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Male or Female, measuring heights, no learning, . . .
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Ad-hoc strategy: Male (positive class) if x > some threshold
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Notes



Evaluating: Male (positive class) if x >some threshold
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Notes

Probably too many curves to watch and analyse, we need something simpler . . .



ROC – Receiver operating characteristics curve
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Notes

• How do you slide along the curve?

• What is the meaning of the diagonal?

• What would be the shape of the curve for the ideal/worst classifier?

• How would you compare various curve and select the best classifier?

• Think/read about other ways to evaluate/visualise classification results.



Precision – recall curve
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Notes
Think about a different classifier (curve), how would you compare?

Try to explain meaning of Precision and Recall from the user’s (buyer’s) perspective.



Finding the best strategy . . .
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Notes



Bayes optimal strategy
▶ The Bayes optimal strategy : one minimizing mean risk. δ∗ = argminδ r(δ)

▶ s states, x possible measurements, P(s, x) joint probababilities

r(δ) =
∑
x

∑
s

ℓ(s, δ(x))P(x , s) =
∑
s

∑
x

ℓ(s, δ(x))P(s|x)P(x)

=
∑
x

P(x)
∑
s

ℓ(s, δ(x))P(s|x)︸ ︷︷ ︸
Conditional risk

=
∑
x

P(x)r (δ(x), x)

where conditional risk r(d , x) =
∑

s ℓ(s, d)P(s|x).
▶ Risk of a strategy is a weighted sum of conditional risks (conditioned on x)
▶ The optimal strategy is obtained by minimizing the conditional risk separately for each x :

δ∗(x) = argmin
d

r(d , x) = argmin
d

∑
s

ℓ(s, d)P(s|x)
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Notes



A special case - Bayesian classification
▶ Attribute vector x⃗ = (x1, x2, . . . ): pixels 1, 2, . . . .
▶ State set S = decision set D = {0, 1, . . . 9}.
▶ State = actual class, Decision = recognized class

▶ Loss function :

ℓ(s, d) =

{
0, d = s
1, d ̸= s

Optimal decision strategy:

δ∗(x⃗) = argmin
d

∑
s

ℓ(s, d)︸ ︷︷ ︸
0 if d=s

P(s |⃗x) = argmin
d

∑
s ̸=d

P(s |⃗x)

Obviously
∑

s P(s |⃗x) = 1, then:

P(d |⃗x) +
∑
s ̸=d

P(s |⃗x) = 1

Inserting into above:

δ∗(x⃗) = argmin
d

[1− P(d |⃗x)] = argmax
d

P(d |⃗x)
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Notes

We are using different word – classification instead of decision but the reasoning and methods can be well applied

in both. In classification problem we usually treat all mistakes – wrong classificaions – equally painful, contrary

to decision problem – remember “What to cook for dinner” problem?
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Example: Digit recognition/classification

▶ Input: 8-bit image 13× 13, pixel intensities 0− 255. (0 means black, 255 means white)

▶ Output: Digit 0− 9. Decision about the class, classification.

▶ Features: Pixel intensities . . .

Decision/classification problem : What cipher is in the (query) image?

9 / 43

Notes

Digit recognition is a very classical example of classification problem. It has been used for decades, and it is used

till today, see e.g. MNIST demo at PyTorch

https://pytorch.org/docs/stable/torchvision/datasets.html
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Optimal (Bayes) Classification

δ∗( ) = arg max
d

P(d | )
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Notes



Machine Learning: Prepare training data , let (an) algorithm learn itself
data for cipher 0

Training samples: (x⃗ i , s = 0)
11 / 43

Notes
What we need to learn:

• Known: the decision rule (function)

• To be learned: parameters of the function

A simplest example: male/female classification beased on height. A simple thresholding function, but what i the

threshold?



Machine Learning: Prepare training data , let (an) algorithm learn itself
data for cipher 1

Training samples: (x⃗ i , s = 1)
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Notes
What we need to learn:

• Known: the decision rule (function)

• To be learned: parameters of the function

A simplest example: male/female classification beased on height. A simple thresholding function, but what i the

threshold?



Machine Learning: Prepare training data , let (an) algorithm learn itself
data for cipher 2

Training samples: (x⃗ i , s = 2)
11 / 43

Notes
What we need to learn:

• Known: the decision rule (function)

• To be learned: parameters of the function

A simplest example: male/female classification beased on height. A simple thresholding function, but what i the

threshold?



