Consider the grid-world given below and an agent (yellow) moving using these actions: N-North, W-West, E-East, S-South. Rewards are only awarded for reaching one of the terminal states (green and red). Assume discount factor $\gamma = 1$ for all calculations.

3		-70	140
2			
1	-50	-90	60
	1	2	3

The agent starts from the top left corner and you are given the following episodes from runs of the agent through this grid-world. Each line in an Episode is a tuple containing $(s_t, a_t, s_{t+1}, r_{t+1})$, where t denotes time (iteration) in a training episode.

Episode 1	Episode 2	Episode 3	Episode 4	Episode 5
(1,3), S, $(1,2)$, 0	(1,3), S, (1,2), 0	(1,3), S, (1,2), 0	(1,3), S, (1,2), 0	(1,3), S, (1,2), 0
(1,2), E, $(2,2)$, 0	(1,2), E, $(2,2)$, 0	(1,2), E, (2,2), 0	(1,2), E, (2,2), 0	(1,2), E, (2,2), 0
(2,2), S, $(2,1)$, -90	(2,2), S, $(2,1)$, -90	(2,2), E, (3,2), 0	(2,2), E, (3,2), 0	(2,2), N, (2,3), -70
		(3,2), S, (3,1), 60	(3,2), S, (3,1), 60	

Q-learning is an on-line method for learning optimal Q-values in MDP, used in the case of unknown rewards with transitional models. The initial values of the Q function are zero and are updated using the following formulae::

$$Q(s_t, a_t) = Q(s_t, a_t) + \alpha(\text{trial}_{t,t+1} - Q(s_t, a_t))$$

$$trial_{t,t+1} = r_{t+1} + \gamma \max_{a} Q(s_{t+1}, a)$$

and γ is discount factor and α is learning rate. For following values Q and upper episodes find out first episode and iteration (t), when value Q will be non zero. Write it in form E:2, t:3 - in the 2nd episode and 3rd iteration.