Deep Learning (BEV033DLE)

Lecture 8
Adaptive Optimization Methods

Czech Technical University in Prague

4 Loss Landscape

e |ocal optimization in high dimension
4 Reparameterizations

e Change of Basis

e Neural Teleportation, Path SGD, Natural Gradient
4 Adaptivity by Normalization

e Trust Region Problem, Adam-like methods

Local Minima @

4 There are several reasons for local minima 3

e Symmetries (Permutation invariances)

- Fully connected layer with n hidden units:

n! permutations

- Convolutional layer with ¢ channels:

c! permutations

- In a deep network many equivalent local minima,

; y .
but all of them are equally good -- no need to avoid o P «
e Loss function is a sum of many non-convex terms: e
M o
L(6) =Y 1w/ (x::0)) s s=al

ol o
. . ot S
1 \ :

often convex non-linear

Stationary Points in High Dimensions

Let f(z): R™ — R — differentiable,
Stationary point: the gradient at x is zero
Saddle point: the gradient at x is zero but not a local extremum

1D 2D
saddle point

local max

inflection (saddle)
local min

Let f(x+ Ax)~ f(x)+ JAx+Ax" HAx

Let A have eigenvalues Aq,... A\,

Index: o« — the fraction of negative eigenvalues
a = 0 = local minimum

a =1 = local maximum

0 < a < 1= saddle point

Stationary Points in High Dimensions @

4 Insights from Theoretical Physics --- Gaussian Random Fields:

¢ |ocal minima are exponentially more rare than saddle points

e they become likely at lower energies (loss values)

Asymptotic relation for small alpha:

o 3
Index 2
13- ~ W2 E—E*|2
1.25 . . Q ~ 37 E*
- | (fraction of negative
1.15 ‘ m . '
y i eigenvalues)
,///
.""/‘
0 Lo
E—FE~

average energy of a st. point

[Bray & Dean (2007) The statistics of critical points of Gaussian fields on large-dimensional spaces]

Stationary Points in High Dimensions @

4 Experimental Confirmations in Neural Networks

OBO» 0.08

0.06,
0.25¢
(1004

0.20f **

0.15¢

0.10r

0.05¢

0.08.

[Pennington & Bahri 2017]

e 1 hidden layer

¢ =

— ¢ =273
o =12
¢ =1/3

—$o=1/4

—$=1/8

— b =1/16

#parameters

#samples

o good agreement for small alpha (as expected)

6
230 ,
Q L
< | MNIST ?
2 20 4
S
5 10
= b ”J
I‘_E 0,’. ‘ _
0.00 0.12 0.25

Index of critical point o

260 CIFAR-10 8
- 55 ' o |
(@)

5 50 '.\f ot
.g 45”. A

— 40 , ‘ -
0.05 0.10 0.15 0.20
Index of critical point «

[Dauphin et. al. 2017]

[Pennington & Bahri (2017) Geometry of Neural Network Loss Surfaces via Random Matrix Theory]

[Dauphin et. al. (2017) ldentifying and attacking the saddle point problem in high-dimensional non-

convex optimization]

High Dimensionality Helps Optimization

Achieve 0 training error

with sufficiently large networks

0.7f

N

0.6

—Training
—Test (at convergence)||

—azzs- o

4

8 16 32 64 128 256 512 1K 2K 4K
Hidden Units

[Neyshabur (2015)]

4 Summary:

count

60 -
40 -

20 -

[Choromanska et al. (2015):

I
0.08

I
0.09

Histogram of SGD trials (MNIST)

nhidden

The Loss Surfaces of Multilayer Networks]

e Local minima are rare and appear to be good enough

e But we need (highly) over-parameterized models to have this easy training

e \We hope that over-parameterized models will still generalize well

e Maybe, optimization should worry a bit about efficiency around saddle points

Reparameterizations

Recall: GD Under Reparameterization

¢ let f:R"—R
¢ Change of coordinates (linear reparameterization) w
e Reparameterized function: g(w) = f(Aw) = f(w)
e Gradient: Vygg(w) =V f(Aw) = AV, f(w)
e Satisfies: (V, f(w),w) = (Vgg(w),w)
e GD in reparameterized coordinates:
Wil = Wi — Oévuvg(”@t)
is equivalent to preconditioned GD:
Wis1 = Wi — Q (AAT) Vo f (wy)