Bayes classification in practice; P(s |⃗x) =?
▶ Usually, we are not given P(s |⃗x)
▶ It has to be estimated from already classified examples – training data
▶ For discrete x⃗ , training examples (x⃗1, s1), (x⃗2, s2), . . . (x⃗ l , sl)

▶ every (x⃗i , s) is drawn independently from P(x⃗ , s), i.e. sample i does not depend on
1, · · · , i − 1

▶ so-called i.i.d (independent, identically distributed) multiset
▶ Without knowing anything about the distribution, a non-parametric estimate:

P(s |⃗x) = P(x⃗ , s)

P(x⃗)
≈ # examples where x⃗ i = x⃗ and si = s

# examples where x⃗ i = x⃗

▶ Hard in practice:

▶ To reliably estimate P(s |⃗x), the number of examples grows
exponentially with the number of elements of x⃗ .

▶ e.g. with the number of pixels in images
▶ curse of dimensionality
▶ denominator often 0

12 / 43

Notes
Why hard? Way too many various x⃗ .
What is the difference between set and multiset?

Reminder about math notation. In literature, vectors are mostly denoted by bold lower case x. In lectures, we

use x⃗ to match notation used on blackboard. It is difficult to write bold with a chalk.
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How many images?

8-bit image 13× 13, pixel intensities 0− 255. (0 means black, 255 means white)

A: 169256

B: 256169

C: 1313

D: 169× 256

E: different quantity

13 / 43

Notes



Näıve Bayes
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Notes



Näıve Bayes classification
▶ For efficient classification we must thus rely on additional assumptions.

▶ In the exceptional case of conditional statistical independence
between components of x⃗ for each class s it holds

P(x⃗ |s) = P(x [1]|s) · P(x [2]|s) · . . .

▶ Use simple Bayes law and maximize:

P(s |⃗x) = P(x⃗ |s)P(s)
P(x⃗)

=
P(s)

P(x⃗)
P(x [1]|s) · P(x [2]|s) · . . . =

▶ No combinatorial curse in estimating P(s) and P(x [i ]|s) separately for each i and s.

▶ No need to estimate P(x⃗). (Why?)

▶ P(s) may be provided apriori.

▶ näıve = when used despite statistical dependence

15 / 43

Notes
Why näıve at all? Consider N−dimensional feature space and 8 − bit values. Instead of considering 8N combi-
nations (joint prob. distribution), we can consider only N × 8—treating every feature separately.

Think about statistical independence. Example1: person’s weight and height. Are they independent? Example2:

pixel values in images.



Example: Digit recognition/classification

▶ Input: 8-bit image 13× 13, pixel intensities 0− 255. (0 means black, 255 means white)

▶ Output: Digit 0− 9. Decision about the class, classification.

▶ Features: Pixel intensities . . .

Collect data , . . .

▶ P(x⃗). What is the dimension of x⃗? How many possible images?
▶ Learn P(x⃗ |s) per each class (digit).

▶ N(s, x[j], i) . . . number of training images depicting number s whose pixel x [j ] has intensity i .

▶ Classify s∗ = argmaxs P(s |⃗x).

16 / 43

Notes
We can create many more features than just pixel intensities. But first things first.
We are assuming all errors are equally important - minimizing the number of wrong decisions.

Dimension of x⃗ is 13× 13 = 169. There are 256169 possible images. (we already know)
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From images to x⃗
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Notes



Conditional probabilities, likelihoods

▶ Apriori digit probabilities P(sk)

▶ Likelihoods for pixels. P(xr ,c = Ii |sk)

18 / 43

Notes
A lexical note, especially for Czech speakers. probability as well as likelihood can be translated as pravděpodobnost.
I suggest the following mental model than can work for our purposes.

• Probability is related to the future events (unknown outcome). E.g. what is the probability of selecting
blue box? What is the probability that a random ZIP Code number begins with 7?

• Likelihood refers to past events (known outcome). In my data, how many images of 7 have dark pixel in
top right corner? We can think about relative frequency (relativńı četnost). Or, we can think: what is the
probability that an obervation of a dark pixel in the top right corner was generate by an image of 7. Jak
věrohodné to je?



