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(Re-)introduction uncertainty/probability

» Markov Decision Processes (MDP)/RL — uncertainty about outcome of actions

> Sequential decisions (robot/agent goes from sp to s¢)
> r:S—> A
» Policy (Strategy): knowing what to do for all possible states.

2/24

Notes
Just a reminder: MDPs, value iteration and policy iteration methods. In RL: temporal difference learning.
Now, strictly speaking, we are interested in single decision. Due to its stochastic nature, we understand that
anything can happen and we are seeking optimality in a statistical sense - what is the outcome of the decision
when repeated.
S and D are often the same as we will see later. Yet, it is convenient to keep it separate. States represent the

ground-truth, and Decision is the output of the algorithm.
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(Re-)introduction uncertainty/probability

» Markov Decision Processes (MDP)/RL — uncertainty about outcome of actions
> Sequential decisions (robot/agent goes from sp to s¢)
> r:S—> A
» Policy (Strategy): knowing what to do for all possible states.

> Now: uncertainty associated with states

» Different states may have different prior probabilities.
P> The states s € S are not directly observable.

> They need to be inferred from features (observations, measurements) x € X' .
» Single (repeated) decision 6 : X - D (§: X - Sif D=3S);
» (Decision) Strategy: knowing how to decide for all possible measurements.

» Decision example, crossing street:

P> x = camera image; X is the space of all possible images
» S = {car, bus, bicycle, truck} approaching
> | decide to: D = {go, wait}
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when repeated.
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Decision example: Insure or not? (from late 1980s) [5]

“Insurance company does not want to insure a married couple.”
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1 ”
I'm sorry ...".

3/24

Notes
Equations/formulas are simple but not easy to (fully) understand.

e Doctor: P(positive test | healthy) = 1 but this is the
likelihood which we learn before the patient’s diagnosis

(classification).

e More interesting and important is to know:
P(healthy | positive test) (posterior).

e Think about 10000 samples of heterosexual males, family,
.... Statistically, there is just 1 HIV positive among them.

e Assume P(negative test | infected) — 0. (false negative rate)

e 1 person HIV positive will be tested positive, but also 10
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“Insurance company does not want to insure a married couple.”
Known: HIV test falsely positive only in 1 case out of 1000 tests of healthy people.
A doctor calls: “Your HIV test is positive, you will die almost certainly (999/1000) in 10 years.
I'm sorry ...".
» Was the doctor right?

» Was the insurance company rational?
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Decision example: Insure or not? (from late 1980s) [5]

“Insurance company does not want to insure a married couple.”

Known: HIV test falsely positive only in 1 case out of 1000 tests of healthy people.

A doctor calls: “Your HIV test is positive, you will die almost certainly (999/1000) in 10 years.
I'm sorry ...".

» Was the doctor right?
» Was the insurance company rational?
S = {healthy, infected}, X = {positive_test, negative_test}, D = {insure, reject}
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Decision example: Insure or not? (from late 1980s) [5]

“Insurance company does not want to insure a married couple.”

Known: HIV test falsely positive only in 1 case out of 1000 tests of healthy people.

A doctor calls: “Your HIV test is positive, you will die almost certainly (999/1000) in 10 years.
I'm sorry ...".

» Was the doctor right?
» Was the insurance company rational?
S = {healthy, infected}, X = {positive_test, negative_test}, D = {insure, reject}

What is the probability the man is infected?

_1
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999
1000
1

Don’t know yet, more info needed, but less than 5

Don't know yet, more info needed, but more than 3

2
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Classification example: What's the fish?

» Factory for fish processing

> 2 classes si2:

> salmon

* ? » sea bass

[Feature extraction » Features X: length, width, lightness etc.
l T from a camera

Classification

"salmon” "sea bass"
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Notes

e Sea (European) bass, https://en.wikipedia.org/wiki/European_bass. (In Czech it is Mo¥¢dk evropsky or
Mot¥sky vlk.)

e Salmon, https://en.wikipedia.org/wiki/Salmon. (losos in Czech)


https://en.wikipedia.org/wiki/European_bass
https://en.wikipedia.org/wiki/Salmon

Fish — classification using probability

likelihood x prior

posterior = -
evidence

» Notation for classification problem
» Classes s; € S (e.g., salmon, sea bass)
> Features x; € X or feature vectors (X;) (also called attributes)

5/24

Notes

Assuming we know the true P(X|s;), P(s;), P(X) we cannot do better! Bayesian classification is optimal!



