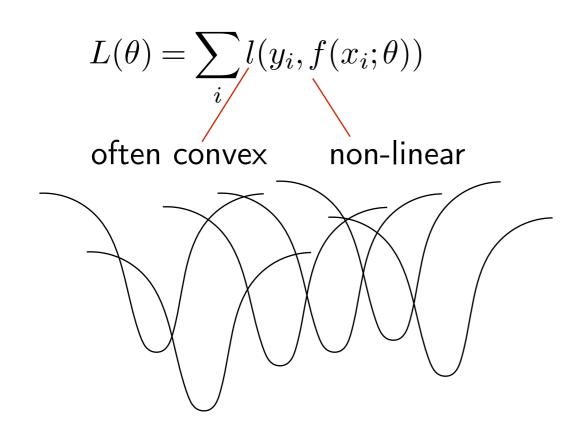
Deep Learning (BEV033DLE) Lecture 8 Adaptive Optimization Methods

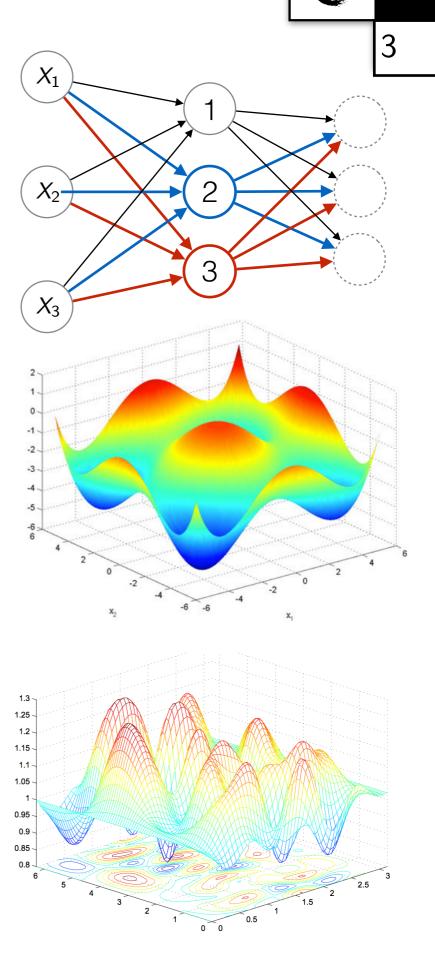
Czech Technical University in Prague

- ♦ Loss Landscape
 - Local optimization in high dimension
- **→** Reparameterizations
 - Change of Basis
 - Neural Teleportation, Path SGD, Natural Gradient
- → Adaptivity by Normalization
 - Trust Region Problem, Adam-like methods

Loss Landscape

- ♦ There are several reasons for local minima
 - Symmetries (Permutation invariances)
 - Fully connected layer with n hidden units:n! permutations
 - Convolutional layer with c channels:c! permutations
 - In a deep network many equivalent local minima, but all of them are equally good -- no need to avoid
 - Loss function is a **sum of many non-convex terms**:



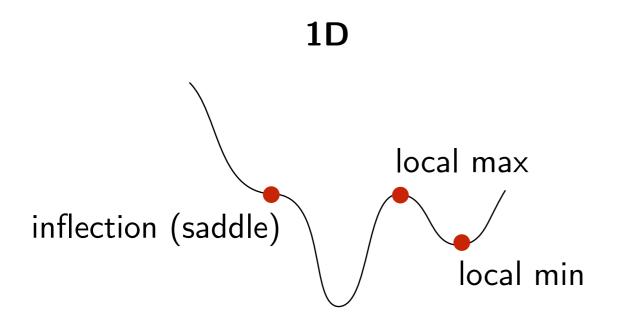


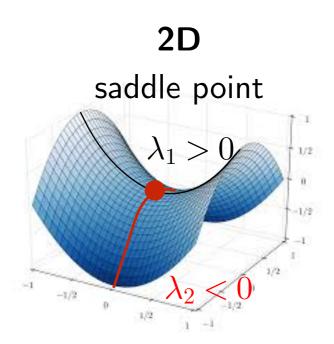
Stationary Points in High Dimensions

Let $f(x): \mathbb{R}^n \to \mathbb{R}$ – differentiable,

Stationary point: the gradient at x is zero

Saddle point: the gradient at x is zero but not a local extremum





Let
$$f(x + \Delta x) \approx f(x) + J\Delta x + \Delta x^{\mathsf{T}} H\Delta x$$