¢ Example: w = sw
e Reparameterized function: g(w) = f(%£)
e Gradient: Vg(w) =1V, f(w)

.~ : _ 1
e GD in w is equivalent to: w1 = wt—angf(wt)

¢ Special case,

e mapping w — w, preserving the function value: f(w)

Example: Invariant Reparameterizations

e RelU activation function is I-homogenous
for s > 0 ReLU(sx) =

e scale can be different per unit (per channel in conv network) Q

o f(w)=f(w)
o Y@ _ df(w)duw
dw dw dw
4+ Example:
Q
W3 A1
VI Rescaling
W 1 z
u
W1 A1
o

4 Unbalanced initialization (like in the example above):

e pre-activation statistics are changed, but this has no effect

max(0, sr) = smax(0,x)

e preconditioning of GD, changing the local learning rate

f

Objective

10
2.5 :
—Balanced

2 —Unbalanced|
1.5

1
0.5

-

0 100 200 300
Epoch
(a) Training on MNIST

[Neyshabur et al. (2015) Path-SGD: Path-Normalized Optimization in Deep Neural Networks]

Example: Neural Teleportation @

11
¢ Neural Teleportation is a change of basis:
e assign scale 7 to each neuron (at random) z, g, 7
o change weights as s ; — Dy N
7 a | T, "df
e change activation function as p(z) = 7;p(%) v Ta)
e the resulting network g(w) with activations p is equivalent % L7 N
. ij:i) 3 723; ‘Albd 121 dg ifzré]/ﬁ
to the original network f(w) with activations p
4+ Can change flatness of minima and learning dynamics (improves?):

before teleport after teleport teleport at epoch 30, ResNet on CIFAR10

—— No teleport
| —— cobo0.7
—— Cob 0.8
—— Cob 0.9

14

14 o H0.5

12 12 A

L F0.4
101 0.4 10

©
Lo3 3
O

[
I
[
[
I 1
I F0.2
~ I
S
A
0.2
2
r0.1

) ' 01 0 1 <
1 1 1 1 1 1 i 1 1 0 T T T T T T T T T - T T T T T T T T T
-0.50 -0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50 0 25 50 75 100 125 150 175 200
epoch

5 3
03 O g

F0.2

[Armenta et al. (2021) Neural Teleportation]

¢ We know why GD changes:

e Gradient: 9@ _ df(w)m

dw;; dw;; T;
: oot ot (T2 ¢
o GD equivalent to: wy;" = wy; oz(Tj) Vo, f(w)

different (randomized) learning rates per weight

Path-SGD

¢ |dea: consider path-based divergence:

p
D(w,w’) = (zpath T (Hedge ect We ™ Hedge eGTwé))

invariant to rescaling (of both arguments)

¢ Proximal step:

wi™ = w? + argmin {{wa(wt),A@@ + 5-D(w' + Aw, wt)}

Aw
Aw equivariant to rescaling —

12
XS x L e
< <
@ Path

it does not matter in which reparameterization we make steps,

we get equivalent sequences (and performance)

4 Limitations:

e Hard to solve exactly =>
efficient approximation (equivariance preserved)

o Specialized to ReLU / Leaky RelLU networks

e Non-residual?

[Neyshabur et al. (2015) Path-SGD:
Path-Normalized Optimization in Deep Neural Networks]

0/1 Test Error

— Path-SGD - Unbalanced
——SGD - Balanced
——SGD - Unbalanced

—— AdaGrad - Balanced

0.6

0.55]

—— AdaGrad - Unbalaned

TV Vv v

0.5

0.45¢

4 . . ' ’
0 0 20 40 60 80 100

Natural Gradient @

¢ Setup:

e Probabilistic predictor py(y|x)

e Maximum likelihood learning: L(6) = —E; ,y~plogpg(y|z) — ming
¢ Proximal problem:

min ((VoL(0:),00) + LEanpe | Dci(po,(|2) [posao(-12))|)

