reinforcement learning. Science Robotics, 9(89), eadi9579.
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