DLE Course 2024/2025 ®

1
1. Recap of Machine Learning, Multi-Layer Perceptron Lab 1: Double Descent
2. Backpropagation Seminar 1
3. Convolutional Neural Networks Lab 2: Backpropagation, Computational Graph
4. Training Deep Models Seminar 2
5. Regularization Methods for NNs Lab 3: From Scratch: Initialization & regularization
6. Stochastic Gradient Descent (SGD) Seminar 3
7. Adversarial Patterns, Robust Learning Approaches Lab 4: CNN Fine-Tuning, Visualization & Adversarial Patterns
8. Adaptive SGD Methods Seminar 4
9. Learning Representations |: Word Vectors, Metric Learning Lab 5: Metric Learning

10. Learning Representations Il: Unsupervised Learning, VAE Lab 6: VAEs

11. Graph Neural Networks Seminar 5
12. Self-Attention, Transformers Lab 7: GNNs / Transformers
13. TBA Seminar 6

¢ Practical labs: implementation of selected methods (Python/PyTorch),
® Theoretical labs: solving theoretical assignments

assignments are published in advance, you are expected to present/discuss solutions
® More details at the lab



Deep Learning (BEV033DLE)
Lecture 1.

Recap of ML, Multi-Layer Perceptron

Czech Technical University in Prague

4 Machine Learning
e Regression and classification (logistic, multinomial logistic models)
e Test and training losses
e Maximum likelihood
e Bias-Variance trade-off
e Generalization and overfitting
4 Artificial Neuron, MLP, Perceptron

e Universal approximation and capacity






Regression @

Assume y statistically depends on z in nature according to p*(y|x) 4

(functional dependence corrupted by noise, uncontrolled effects of other inputs)
eg. y=f*(x)+e, e~N(0,0%
Training (abstractly):

Y
e Training set T = {z;,y; ffi1 i.i.d. from p* 00—

(z; are given somehow and y; is drawn from p*(y|x;))
@ Training Algorithm '
Predictor y = f(x) - T

e.g. y=w'x+b— linear model :
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Test loss — how well are we predicting?

e Could be an application-specific loss (e.g. loU in detection)
e MSE loss (default choice, mathematical convenience):
For a test input =, Lyvise(x) = Eyopr(y 1) [(y — f(2))7],
then can take a sum over & where we want to predict (not essential here)

e Performance of the predictor, not of the algorithm, it depends on T



Regression: Bias-Variance Decomposition @

¢ How well the Algorithm performs? 5

e In expectation over T

ET[LMSE(CB)] — E’T [Eyrvp*(y | ) [(y — fT(x))2H

= Eypr iyl [(y = ff@)] + (@) flx) + I@T[(ﬂ@; fr(x))?]

7
-~ ~

Irreducible Learning squared bias Learning variance

data variance
f*(flj) — ]Epr*(ylx) [y] — true mean

f(z) =Es|f(x)] — average predictor
Classical lllustration:
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Model + learning induce a preferred solution (inductive bias) — it may or may not be good

for the data at hand



Regression: Bias-Variance Decomposition @ o

4 Classical paradigm: 6
e Too simple models have high bias

e Too complex models will overfit to the noise and as a result will have high variance

A

Total Error

Optimum Model Complexity

Variance

Error

& >
Model Complexity

4 But:
e Bias depends on the model, learning method and the true dependence
e Variance depends on the model, learning method and data distribution, but can be reduced

with more training samples

=> Can regularize instead of complexity control
/design the learning to use complexity adaptively



Regression: Training @

Which training criterion to minimize? [
¢ 1) same loss we used to measure the test performance
e MSE loss: mingﬁz,f\;l(yi — fo(x;))?, fo — parametric predictor
e More difficult with loU loss
¢ 2) Likelihood of a Probabilistic Predictor
e py(y|x) — parametric conditional distribution
e Maximum Likelihood training: maxypy(7T) = maxg | [, pe(vi|x:)
.., for po(y|x) = par(ysio(w),03(x) ML ming [ 52, W55 4 log o ()|
(coincides with MSE loss when oy is constant)
— consistent, asymptotically efficient o)
o Predictor: f(z)=E,p, oy = po(z), - (o)

— mean function of py(y|x)
og(x) — scatter estimate (uncertainty)

¢ 3) Robust models, etc.
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Classification @

Nature: p*(y,x), y € Y — finite set 8

e Binary classification: ) ={-1,1}

Classifier: x — s(z) € R — score, e.g. s(x)=w'z+b

y = flz) =sign(s(z))
Test 0-1 loss (error rate): £L=FE yply # f(@)] = x> lyi # f(24)]
(general decision making: f(z) € D# Y, I(y,d), Risk R =E; ,)p<l(y, f(2))] )

Training criterion?
Training loss functions

e 0 — vector of parameters to train

. MSE
e 0-1 loss (error rate) is not differentiable SVM
e A loss function of the score, e.g. Y . _
| logistic regression
MSE: Luise(0) = 5 > (vi — s(x:))?,
ML approach: Logistic regression .
0-1
' ~



Classification: Logistic Regression

¢ Logistic Regression

e Probabilistic Classifier: p(y|x), y € {—1,1}

ply=1lz) _
ply=—1z) (@)