Let H have eigenvalues $\lambda_1, \ldots \lambda_n$

Index: α — the fraction of negative eigenvalues

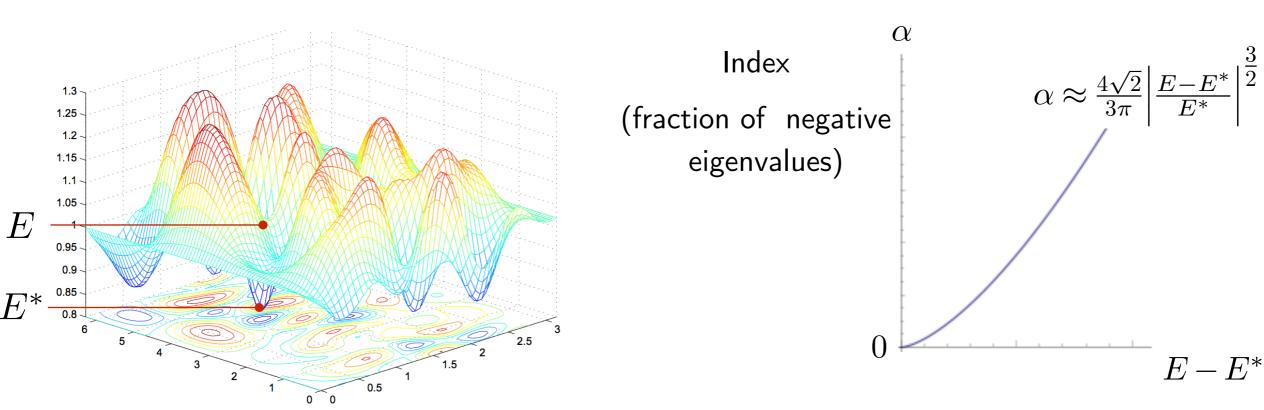
$$\alpha=0\Rightarrow$$
 local minimum

$$\alpha = 1 \Rightarrow \text{local maximum}$$

$$0 < \alpha < 1 \Rightarrow \mathsf{saddle} \mathsf{\ point}$$

- **Stationary Points in High Dimensions**
- ◆ Insights from Theoretical Physics --- Gaussian Random Fields:
 - local minima are exponentially more rare than saddle points
 - they become likely at lower energies (loss values)

Asymptotic relation for small alpha:

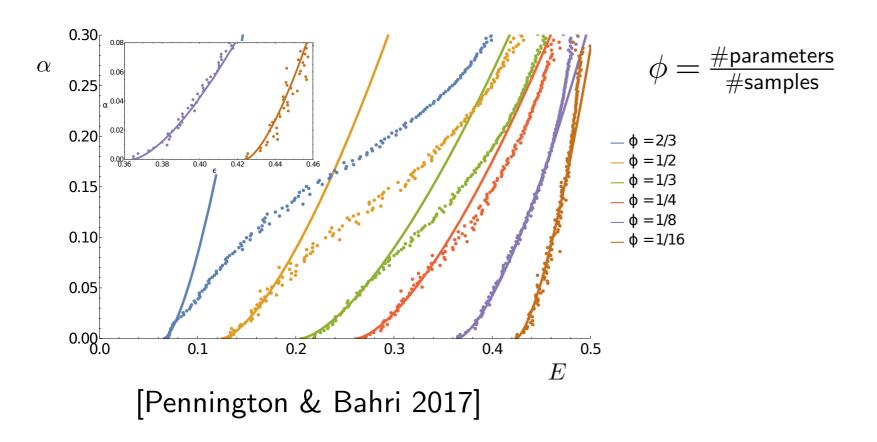


average energy of a st. point

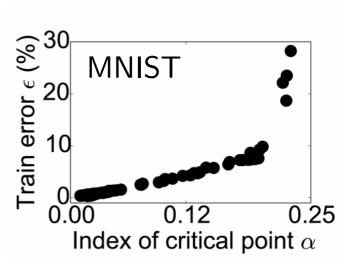
[Bray & Dean (2007) The statistics of critical points of Gaussian fields on large-dimensional spaces]