Fish — classification using probability

likelihood x prior

posterior = -
evidence

» Notation for classification problem
» Classes s; € S (e.g., salmon, sea bass)
> Features x; € X or feature vectors (X;) (also called attributes)

» Optimal classification of X:
0*(X) = arg max P(s;j|X)
J

> We thus choose the most probable class for a given feature vector .
» Both likelihood and prior are taken into account — recall Bayes rule:
_ P(Xls)P(s)

PsIX) = —px

» Can we do (classify) better?

Notes
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Assuming we know the true P(X|s;), P(s;), P(X) we cannot do better! Bayesian classification is optimal!



Decision making under uncertainty

» An important feature of intelligent systems
» make the best possible decision
» in uncertain conditions
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Notes
There are costs associated with a decision. E.g. at fish packing plant, customers may not mind so much if some
pieces of salmon end up in sea bass cans, but they will be protesting if the opposite happens. So making an
error “one way" has higher cost than “the other way". This impacts where decision boundaries for classification
should optimally be drawn.
The decision loss can be seen as counterpart of the utility . We want either maximize utitity or minimize loss.
In machine learing and pattern recoginition community, the term loss is used much more frequently.

Remember that quality of a policy is evaluated as the expected sum of (discounted) rewards. Quality of the
decision strategt will be evaluated based on the expected loss - we will call it risk of the strategy.
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» An important feature of intelligent systems
» make the best possible decision
» in uncertain conditions
> Example: Take a tram OR subway from A to B?
» Tram: timetables imply a quicker route, but adherence uncertain.
» Subway: longer route, but adherence almost certain.

> Example: where to route a letter with this ZIP?

A
BNy

» 157007 157067 152007 152067
» What is the optimal decision ?

> What is the cost of the decision? What is the associated loss ?
> What is the relation between loss and utility 7
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Introducing decision loss: Coin recognition

i

Navodk obsluze ¥

;
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5, 10,20 a 50 K¢
e Vysi vhozené ¢astky kontrolujte na displeji
0 Automat sam rozméfiuje a vraci
o Je-li mince vadna nebo propadava, poufijte jinou
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Recognizing/classifying coins: components

» se{1,2,510,20,50} — state - the true value

» x € {0.0,0.1,---,9.9}[g] — measurement, observation
> P(s,x) joint probability

» d e {1,2,5,10,20,50}- decision, result of the algorithm

8/24
Notes
P(s, x) think about an Oracle for the moment, we will discuss it more later

We assume 100 possible measurements x € {0.0,0.1,---,9.9}
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Loss function ¢(7)
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Recognizing/classifying coins: components

» se{1,2,510,20,50} — state - the true value

» x € {0.0,0.1,---,9.9}[g] — measurement, observation
> P(s,x) joint probability

» d e {1,2,5,10,20,50}- decision, result of the algorithm

How many strategies?:
A 100
B 100°
C 600
D 6100

What is the best strategy?

Notes

Loss function ¢(7)
is a function of:

A's

B s,d

C s,x,d

D d

Strategy d = 6(?)
is a function of:

A x

B s

C s, x
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We assume 100 possible measurements x € {0.0,0.1,---,9.9}



Introducing decision loss: What to cook for dinner [4]

» Wife is coming back from work. Husband: what to cook for dinner?
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Notes

Was the state known, the decision would be simple.
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» 3 dishes ( decisions ) in his repertoire:

»> nothing ... don’t bother cooking = no work but makes wife upset
» pizza ... microwave a frozen pizza = not much work but won't impress
> g.T.c. ... general Tso's chicken = will make her day, but very laborious

> “Hassle” (cost) incurred by the individual options depends on wife's mood ( state ).