Conditional likelihoods

sk
<latexit sha1_base64="C2UhSh+AHUBw+BBk9hN+U3W+Mzs=">AAACJnicZVDLSgNBEJz1GRMfiR69DCaCp7AbD3oMevEYwUTBDaF3tleHzMwuM7NKWPINXvUP/BpvIt78FCcP8dXQUFR1Q1VFmeDG+v67t7C4tLyyWlorV9Y3Nreqte2eSXPNsMtSkeqrCAwKrrBruRV4lWkEGQm8jIanE/3yDrXhqbqwowz7Em4UTzgD66huwwyGjUG17jf96dD/IJiDOplPZ1DzKmGcslyiskyAMdeBn9l+AdpyJnBcDnODGbAh3OC1gwokmn4xdTum+46JaZJqt8rSKfvzowBpzEhG7lKCvTV/tQn5rWlUeM9SKUHFRZiA5GIUYwK5sOMiNMkX/u3JJsf9gqsst6jYzFKSC2pTOimJxlwjs2LkADDNXSrKbkEDs67KcpiB5ip24amLXXb1BX/L+g96rWZw2Gydt+rtk3mRJbJL9sgBCcgRaZMz0iFdwggnD+SRPHnP3ov36r3NThe8+c8O+TXexycihaUi</latexit>

P (sk)
<latexit sha1_base64="WVzbxd3h6HjEfWhlUmKkgdwlBAs=">AAACKXicZVDLSgNBEJz1GeMzevQyGAW9hN140KPoxWMEYwLZEHpne3XIzOwyM6uEJT/hVf/Ar/GmXv0RJzGiMQ0NRVU3VFWUCW6s7797c/MLi0vLpZXy6tr6xuZWZfvGpLlm2GSpSHU7AoOCK2xabgW2M40gI4GtqH8x0lv3qA1P1bUdZNiVcKt4whlYR7X3G4em1z/a721V/Zo/HjoLggmoksk0ehVvNYxTlktUlgkwphP4me0WoC1nAoflMDeYAevDLXYcVCDRdIux4SE9cExMk1S7VZaO2b8fBUhjBjJylxLsnfmvjchfTaPCB5ZKCSouwgQkF4MYE8iFHRahSX7wtCebnHYLrrLcomLflpJcUJvSUU805hqZFQMHgGnuUlF2BxqYdW2Wwww0V7ELT13ssqsv+F/WLLip14LjWv2qXj07nxRZIrtkjxySgJyQM3JJGqRJGBHkkTyRZ+/Fe/XevI/v0zlv8rNDpsb7/AKvBKXh</latexit>

1 0.1

2 0.1

3 0.1

4 0.1

5 0.1

6 0.1

7 0.1

8 0.1

9 0.1

0 0.1

P (x0,0 = 25|sk)
<latexit sha1_base64="8WLmnubK+1r91CP9S9PPICxpOuw="></latexit>

sk
<latexit sha1_base64="C2UhSh+AHUBw+BBk9hN+U3W+Mzs=">AAACJnicZVDLSgNBEJz1GRMfiR69DCaCp7AbD3oMevEYwUTBDaF3tleHzMwuM7NKWPINXvUP/BpvIt78FCcP8dXQUFR1Q1VFmeDG+v67t7C4tLyyWlorV9Y3Nreqte2eSXPNsMtSkeqrCAwKrrBruRV4lWkEGQm8jIanE/3yDrXhqbqwowz7Em4UTzgD66huwwyGjUG17jf96dD/IJiDOplPZ1DzKmGcslyiskyAMdeBn9l+AdpyJnBcDnODGbAh3OC1gwokmn4xdTum+46JaZJqt8rSKfvzowBpzEhG7lKCvTV/tQn5rWlUeM9SKUHFRZiA5GIUYwK5sOMiNMkX/u3JJsf9gqsst6jYzFKSC2pTOimJxlwjs2LkADDNXSrKbkEDs67KcpiB5ip24amLXXb1BX/L+g96rWZw2Gydt+rtk3mRJbJL9sgBCcgRaZMz0iFdwggnD+SRPHnP3ov36r3NThe8+c8O+TXexycihaUi</latexit>