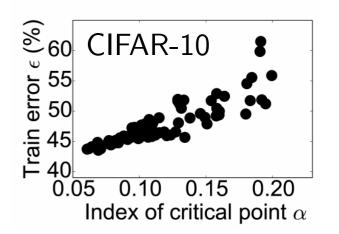
Stationary Points in High Dimensions

◆ Experimental Confirmations in Neural Networks



- 1 hidden layer
- good agreement for small alpha (as expected)





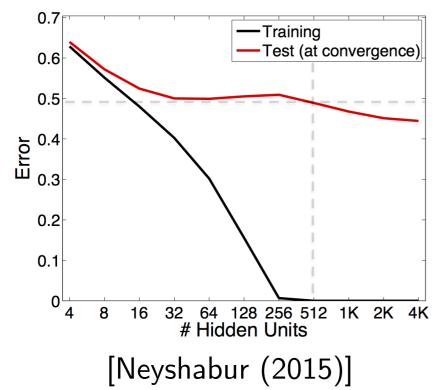
[Dauphin et. al. 2017]

[Pennington & Bahri (2017) Geometry of Neural Network Loss Surfaces via Random Matrix Theory] [Dauphin et. al. (2017) Identifying and attacking the saddle point problem in high-dimensional non-convex optimization]

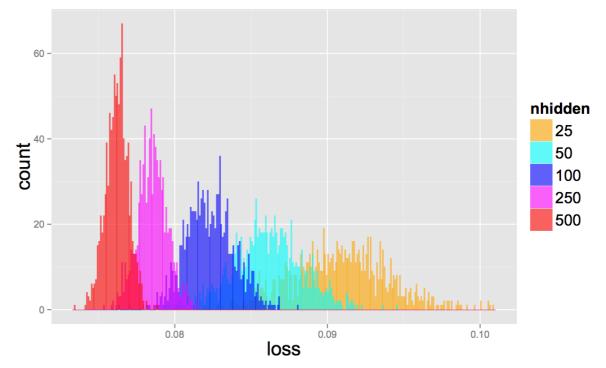
High Dimensionality Helps Optimization

7

Achieve 0 training error with sufficiently large networks



Histogram of SGD trials (MNIST)



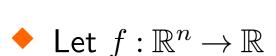
[Choromanska et al. (2015): The Loss Surfaces of Multilayer Networks]

♦ Summary:

- Local minima are rare and appear to be good enough
- But we need (highly) over-parameterized models to have this easy training
- We hope that over-parameterized models will still generalize well
- Maybe, optimization should worry a bit about efficiency around saddle points

Reparameterizations

Recall: GD Under Reparameterization



- Change of coordinates (linear reparameterization) $\tilde{w} = A^{-1}w$
 - Reparameterized function: $g(\tilde{w}) = f(A\tilde{w}) = f(w)$
 - Gradient: $\nabla_{\tilde{w}}g(\tilde{w}) = \nabla_{\tilde{w}}f(A\tilde{w}) = A\nabla_{w}f(w)$
 - Satisfies: $\langle \nabla_w f(w), w \rangle = \langle \nabla_{\tilde{w}} g(\tilde{w}), \tilde{w} \rangle$
 - GD in reparameterized coordinates:

$$\tilde{w}_{t+1} = \tilde{w}_t - \alpha \nabla_{\tilde{w}} g(\tilde{w}_t)$$

is equivalent to preconditioned GD:

$$w_{t+1} = w_t - \alpha \left(A A^\mathsf{T} \right) \nabla_w f(w_t)$$

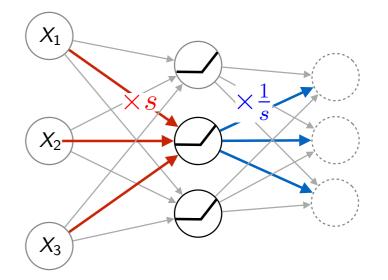
- Example: $\tilde{w} = sw$
 - Reparameterized function: $g(\tilde{w}) = f(\frac{\tilde{w}}{s})$
 - Gradient: $\nabla_{\tilde{w}}g(\tilde{w}) = \frac{1}{s}\nabla_{w}f(w)$
 - GD in \tilde{w} is equivalent to: $w_{t+1} = w_t \alpha \frac{1}{s^2} \nabla_w f(w_t)$