A6 J |,
Invariant to reparameterizations

e optimal step A@ is equivariant to reparameterizations

e If o — 0 then Af — 0 and
Epmpr {DKL(pgt(-\x) ||p9t+M(-|a:))} — SAGTF(6;) AO +o(|| A||*) — locally quadratic,

where F' is the (expected) Fisher information matrix:
dlo x ®2
F(6) = Eanp [Eyeopyuio) | (222522) 7 |

Natural Gradient step: Ay = —aF(6;)"1VyL(0;)

¢ Practical aspects:
e In principle, need only the gradients to approximate

e Results in a large matrix, difficult to maintain and inverse, needs to be approximated

13

Adaptivity by Normalization

Trust Region Problem @

15

¢ Similar to proximal problem, but constrained optimization form:

min (f(zo)+ JAz)

[Az|2<e

Equivalent to:

maxmin (JA;H—)\(HAxH% —52))
A>0 Ax

WU 19T
Step direction: Az = —5yJ

|AzT|? =e® = A= o[l]]|2

L9

.
Trust region step: Ax = —€”‘§”2

¢ How does it behave under change of basis?

e In reparameterized coordinates: & = sz, J =1J, Az = —€||<]J||

2
1

e Equivalent to Az = 1AF = —el L = _cl_J__ not equivariant, but better than
S S |1 J112 s |12 s

¢ An update Ax = —5||j|2 would be equivariant but not good in any space
2

Second order methods Ax = —eG~1J are equivariant but more costly (Newton,

Gauss-Newton, Natural Gradient)

Differences of Convex vs. Non-Convex @ o

Why to step proportionally to the gradient: Why to normalize: 16

Strictly Convex Non-Convex

accelerate here

\\\../ be careful here

® No other stationary points than global ¢ Gradient carries no global information
minima e Need bigger steps where gradient and
¢ The further we are from the optimum, curvature are low
the larger is the gradient: du >0 e Need smaller steps when gradient and
o |[Vf(x)||*>pu(f(x)—f*) curvature are high
o |Vf(z)|>plz—2ar ¢ Makes sense to use trust region steps:
® Negative gradient points towards the) Aa::—%
optimum: e |f the trust region is ok, should guarantee
o (—Vfx*—z)>f—f"+illz—a*]? a steady progress

e Optimization need not be monotone in f

Box Trust Regions @

="

Trust region ||z]|cc <€
> T

¢ This time solve for step as:

e min (f(x)+JAx)

| Az;|[<e Vi

(In overparametrized models expect many parameters to have independent effect)

e Equivalent to:

maxmin (JAQC +> Ai([| Az ||* — 52))

A>0 Ax
2)\1sz — —Ji
Step direction: Az; = —2§i(Vf(at))7;

Trust region step: Az; = —elggﬁggfl

17

Non-Convex Stochastic @

©® Trust region steps: Ax; = —5|Egﬁg§i| =

¢ Problem: breaks in the stochastic setting

¢ Example
f(x) = (—3x)+ (x)+ (x+1), chose 1 summand at a time with equal probability

N\

will move in the wrong direction! Slope -3 Slope 1

\szl

If we normalize stochastic gradients,

4 Want the steps to follow the descent direction on average

e (Cannot adjust the stochastic gradient “too much nonlinearly”

® This example was used to show that Adam may fail to converge to a stationary point and
motivated theoretical improvements

Adaptive Methods @

¢ Practical Solution: approximate expectations with running averages: 19
_ _ . E[V/f]
AT = —ETET]

Furhter approximate ||E[V f]|| = v/ (E[V f])2 < /(E[(Vf)?])

¢ Adagrad: ¢ RMSProp: ¢ Adam:

~

Gt i Gt i EWAg, (§1:t,z’)

_ 3 _
9t+1,z‘ — 9t,z' i 9t+1,z‘ — 91&,7; —c 9t+1,7; = 9t,z‘ — &
\/Mean (g%zt,z’) \/EWA (g%:t,i)

Jewns, (3,)

e In Adagrad:

\/i% guarantees convergence. Other methods would also need this in theory but are
typically presented and used with constant ¢

The flat average appears not very practical
e In Adam:
EWA with 8, = 0.9 works as common momentum (20 batches averaging)

EWA with 85 =0.999 (2000 batches averaging) makes the normalization smooth
enough