» For each of the 9 possible situations (3 possible decisions x 3 possible states), the cost is
quantified by a loss function /¢(d,s):

{(s,d) ‘ d = nothing d = pizza d=g.T.c.

s = good 0 2 4
S = average 5 3 5
s = bad 10 9 6
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» 3 dishes ( decisions ) in his repertoire:

»> nothing ... don’t bother cooking = no work but makes wife upset
» pizza ... microwave a frozen pizza = not much work but won't impress
> g.T.c. ... general Tso's chicken = will make her day, but very laborious

> “Hassle” (cost) incurred by the individual options depends on wife's mood ( state ).

» For each of the 9 possible situations (3 possible decisions x 3 possible states), the cost is
quantified by a loss function /¢(d,s):

{(s,d) ‘ d = nothing d = pizza d=g.T.c.

s = good 0 2 4
S = average 5 3 5
s = bad 10 9 6

The wife's state of mind is an uncertain state.
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Was the state known, the decision would be simple.




Example (cont'd), State uncertain, get some measurements, ...
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Notes
Joint distibution. Husband tried similar experiment multiple times, gathered some evidence ...

Instead of complicated experiment with overtaping the wedding video, think about asking “when are you coming

home?".



Example (cont'd), State uncertain, get some measurements, ...

P> Husband's experiment. He tells her he accidentally overtaped their wedding video and
observes her reaction.
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Example (cont'd), State uncertain, get some measurements, ...

P> Husband's experiment. He tells her he accidentally overtaped their wedding video and
observes her reaction.
> Anticipates 4 possible reactions:

> mild ... all right, we keep our memories.

» jrritated ... how many times do | have to tell you....
» upset ... Why did | marry this guy?

» alarming ... silence

» The reaction is a measurable attribute/symptom ( “feature” ) of the mind state.
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Example (cont'd), State uncertain, get some measurements, ...

P> Husband's experiment. He tells her he accidentally overtaped their wedding video and

observes her reaction.
> Anticipates 4 possible reactions:
> mild ... all right, we keep our memories.
» jrritated ... how many times do | have to tell you....
» upset ... Why did | marry this guy?
» alarming ... silence

» The reaction is a measurable attribute/symptom ( “feature” ) of the mind state.

P> From experience, the husband knows how probable individual reactions are in each state

of mind; this is captured by the joint distribution P(x, s)

P(x,s) ‘ x = mild x =irritated x = upset x = alarming

s = good 0.35 0.28 0.07 0.00
s = average 0.04 0.10 0.04 0.02
s = bad 0.00 0.02 0.05 0.03
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Notes

Joint distibution. Husband tried similar experiment multiple times, gathered some evidence ...

Instead of complicated experiment with overtaping the wedding video, think about asking “when are you coming

home?".



Decision strategy and its risk
» Decision strategy : a rule selecting a decision for any given value of the measured
attribute(s). 6 : X — D.
» i.e. function d = (x).

11/24
Notes
Overall, 3* = 81 possible strategies (3 possible decisions for each of the 4 possible attribute values). There is
some analogy of states and possible actions. Here, we reason about states - which are 3 (state of mind) - from
features which are 4.
Any given value (of measured attribute) ... Think about any possible state.
Recall MDPs and RL.

e Reward (or penalty) was associated with state or state transition when executing an action R(s, a,s’).
Similarly here, loss, £(s,d(x)), is associated with state and decision/action.

e Difference: policy / decision strategy.
- MDP/RL: policy 7(s)
— Now: state s not directly observable anymore. Instead, policy / decision strategy, J(x), needs
to be defined over ther percepts/symptoms/attributes, x.
— s and x need to be linked via P(x,s).