Example: Invariant Reparameterizations

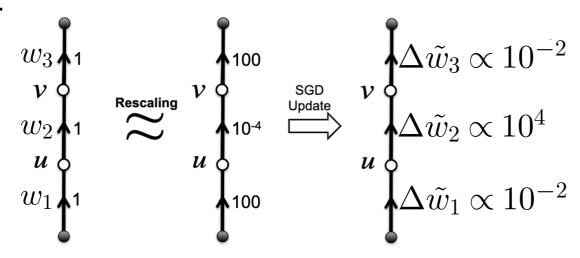
m

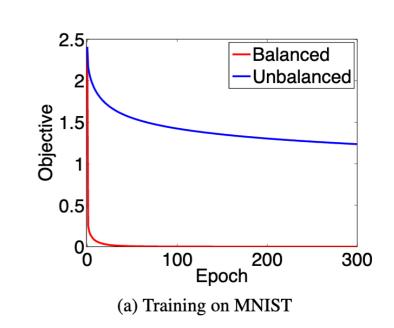
10

- Special case,
 - mapping $w \mapsto \tilde{w}$, preserving the function value: $f(\tilde{w}) = f(w)$
 - ReLU activation function is 1-homogenous for s>0 ReLU $(sx)=\max(0,sx)=s\max(0,x)$
 - scale can be different per unit (per channel in conv network)
 - $\bullet \ f(\tilde{w}) = f(w)$
 - $\bullet \ \frac{df(\tilde{w})}{d\tilde{w}} = \frac{df(w)}{dw} \frac{dw}{d\tilde{w}}$



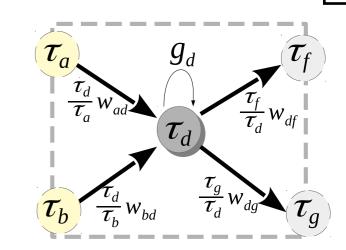
♦ Example:



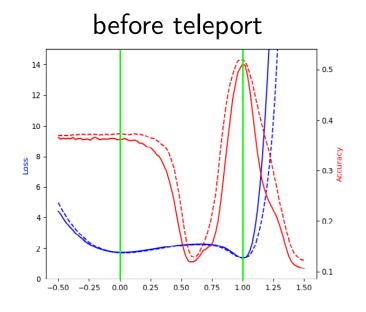


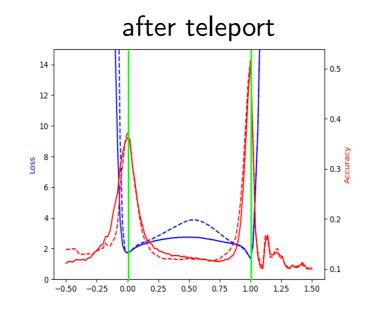
- Unbalanced initialization (like in the example above):
 - pre-activation statistics are changed, but this has no effect
 - preconditioning of GD, changing the local learning rate

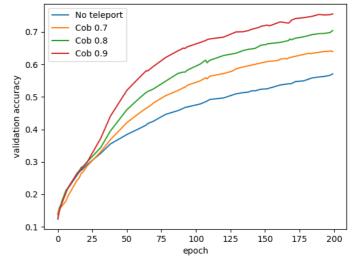
- Neural Teleportation is a change of basis:
 - ullet assign scale au to each neuron (at random)
 - change weights as $\tilde{w}_{i \to j} = \frac{\tau_j}{\tau_i} w_{i \to j}$
 - change activation function as $\tilde{\rho}(x) = \tau_i \rho(\frac{x}{\tau_i})$
 - \bullet the resulting network $g(\tilde{w})$ with activations $\tilde{\rho}$ is equivalent to the original network f(w) with activations ρ



◆ Can change flatness of minima and learning dynamics (improves?):







[Armenta et al. (2021) Neural Teleportation]

- We know why GD changes:
 - Gradient: $\frac{dg(\tilde{w})}{d\tilde{w}_{ij}} = \frac{df(w)}{dw_{ij}} \frac{\tau_i}{\tau_j}$
 - GD equivalent to: $w_{ij}^{t+1} = w_{ij}^t \alpha \left(\frac{\tau_i}{\tau_j}\right)^2 \nabla_{w_{ij}} f(w^t)$ different (randomized) learning rates per weight

12

Idea: consider path-based divergence:

$$D(w, w^t) = \left(\sum_{\mathsf{path} \ \tau} \left(\prod_{\mathsf{edge} \ e \in \tau} w_e - \prod_{\mathsf{edge} \ e \in \tau} w_e^t \right)^p \right)^{\frac{2}{p}}$$

invariant to rescaling (of both arguments)