(score interpretability as log odds 4+ math convenience)

e Logistic regression model: log

= p(y =1|x) = = =: S(s) — logistic sigmoid function

(87!(m) =log == — logit function)
¢ Maximum Likelihood:

o L(0)=—>"logpe(y;|z;) = log(1+ e vi%(®i)) — |og. regression loss

e Classifier, maximum a posteriori (MAP): y = argmax, p(y | x) = sign(s(z))
¢ Multinomial (Logistic) Regression

e )V — finite set, p(y |z) — categorical distribution

o s(z) € RIYI — vector of scores (score per class)
ply=Fk|z) Sk
e Model: lo =S, —8 = =k |r) = ==; =: softmax(s
gp(y=l|:13) o ply =kl2) 2.5€ (8

(same interpretation, independence of irrelevant alternatives)




Classification: Multinomial Regression @

¢ Multinomial (Logistic) Regression 10

e )V — finite set, p(y|z) — categorical distribution

o s(x) € RYI — vector of scores (score per class)

o PU=RlT) Cplg) - e
e Model: log o(=l]2) =sk,—s = ply=klx)= > o =: softmax(s)g

¢ ML: L(0) =—>_.logp(y; |x:) =D, —(t;,logsoftmax(s(z;)))

\ - o
N

y Cross-entropy of categorical
ti — onehot (Yi) e.g., ti = : . . ]
i distributions ¢; and softmax(s(x;))
¢ Classifier

e MAP: argmax, p(y = y|x) = argmax, s(x)r — highest score is most likely prediction



Empirical Risk and Generalization

¢ Risk vs. Empirical Risk

e Predictor or classifier f(x), validation set 7 of size N

e Risk: R(f) = E(z,q)~p* Uy, f(x))] ~ %Z(w,y)eTl(yaf(x)) =:R-(f)

How good is this approximation?

¢ Concentration Inequalities

e [(y,f(x)) is random, sum of random numbers tends to Normal distribution.

e Chebyshev's Inequality: P(|R(f) —R7(f)| >¢) < V[l(?\;;(x))]
e Heffding's Inequality: P(|R(f) —R7(f)| >¢e) <2exp{— ZN; 3

where Al = [ax — lnin (if loss is bounded)

® What if T is the training set?
e Consider choosing f from a set F

e Need a uniform bound: P(3f € F |R(f)—Ry(f)| >¢) <?

11



Empirical Risk and Generalization

¢ Guarantees for the risk while selecting f from a set F7

e Example: Hoeffding's inequality + Union Bound:

IN g2

PEfeF |R(f)—Rr(f)|>e) <2|F|exp{ 25

j

e For better interpretability, can be converted to the upper bound form:

R(f) <R7(f)+ B(N,F,«a) with probability (confidence) a over random T

Different bounds exist, B(N,F,«)
: : 1
- typically decreases with IV as TN
- quickly grows with 1 —«
- grows with “capacity” of F
(e.g. VC dimension, fat shattering dimension,...)

¢ Motivates structured risk:

Learning should minimize combination

of loss and complexity

A
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Upper bound on the true Risk R
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Artificial Neuron @

Neuron: combination of a linear transform and a non-linear function

X
1 w1

w L
X2 Q 2 a =w'x+b — pre-activation
w [ ] [ ]
y = ¢(a) — activation (neuron output)
L3

4+ McCulloch-Pitts (MCP) Neuron, 1943:
e A computational model of the brain
e Inputs: excitatory or inhibitory and firing or quiet = {-1,0,1}
e Weights: present / absent connections = {0,1}

Interesting facts:
two-layer network

e A two layer network can implement any Boolean
function (via CNF) — but this may require
exponentially many neurons

14

e Any finite state machine can be simulated by a MCP
neural network with discrete time and feedback T3

connections



https://en.wikipedia.org/wiki/Finite-state_machine

Perceptron @
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¢ Mark | Perceptron Machine (1958):
e Input: 20x20 input (sensory) units _
potentiometer
e First layer: 512 hidden (association) units, randomly connected

e Output layer: 8 units (response), adjustable weights

e Sensory and association units have continuous response

"Devices of this sort are expected ultimately to be capable of concept formation, language

translation, collation of military intelligence, and the solution of problems through inductive
logic."

F. Rosenblatt



Multi-Layer Perceptron

¢ Theorem (Cybenko, 1989) Every smooth function on [0,1]"

can be approximated
arbitrarily well by a network with sigmoid units and two layers. In other words, given a

smooth function f: [0,1]" — R and an € > 0, there is a sum

N
= ZO@S(UJ?CE + bj)
7=1

s.t. |f(x)—G(x)| <eforall x€]0,1]".

Remark:

e There are also “dual” universal approximation theorems that restrict the width of the

network (i.e. number of units per layer) and allow arbitrary network depth.

e \We limit the expressive power once we fix a network architecture.



Learning Neural Networks: Generalisation & Overfitting @

17

4 Zang et al. (2018): Understanding deep learning requires rethinking generalization

Experiment:
e CIFAR10 Dataset: ~ 5-10% training images (32x32), 10 classes

o Network wit 0° parameters Training Loss

e The network learned by SGD and additional 25
m—a true labels
regularization (data augmentation dropout, etc.) 2.0r e=e random labels |-
n »=% shuffled pixels
. ) .
e Archived > 95% test accuracy a5k random pixels |5
> gaussian
e Capacity tests: g 10
©
- train with random labels 0.5
- shuffle pixels, same in all images 0.0
0 5 10 15 20 25

thousand steps

shuffle pixels in each image

Random Gaussian pixels with statistics matching the image mean and variance