P (x7,5 = 25|sk)
<latexit sha1_base64="qUu9kGuTiO/PHxFa29Mv4+j8Enc="></latexit>

1 0.0009

2 0.05

3 0.00006

4 0.0005

5 0.004

6 0.07

7 0.1

8 0.006

9 0.08

0 0.005

P (x7,5 = 25|sk)
<latexit sha1_base64="qUu9kGuTiO/PHxFa29Mv4+j8Enc="></latexit>

sk
<latexit sha1_base64="C2UhSh+AHUBw+BBk9hN+U3W+Mzs=">AAACJnicZVDLSgNBEJz1GRMfiR69DCaCp7AbD3oMevEYwUTBDaF3tleHzMwuM7NKWPINXvUP/BpvIt78FCcP8dXQUFR1Q1VFmeDG+v67t7C4tLyyWlorV9Y3Nreqte2eSXPNsMtSkeqrCAwKrrBruRV4lWkEGQm8jIanE/3yDrXhqbqwowz7Em4UTzgD66huwwyGjUG17jf96dD/IJiDOplPZ1DzKmGcslyiskyAMdeBn9l+AdpyJnBcDnODGbAh3OC1gwokmn4xdTum+46JaZJqt8rSKfvzowBpzEhG7lKCvTV/tQn5rWlUeM9SKUHFRZiA5GIUYwK5sOMiNMkX/u3JJsf9gqsst6jYzFKSC2pTOimJxlwjs2LkADDNXSrKbkEDs67KcpiB5ip24amLXXb1BX/L+g96rWZw2Gydt+rtk3mRJbJL9sgBCcgRaZMz0iFdwggnD+SRPHnP3ov36r3NThe8+c8O+TXexycihaUi</latexit>

P (x0,0 = 25|sk)
<latexit sha1_base64="8WLmnubK+1r91CP9S9PPICxpOuw="></latexit>

1 0.0009

2 0.05

3 0.00006

4 0.0005

5 0.07

6 0.0007

7 0.1

8 0.0006

9 0

0 0
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Notes

For each pixel (position) and possible instensity (image/pixel value) we create such a table.



Unseen events (sparsity of training data)

Images 13× 13, intensities 0− 255, 100 exemplars per each class.

... =
...

P(x0,0 = 100 | s = 7) = 0.05

P(x0,0 = 101 | s = 7) = 0

P(x0,0 = 102 | s = 7) = 0.06

... =
...

A new (not in training) query image with x0,0 = 101. How would you classify?

20 / 43

Notes
Think about the problem of classifying numerals. Some P(xr,c = I | s) = 0. What about an example:

... =
...

P(x0,0 = 100 | s = 7) = 0.05

P(x0,0 = 101 | s = 7) = 0

P(x0,0 = 102 | s = 7) = 0.06
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Unseen events (sparsity of training data)

Images 13× 13, intensities 0− 255, 100 exemplars per each class.
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Notes
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Unseen event, how to decide?

A new (not in training) query image with x0,0 = 101. How would you classify?

P(x0,0 = 101 | sj) = 0, for all classes

21 / 43

Notes



Laplace smoothing (“additive smoothing”)

Think about a particular pixel with intensity x

P(x) =
count(x)

total samples

Problem: count(x) = 0
Pretend you see the (any) sample one more time.

PLAP(x) =
c(x) + 1∑
x [c(x) + 1]

PLAP(x) =
c(x) + 1

N + |X |
where N is the number of (total) observations; |X | is the number of possible values X can
take (cardinality).
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PLAP(x) =
c(x)+1∑
x [c(x)+1] =

c(x)+1
N+|X | = ?

Observation:

Laplace#Smoothing#

!  Laplace’s#es)mate:#
!  Pretend#you#saw#every#outcome#

once#more#than#you#actually#did#

!  Can#derive#this#es)mate#with#
Dirichlet+priors#(see#cs281a)#

r# r# b#
What is PLAP(X = red) and PLAP(X = blue)?