Proximal step:

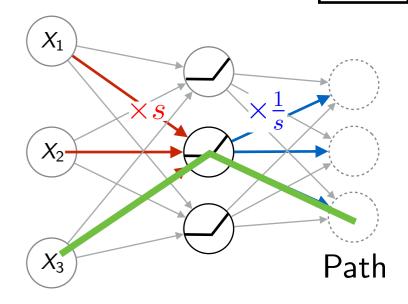
$$w^{t+1} = w^t + \operatorname*{argmin}_{\Delta w} \left[\langle \nabla_w f(w^t), \Delta w \rangle + \frac{1}{2\alpha} D(w^t + \Delta w, w^t) \right]$$

 Δw equivariant to rescaling —

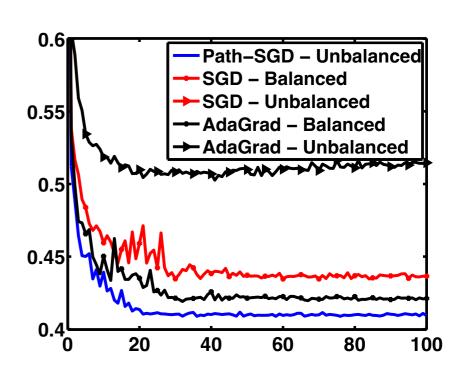
it does not matter in which reparameterization we make steps, we get equivalent sequences (and performance)

- Limitations:
 - Hard to solve exactly =>
 efficient approximation (equivariance preserved)
 - Specialized to ReLU / Leaky ReLU networks
 - Non-residual?

[Neyshabur et al. (2015) Path-SGD: Path-Normalized Optimization in Deep Neural Networks]



0/1 Test Error



13

- Setup:
 - Probabilistic predictor $p_{\theta}(y|x)$
 - Maximum likelihood learning: $\mathcal{L}(\theta) = -\mathbb{E}_{(x,y)\sim p^*}\log p_{\theta}(y|x) \to \min_{\theta}$
- Proximal problem:

$$\min_{\Delta\theta} \left(\langle \nabla_{\theta} \mathcal{L}(\theta_t), \Delta\theta \rangle + \frac{1}{\alpha} \mathbb{E}_{x \sim p^*} \underbrace{\left[D_{\mathrm{KL}}(p_{\theta_t}(\cdot|x) \parallel p_{\theta_t + \Delta\theta}(\cdot|x)) \right]}_{\text{invariant to reparameterizations} \right)}$$

- ullet optimal step $\Delta heta$ is equivariant to reparameterizations
- If $\alpha \to 0$ then $\Delta \theta \to 0$ and

$$\mathbb{E}_{x \sim p^*} \Big[D_{\mathrm{KL}}(p_{\theta_t}(\cdot|x) \, \| \, p_{\theta_t + \Delta\theta}(\cdot|x)) \Big] \to \tfrac{1}{2} \Delta \theta^\mathsf{T} F(\theta_t) \Delta \theta + o(\|\Delta\theta\|^2) - \text{locally quadratic,}$$

where F is the (expected) Fisher information matrix:

$$F(\theta) = \mathbb{E}_{x \sim p^*} \left[\mathbb{E}_{y \sim p_{\theta}(y|x)} \left[\left(\frac{d \log p_{\theta}(y|x)}{d\theta} \right)^{\otimes 2} \right] \right]$$

Natural Gradient step: $\Delta_{\theta} = -\alpha F(\theta_t)^{-1} \nabla_{\theta} \mathcal{L}(\theta_t)$

- Practical aspects:
 - In principle, need only the gradients to approximate
 - Results in a large matrix, difficult to maintain and inverse, needs to be approximated