Decision strategy and its risk
» Decision strategy : a rule selecting a decision for any given value of the measured
attribute(s). 6 : X — D.
» i.e. function d = (x).
» Example of husband's possible strategies:
8(x) | x = mild x = irritated x = upset x = alarming

01(x) nothing nothing pizza g T.c
02(x) = | nothing pizza g T.c g T.c
B(x)=| gTec g T.c g Tc g T.c
d4(x) = | nothing nothing nothing nothing
> How many strategies?
11/24
Notes

Overall, 3* = 81 possible strategies (3 possible decisions for each of the 4 possible attribute values). There is
some analogy of states and possible actions. Here, we reason about states - which are 3 (state of mind) - from
features which are 4.

Any given value (of measured attribute) ... Think about any possible state.

Recall MDPs and RL.

e Reward (or penalty) was associated with state or state transition when executing an action R(s, a,s’).
Similarly here, loss, £(s,d(x)), is associated with state and decision/action.

e Difference: policy / decision strategy.
- MDP/RL: policy 7(s)
— Now: state s not directly observable anymore. Instead, policy / decision strategy, J(x), needs

to be defined over ther percepts/symptoms/attributes, x.
— s and x need to be linked via P(x,s).
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Calculating r(6) = >, > . (s, 0(x))P(x,s)
d d '

{(s,d) | d = nothing d = pizza d=gT.c
s = good 0 2 4
S = average 5 3 5
s = bad 10 9 6
12/24
Notes

e Risk depends on strategy (decisions).
e Strategy (decisions) depends on observation.
e Loss combines decision and state.

e The total weighted average is weighted by joint probability of observation and state.

Calculate r(61) and r(d2), which strategy is better?
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Bayes optimal strategy

> The Bayes optimal strategy : one minimizing mean risk.

0" = arg méin r(6)

» From P(x,s) = P(s|x)P(x) (Bayes rule), we have

() =Y (s, 0(x))P(x,8) =D Y U(s,5(x))P(s|x)P(x)
=Y P(x)) s, 5(x))P(s|x)

~
Conditional risk

> The optimal strategy is obtained by minimizing the conditional risk separately for each x:
0*(x) = i L(s,d)P
() = argmin 3 (5. P61

13/24
Notes




Optimal strategy: 0*(x) = argming ) {(s, d)P(s|x)

{(s,d) | d = nothing d = pizza d=g.T.c

s = good 0 2 4
§ = average 5 3 5
s = bad 10 9 6

P(x,s) | x = mild x =irritated x = upset x = alarming

s = good 0.35 0.28 0.07 0.00
s = average 0.04 0.10 0.04 0.02
s = bad 0.00 0.02 0.05 0.03

8(x) | x=mild x = irritated x = upset x = alarming
G =] 77 77 77 77

14/24
Notes
We need to recompute the table of joint probability P(s, x) into table of conditional probabilies P(s|x).
This can be done in two ways. A: Using product rule, P(s|x) = P(s,x)/P(x).
‘ x = mild x =irritated x = upset x = alarming
P(x) | 0.39 0.40 0.16 0.05
Second, applying product rule, P(s|x) = P(s, x)/P(x).
B: calculating the probability on a “per column basis”.
E.g. for the first cell, A: 0.35/0.39 = 0.897 B: 0.35/(0.35 + 0.04)
P(s|x) | x=mild x =irritated x = upset x = alarming

First, to get P(x), we use Sum rule (marginalizing).

s = good 0.897 0.7 0.438 0.00
S = average 0.103 0.25 0.25 0.4
s = bad 0.00 0.125 0.313 0.6

Having the table of all P(s|x) we just mechanically insert into the equation in the slide title.



Statistical decision making: wrapping up

> Given:
P> A set of possible states : S
» A set of possible decisions : D

» A loss function /:DxS — R

» The range X of the attribute
» Distribution P(x,s), x € X,s € S.

> Define:

» Strategy : function § : X — D

> Risk of strategy 0 : r(d) =), > . 4(s,(x))P(x,s)
> Bayes problem:

> Goal: find the optimal strategy 6* = arg min; r(4)
» Solution: §*(x) = argming > _¥(s, d)P(s|x) (for each x)

Notes

15/24




A special case - Bayesian classification

> Bayesian classification is a special case of statistical decision theory:
> Attribute vector X = (x1,x,...): pixels 1, 2, ....
> State set S = decision set D = {0,1,...9}.
» State = actual class, Decision = recognized class

16 /24

Notes

Classification as opposed to Decision

Loss function simply counts errors (misclassifications)

e We consider all errors equally painful!

e More examples during the lab ...