A: PLAP(X = red) = 7/10, PLAP(X = blue) = 3/10

B: PLAP(X = red) = 2/3, PLAP(X = blue) = 1/3

C: PLAP(X = red) = 3/5, PLAP(X = blue) = 2/5

D: None of the above.
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Notes

Laplace#Smoothing#

!  Laplace’s#es)mate:#
!  Pretend#you#saw#every#outcome#

once#more#than#you#actually#did#

!  Can#derive#this#es)mate#with#
Dirichlet+priors#(see#cs281a)#

r# r# b#

originally:

• P(red) = 2/3

• P(blue) = 1/3

this slide: courtesy of P. Abeel, http://ai.berkeley.edu. 21st lecture of CS 188.

http://ai.berkeley.edu


Laplace smoothing - as a hyperparameter k
Pretend you see every sample k extra times:

PLAP(x) =
c(x) + k∑
x [c(x) + k]

PLAP(x) =
c(x) + k

N + k |X |
For conditional, smooth each condition independently

PLAP(x |s) =
c(x , s) + k

c(s) + k |X |

What is |X | equal to?
A: 10

B: 2

C: 256

D: None of the above
24 / 43

Notes
Hyperparameter would be tuned along with your classifier
For k = 100 and blue and red, you would get:

• PLAP(red) = (2 + 100)/(3 + 100 ∗ 2) = 102/203

• PLAP(blue) = (1 + 100)/(3 + 100 ∗ 2) = 101/203

In this case, smoothing (”prior”) would dominate over the observations - shifting estimate from empirical to
uniform.
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What is the right degree of polynomial (hyperparameter of a regressor)

-2 -1 0 1 2 3 4 5 6 7
0.6

0.7

0.8

0.9

1

1.1

1.2
Fitting n-degree polynomial to training data

1: 0.00143

2: 0.00088

3: 0.00011

4: 0.00000

training

25 / 43

Notes
See the tuning hyper parameter.m demo. The small values depict sum of square errors on training data.
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Notes
See the tuning hyper parameter.m demo. The small values depict sum of square errors on training data.



Generalization and overfiting

▶ Data: training, validating, testing . Wanted classifier performs well on what data?

▶ Overfitting: too close to training, poor on testing.
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1.2
Fitting n-degree polynomial to training data

1: 0.00143

2: 0.00088

3: 0.00011

4: 0.00000

training

validation
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Notes



Training and testing

Data labeled instances.

▶ Training set

▶ Held-out (validation) set

▶ Testing set.

Features : Attribute-value pairs.

Learning cycle:

▶ Learn parameters (e.g. probabilities) on training set.

▶ Tune hyperparameters on held-out (validation) set.

▶ Evaluate performance on testing set.

27 / 43

Notes
Training set - biggest part.



Nearest Neighbour classifier
▶ Training: Remember all the training data.
▶ Classification:

1. Query x
2. Select N nearest neighbours of x from the training set. (N is usually odd.)
3. Classify to the most frequent class among the neighbours.

28 / 43

Notes



K− Nearest Neighbor and Bayes j∗ = argmaxj P(sj |⃗x)

Assume data:

▶ N samples x⃗ in total.

▶ Nj samples in sj class. Hence,
∑

j Nj = N.

We want classify to x⃗ . We draw a circle (hypher-sphere) cen-
tered at x⃗ containing K points irrespective of class. V is the
volume of this sphere. P(sj |⃗x) =?

P(sj |⃗x) =
P(x⃗ |sj)P(sj)

P(x⃗)
x1

x2

(a)

Non-parametric estimates: P(sj) =
Nj

N , P(x⃗) = K
NV ,P(x⃗ |sj) = Kj

NjV
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Notes

P(sj) =
Nj

N

P(x⃗) =
K

NV

P(x⃗ |sj) =
Kj

NjV

P(sj |⃗x) =
P(x⃗ |sj)P(sj)

P(x⃗)
=

Kj

K



Female/male classification based on height. N data points available.

60 80 100 120 140 160 180 200 220
x = height [cm]

0

0.05

0.1
Female/Male classification

Female
Male
measured sample

Ignore the y axis. A new measurement comes, x = 163 cm. Female or male?
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Notes



K−NN p(x |sj) estimates

60 80 100 120 140 160 180 200 220
x = height [cm]

0

0.05

0.1
Female/Male classification

Female
Male
measured sample
3-knn p(xjf)
3-knn p(xjm)

p(x |sj) =
Kj

NjV
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Notes



K−NN p(sj |x) posteriors

60 80 100 120 140 160 180 200 220
x = height [cm]

0

0.2

0.4

0.6

0.8

1
Female/Male classification

Female
Male
measured sample
3-knn p(f jx)
3-knn p(mjx)

p(sj |x) =
p(x |sj)p(sj)

p(x)

32 / 43

Notes
On the first sight it looks suspiciously regular but it is all true:

p(sj |x) =
Kj

NjV

Nj

N

K
NV

=
Kj

K



Volume in k − NN in higher dimensions

Complement slide, for the sake of completeness. The decision rule P(sj |x) = Nj/N is the same
for all dimensions.