Adaptivity by Normalization

Trust Region Problem

Similar to proximal problem, but constrained optimization form:

$$\min_{\|\Delta x\|_2 \le \varepsilon} \left(f(x_0) + J\Delta x \right)$$

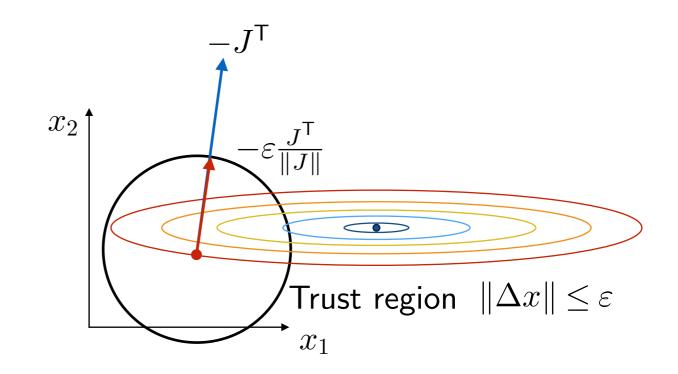
Equivalent to:

$$\max_{\lambda \geq 0} \min_{\Delta x} \left(J \Delta x + \lambda (\|\Delta x\|_2^2 - \varepsilon^2) \right)$$

Step direction: $\Delta x = -\frac{1}{2\lambda}J^{\mathsf{T}}$

$$\|\Delta x^{\mathsf{T}}\|^2 = \varepsilon^2 \to \lambda = \frac{1}{2\varepsilon} \|J\|_2$$

Trust region step: $\Delta x = -\varepsilon \frac{J^{\mathsf{T}}}{\|J\|_2}$



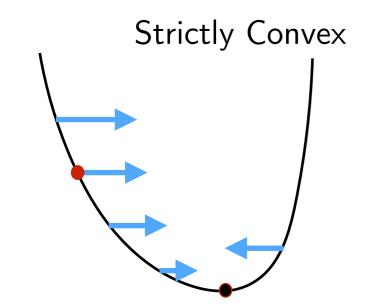
- How does it behave under change of basis?
 - In reparameterized coordinates: $\tilde{x}=sx$, $\tilde{J}=\frac{1}{s}J$, $\tilde{\Delta}x=-\varepsilon\frac{\tilde{J}}{\|\tilde{J}\|_2}$
 - Equivalent to $\Delta x = \frac{1}{s}\Delta \tilde{x} = -\varepsilon \frac{1}{s} \frac{\tilde{J}}{\|\tilde{J}\|_2} = -\varepsilon \frac{1}{s} \frac{J}{\|J\|_2}$ not equivariant, but better than $\frac{1}{s^2}$
- An update $\Delta x = -\varepsilon \frac{J}{\|J\|_2^2}$ would be equivariant but not good in any space
- Second order methods $\Delta x = -\varepsilon G^{-1}J$ are equivariant but more costly (Newton, Gauss-Newton, Natural Gradient)

Differences of Convex vs. Non-Convex

m

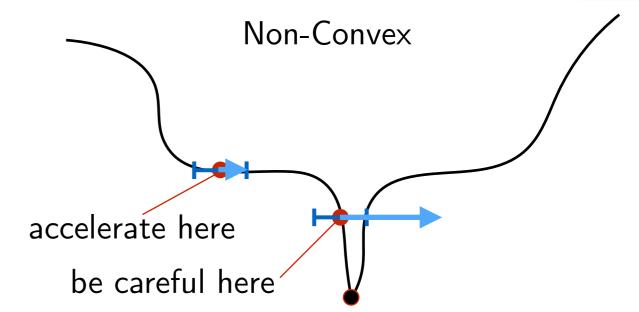
16

Why to step proportionally to the gradient:

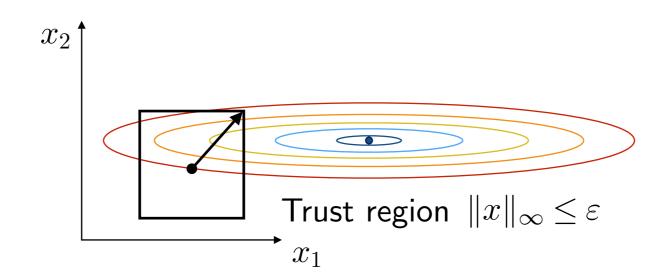


- No other stationary points than global minima
- The further we are from the optimum, the larger is the gradient: $\exists \mu > 0$
 - $\|\nabla f(x)\|^2 \ge \mu(f(x) f^*)$
 - $\|\nabla f(x)\| \ge \mu |x x^*|$
- Negative gradient points towards the optimum:
 - $\bullet \ \langle -\nabla f, x^* x \rangle \ge f f^* + \tilde{\mu} \|x x^*\|^2$
 - ullet Optimization need not be monotone in f

Why to normalize:



- Gradient carries no global information
 - Need bigger steps where gradient and curvature are low
 - Need smaller steps when gradient and curvature are high
- Makes sense to use trust region steps:
 - $\Delta x = -\frac{\nabla f}{\|\nabla f\|}$
 - If the trust region is ok, should guarantee a steady progress



- This time solve for step as:
 - $\bullet \min_{\|\Delta x_i\| \le \varepsilon \ \forall i} \left(f(x_0) + J\Delta x \right)$

(In overparametrized models expect many parameters to have independent effect)

Equivalent to:

$$\max_{\lambda \geq 0} \min_{\Delta x} \left(J \Delta x + \sum_{i} \lambda_i (\|\Delta x_i\|^2 - \varepsilon^2) \right)$$

$$2\lambda_i \Delta x_i = -J_i$$

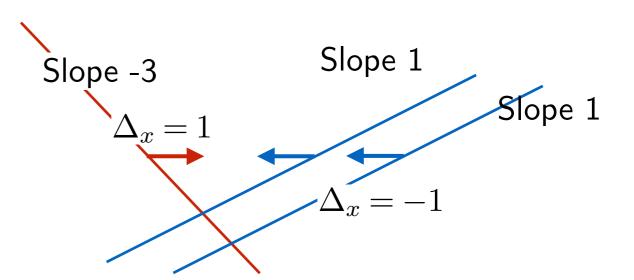
Step direction: $\Delta x_i = -\frac{1}{2\lambda_i}(\nabla f(x))_i$

Trust region step: $\Delta x_i = -\varepsilon \frac{(\nabla f(x))_i}{|(\nabla f(x))_i|}$

- Trust region steps: $\Delta x_i = -\varepsilon \frac{(\nabla f(x))_i}{|(\nabla f(x))_i|}$
- Problem: breaks in the stochastic setting
- Example

f(x) = (-3x) + (x) + (x+1), chose 1 summand at a time with equal probability

If we normalize stochastic gradients, will move in the wrong direction!



- ♦ Want the steps to follow the descent direction on average
 - Cannot adjust the stochastic gradient "too much nonlinearly"
 - This example was used to show that Adam may fail to converge to a stationary point and motivated theoretical improvements

Practical Solution: approximate expectations with running averages:

$$\Delta x = -\varepsilon \frac{\mathbb{E}[\nabla f]}{\|\mathbb{E}[\nabla f]\|}$$

Further approximate
$$\|\mathbb{E}[\nabla f]\| = \sqrt{(\mathbb{E}[\nabla f])^2} \leq \sqrt{(\mathbb{E}[(\nabla f)^2])}$$

Adagrad:

$$\theta_{t+1,i} = \theta_{t,i} - \frac{\varepsilon}{\sqrt{t}} \frac{\tilde{g}_{t,i}}{\sqrt{\operatorname{Mean}\left(\tilde{g}_{1:t,i}^2\right)}}$$

RMSProp:

$$\theta_{t+1,i} = \theta_{t,i} - \varepsilon \frac{\tilde{g}_{t,i}}{\sqrt{\text{EWA}\left(\tilde{g}_{1:t,i}^2\right)}}$$

$$\theta_{t+1,i} = \theta_{t,i} - \frac{\varepsilon}{\sqrt{t}} \frac{\tilde{g}_{t,i}}{\sqrt{\operatorname{Mean}\left(\tilde{g}_{1:t,i}^2\right)}} \qquad \theta_{t+1,i} = \theta_{t,i} - \varepsilon \frac{\tilde{g}_{t,i}}{\sqrt{\operatorname{EWA}\left(\tilde{g}_{1:t,i}^2\right)}} \qquad \theta_{t+1,i} = \theta_{t,i} - \varepsilon \frac{\operatorname{EWA}_{\beta_1}\left(\tilde{g}_{1:t,i}\right)}{\sqrt{\operatorname{EWA}_{\beta_2}\left(\tilde{g}_{1:t,i}^2\right)}}$$

• In Adagrad:

 $\frac{1}{\sqrt{t}}$ guarantees convergence. Other methods would also need this in theory but are typically presented and used with constant ε

The flat average appears not very practical

• In Adam:

EWA with $\beta_1 = 0.9$ works as common momentum (20 batches averaging)

EWA with $\beta_2 = 0.999$ (2000 batches averaging) makes the normalization smooth enough