The final result is not that surprising, is it? (Is it good or bad?)
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» Loss function:
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S 0if d=s s#d

Obviously Y. P(s|X) = 1, then:

P(d|R) + ) P(s[x) =1
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16 /24
Notes

e Classification as opposed to Decision

e Loss function simply counts errors (misclassifications)
e We consider all errors equally painful!

e More examples during the lab ...

e The final result is not that surprising, is it? (Is it good or bad?)
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Decision: guilty or not? (people of CA vs Collins, 1968) [5]

> Robbery, LA 1964, fuzzy evidence of the offenders:

» female, around 65 kg
> wearing something dark

P hair of light color, between light and dark blond, in

a ponytail

> At the same time, additional evidence close to the

crime scene:

» loud scream, yelling, looking at the this direction

» a woman sitting into a yellow car
P car starts immediately and passes close to the
additional witness

»> a black man with beard and moustache was driving

» No more evidence

» Testimony of both the victim and the witness not

unambiguous (didn't recognize suspects)
> Still, the suspects were sentenced to jail.

21/24

Notes
Wrong use of independence assumption:

P(yellow car)

P(man with moustache)
P(black man with beard)
P(woman with pony tail)
P(woman blond hair)

)

P(mix race pair in a car

and mistakenly confusing probability

P(randomly selected pair matches discussed characteristics)

giving P = 1/12000000. Think about total California population.

with the needed conditional probability: P(a pair matching characteristics is guilty)

1/10
1/4
1/10
1/10
1/3
1/1000

“The court noted that the correct statistical inference would be the probability that no other couple who could

have committed the robbery had the same traits as the defendants given that at least one couple had the identified

traits. The court noted, in an appendix to its decision, that using this correct statistical inference, even if the

prosecutor’s statistics were all correct and independent as he assumed, the probability that the defendants were

innocent would be over 40%.” https://en.wikipedia.org/wiki/People_v._Collins


https://en.wikipedia.org/wiki/People_v._Collins

Decision: guilty or not? (people of CA vs Collins, 1968) [5]

P(yellow car)
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P(black man with beard)
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)

P(mix race pair in a car

1/10
1/4
1/10
1/10
1/3
1/1000
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Decision: guilty or not? (people of CA vs Collins, 1968) [5]

P(yellow car) = 1/10
P(man with moustache) = 1/4
P(black man with beard) = 1/10

)

)

) 1
P(woman with pony tail) = 1/10

)

)

P)=—
(7) 12,000, 000

P(woman blond hair) = 1/3

P(mix race pair in a car) = 1/1000

What probability?
A Convicted pair not guilty.
B A randomly selected pair matches characteristics.

C Some other.

Notes

Assume (wrong!) mutual indepedence:
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people of CA vs Collins, 1968, [1]
Computed (wrongly):

1
P, = P(randomly selected pair matches discussed characteristics) = 12000000

Judge needs:
P(a pair matching characteristics is guilty) =7
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possible/existing pairs in California ... N
P(pair will never appear in N) = P(NA) = (1 — P,)N

P(pair will appear at least once in N) = P(ALO) =1 — P(NA) =1— (1 - P,)N
P(pair will appear exactly once in N) = P(EQ) = NP,(1 — P,)N—!

P(pair will appear more than once in N) = P(MTO) = P(ALO) — P(EO)
P(MTO|ALO) — PIMTO.ALO) _ P(MTO)

P(ALO)  — P(ALO)

1-(1—-P)N—- NP (1-P,)N-1

P(MTO|ALO) = AP

Notes

12,000,000
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P(MTO|ALO) = f(N); people of CA vs Collins, 1968

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

P(MTO|ALO); Probability of more matching pairs if one exists
I I I | !

3 4 5 6 7
total number of all pairs

Notes

©
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