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Overview

= Motivation for statistical models in computational biology

to represent the statistical regularities of some class of sequences,
the sequences could be genes, various regulatory sites in DNA (e.g. pro-
moters), proteins in a given family,

s Markov models

Markov property

x given the present, the future does not depend on the past,
trade-off between simplicity and veracity,

Markov chains

* the model states are observable,
* one-to-one link between the states and the sequence symbols,

hidden Markov models.

x the relationship between states and symbols remains hidden.




Motivation for sequence modeling

these sequences are E. coli promoters

tctgaaatgagctgttgacaattaatcatcgaactagttaactagtacgcaagttca
accggaagaaaaccgtgacattttaacacgtttgttacaaggtaaaggcgacgeccgce
aaattaaaattttattgacttaggtcactaaatactttaaccaatataggcatagcg
ttgtcataatcgacttgtaaaccaaattgaaaagatttaggtttacaagtctacacc
catcctecgcaccagtcgacgacggtttacgectttacgtatagtggcgacaatttttt
tccagtataatttgttggcataattaagtacgacgagtaaaattacatacctgecccg
acagttatccactattcctgtggataaccatgtgtattagagttagaaaacacgaqgg

these sequences are not promoters

atagtctcagagtcttgacctactacgccagecattttggecggtgtaagectaaccatt
aactcaaggctgatacggcgagacttgcgagecttgtecttgeggtacacagecageg
ttactgtgaacattattecgtctcecgegactacgatgagatgecctgagtgetteegtt
tattctcaacaagattaaccgacagattcaatctcgtggatggacgttcaacattga
aacgagtcaatcagaccgctttgactctggtattactgtgaacattattcgtctceccg
aagtgcttagcttcaaggtcacggatacgaccgaagcgagcctcgtecctcaatggece
gaagaccacgcctcgccaccgagtagacccttagagagcatgtcagecctcgacaact

How can we tell the difference? Is this sequence a promoter?

ccatcaaaaaaatattctcaacataaaaaactttgtgtaatacttgtaacgctacat

Core RNA polymerase

DNA complementary strand

Promoter

CT_ATTAATCATCGAACTAG“GTACGCI

http://helicase.pbworks.com/
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Markov chain models

= a Markov chain model is defined by

a set of states

* some states symbols,

* other states (e.g., the begin and end states) are ,

* in our case, the silent states allow the model to represent
- preferences for beginning and ending sequences with certain symbols,
- a distribution over sequences of different lengths,

a set of transitions with associated probabilities

* the transitions emanating from a given state define a distribution over
the possible next states.




A Markov chain model

the set of states:
begin _ S = {begin,end,a,c,g,t}

the transition probabilities:
P(x; =alr;1 =¢g)=0.16
P(x;=clz;1=g¢9)=0.34
P(x; = glx;.1 = ¢g) = 0.38

state

transitio/

Marc Craven, BMI/CS 576, www.biostat.wisc.edu/bmi576.




Markov property

m Let X be a sequence of random variables X ... X representing a biological
sequence,

m from the chain rule of probability

P(X)=P(X., X, 1,...,X1) =
= P(X| X1, . X1)P(X11| X -, ..., X41) ... P(Xy)

= the key property of a (1st order) Markov chain: the probability of each X;
depends only on the value of X;_;4

P(X) = (XL\XL VP(Xp 11X 9) ... P(Xs| X1)P(Xy) =

— P(X,) HP 1 Xio1)




The probability of a sequence for a given Markov chain

begin

g

2

T
/

)

P(cggt) = P(c)P(glc)P(glg)P(t|g) P(end|t)

nd




The role of the end state

m [he end state defines a distribution over varying sequence lengths.

<\0-6 O 0.4
y a y a 0.3
begin 0.41 [0-6 begin 0.31 [h

end
m t k t A:
0.4 </‘0_2
P(2)=0.6 P(rn) =0.36 P(»)=0.18 P(2rn) =0.072
P(T)=0.4 P(AT)=0.24 P(T)=0.18 P(AT)=0.072
P(T2)=0.24 | P(T2) = 0.048
P(TT)=0.16 P(TT)=0.032

P(L=1) = 1 P(L=2) =1 P(L=1)=0.36 P(L=2) = 0.224




Estimating the model parameters

m Given some data, how can we determine the probability parameters of our
model?

= one approach: (MLE)

given a set of data D,
set the parameters 6 to maximize P(D|0),

i.e. make the data D look as likely as possible under the model,
m suppose that we are given the following set of DNA sequences
D ={accgcgctta,gcttagtgac,tagccgttac}

what parameters do we have to find?
how can we compute them?
is MLE the best approach?




Maximum likelihood estimation

s We have to estimate transition probabilities
initial probabilities: P(a), P(c), P(g), P(t),
16 1st order probabilities: P(ala), P(alc), ..., P(t|t),

s MLE implemented via relative frequencies

n
P(x) = - where n, is frequency of x

Zie{a,c,g,t} n;

§ 9 7 8
Pla)=—=0.2, Plc)=—=0.3, P(g) =—=0.233, P(t) =—=0.2067

P(zly) = Ty where n,, is frequency of the subsequence yx
Liclacaty My
P(a|g) = w P(C\L(J) = ™ P(t]g) = = P(g|g) — -

= do we really want to have zero probabilities?