P(x⃗) =
K

NV

V = VdR
d
k (x⃗)

Rk(x⃗) - distance from x⃗ to its k−th nearest neighbour point (radius)

Vd =
πd/2

Γ(d/2 + 1)

volume od unit d−dimensional sphere,
Γ denotes gamma function.
V1 = 2,V2 = π,V3 =

4
3π
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Notes

K = 1

0 0.5 1
0

5

K = 5

0 0.5 1
0

5

K = 30

0 0.5 1
0

5

More details, including a computational example, in [2].
A K−NN belongs to non-parametric methods for density estimation, see section 2.5 from [1]. (Figure from [1])

You may try it yourself, https://scikit-learn.org/stable/modules/density.html#kernel-density

https://scikit-learn.org/stable/modules/density.html#kernel-density


Evaluation (comparisons) of classifiers
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Notes



Precision and Recall, and . . .
Consider digit detection (is there a digit?) or SPAM/HAM,
Male/Female classification
Recall :

▶ How many relevant items are selected?

▶ Are we missing some items?

▶ Also called: True positive rate (TPR), sensitivity, hit
rate . . .

Precision

▶ How many selected items are relevant?

▶ Also called: Positive predictive value

False positive rate (FPR)

▶ Probability of false alarm

relevant elements

selected elements

false positivestrue positives

false negatives true negatives

Precision = Recall =

How many selected
items are relevant?

How many relevant
items are selected?

By Walber - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=36926283
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Notes

TPR =
TP

P
=

TP

TP + FN

Precision =
TP

TP + FP

FPR =
FP

N
=

FP

FP + TN

Think about TPR vs FPR graph, what is the best classifier?

https://commons.wikimedia.org/w/index.php?curid=36926283


Studying a classifier . . .
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relevant elements

selected elements

false positivestrue positives

false negatives true negatives

Precision = Recall =

How many selected
items are relevant?

How many relevant
items are selected?

How many data samples xi?
A 50

B 100

C 150

D 200
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Notes

How many data samples in the testing (evaluation) set?



ROC – Receiver operating characteristics curve
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Notes

• How do you slide along the curve?

• What is the meaning of the diagonal?

• What would be the shape of the curve for the ideal/worst classifier?

• How would you compare various curve and select the best classifier?

• Think/read about other ways to evaluate/visualise classification results.



Precision – recall curve
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Precision =
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TP + FP

Recall =
TP

TP + FN
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Notes
Think about a different classifier (curve), how would you compare?

Try to explain meaning of Precision and Recall from the user’s (buyer’s) perspective.



How to evaluate a multi-class classifier? Confusion table

#times classified as
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Matching table for test set
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Notes

A result for a one particular classifer and its setting (parameters), one particular testing set.



Product of many small numbers . . .

P(s |⃗x) = P(x⃗ |s)P(s)
P(x⃗)

=
P(s)

P(x⃗)
P(x [1]|s) · P(x [2]|s) · . . .

P(x⃗) not needed, . . . ...

log(P(x [1]|s)P(x [2]|s) · · · ) = log(P(x [1]|s)) + log(P(x [2]|s)) + · · ·

40 / 43

Notes
just try

• prod(rand(1,100)) and prod(rand(1,10000)) in Matlab.

• prod(rand(1,100)) == 0 and prod(rand(1,10000)) == 0 in Matlab.

or in python console:

• >>> import numpy as np

• >>> np.prod(np.random.rand(100))==0

• >>> np.prod(np.random.rand(1000))==0

• >>> a = np.random.rand(1000)

>>> b = np.random.rand(1000)

>>> np.prod(a)>np.prod(b)

False

>>> np.prod(a)<np.prod(b)

False

>>> np.sum(np.log(a))>np.sum(np.log(b))

True

Hitting the limit of number representation.
What is the way out?
P(x⃗) not needed – does not depend on the class.
Laws of logarithms...
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