A Bayesian approach

m Start with some prior belief for each parameter

instead of estimating parameters strictly from the data,
maximize posterior probability instead of the likelihood
P(D|0)P(0)
P(D)
m represent the way of smoothing for discrete variables
ng: + 1
Zie{a,c,g,t} <nl + 1)

= represent its more general form

P(O|D) =

P(z) =

where 1 is a pseudocount

Ny + Pa
Zie{a,c,g,t} <nZ) +m

where m is the number of virtual instances and p,. is a prior probability of z.

P(x) =




A Bayesian approach

s Remember the data: D ={accgcgctta,gcttagtgac,tagccgttac},

= regularize P(a|g) by Laplace estimate

Nye + 1
S S TTES)
P(glg) = % = (.091
= regularize P(alg) by m-estimate with m = 8 and uniform priors
Nyy + PrM
Plely) = Zzé{ai,g,t}(n?ﬂ> +m
P(glg) = ! +70f58x > 0133




Higher order Markov chains

s the Markov property specifies that the probability of a state depends only on
the probability of the previous state,

m but we can build more “memory” into our states by using a higher order
Markov model,

= in an nth order Markov model
P(X;| X 1, Xi9,..., X1) = P(X;| X;1, ..., Xin)
= higher order models remember more “history”,
m additional history can have predictive value,
m example: predict the next word in this sentence fragment

“...the " (duck, end, grain, tide, wall, ...7?)

= now predict it given more history

“...against the __" (duck, end, grain, tide, wall, ...7)

“swim against the " (duck, end, grain, tide, wall, ...?)




Selecting the order of a Markov chain model

m [he order of a Markov chain is a trade-off between simplicity and veracity,
m the number of parameters grows with the order

for modeling DNA we need O(4"*1) parameters for an nth order model,
m the higher the order, the less reliable the parameter estimates

estimating the parameters of a 2nd order Markov chain from the complete
genome of E. Coli, we'd see each word > 72,000 times on average,

estimating the parameters of an 8th order chain, we'd see each word ~ 5
times on average.




Higher order Markov chains

= an nth order Markov chain over some alphabet X is equivalent to a first order
Markov chain over the alphabet X" of n-tuples,

m example: a 2nd order Markov model for DNA can be treated as a 1st order
Markov model over alphabet

AA ACAGATCACCCGCTGAGCGGGTTATCTGTT

m caveat: we process a sequence one character at a time

asequencec ACGG T processsdasAC—-CG—->GG—->GT,




A fifth-order Markov chain

begin

P(gctac) o
gctac

P(gctaca) = P(gctac)P(a|gctac)
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Inhomogenous Markov chains

m in an Markov model, we can have different distributions at
different positions in the sequence,

m consider modeling codons in protein coding regions.

al_ 7| a
c c |eee
g g [eee
t t t |eoee
pos 1 pos 2 pos 3

Marc Craven, BMI/CS 576, www.biostat.wisc.edu/bmi576.




A fifth-order inhomogenous Markov chain

AAAAA

AAAAA

CTACA

AAAAA

start

CTACC

CTACA

CTACG

CTACC

CTACT

CTACG

CTACT

TACAC

transition:
to states

TACAG

in pos 2

GCTAC

TACAT

TTTTT

GCTAC

position 2

Marc Craven, BMI/CS 576, www.biostat.wisc.edu/bmi576.

TTITTT

position 3

TTTTT

position 1
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Example Markov chain application

s CpG islands

CG dinucleotides are rarer in eukaryotic genomes than expected given the
marginal probabilities of C and G,

CpG islands = the regions upstream of genes rich in CG dinucleotides,
useful evidence for finding genes,

m could classify CpG islands with Markov chains

one to represent CpG islands, one to represent the rest of the genome.

a ‘_ g
/

begin

Marc Craven, BMI/CS 576, www.biostat.wisc.edu/bmi576.




CpG islands as a classification task

m train a CpG chain and a null chain

parameters estimated from sample sequences,

in here, human sequences with 48 CpG islands, 60000 nucleotides,
P(c|a)

a c/g { - a c g {

181 .271.43 .12 30(.21].28 | .21

A171.37 .27 .19 32 1.30 .08 | .30

16| .34 .38 .12 251.24 .30 .21

.08|.36|.38|.18 18 (.24 .29 .29
CpG null

Marc Craven, BMI/CS 576, www.biostat.wisc.edu/bmi576.
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m given a test sequence X, use two models to

determine its probability given both the models,

classify the sequence = compare the posterior probabilities.




Markov chains for discrimination

m compare the posterior probabilities, use Bayes' rule

picyal) - PXICKOIPCHG)
P(X|CpG)P(CpG)

~ P(X|CpG)P(CpG) + P(X |null) P(null)

= if we do not know prior probabilities of two classes (P(CpG) and P(null))
then we just need to compare P(X|CpG) and P(X |null)

i.e, the probabilities derived from the chains,

= often shown and compared in terms of log odds
P(CpG|X)
P(null| X)

log = logP(CpG|X) — logP(null|X) > 0




Markov chains for discrimination

m light bars represent negative sequences,
= dark bars represent positive sequences (e.g., CpG islands),

m however, the figure here is not from a CpG island discrimination task.
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Krogh et al.: An Introduction to Hidden Markov Models for Biological Sequences.
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Summary

s DNA and protein Markov chains

simple stochastic models representing local sequential regularities,

could be used for sequence generation as well as their discrimination,
m key terms

the order of the chain

x the size of memory of the process,
* a trade-off between informedness and the size of the model,

homogeneity of the chain
x do we distinguish different positions in the sequence?
regularization

x do we learn the chain parameters purely from observed data?
x YES = no regularization = MLE,
x NO = regularization = pseudocounts, prior beliefs.




