
Reinforcement learning II
Active learning

Tomáš Svoboda

Vision for Robots and Autonomous Systems, Center for Machine Perception
Department of Cybernetics

Faculty of Electrical Engineering, Czech Technical University in Prague

April 11, 2025

1 / 37

Notes

Not all slides with notes. What can be noted about the title page, eh?

http://cyber.felk.cvut.cz/vras
http://cmp.felk.cvut.cz
http://cyber.felk.cvut.cz
http://fel.cvut.cz
http://cvut.cz


Recap: Reinforcement Learning

1

▶ Feedback in form of Rewards

▶ Learn to act so as to maximize sum of expected rewards.

▶ In kuimaze package, env.step(action) is the method.

1Scheme from [3]
2 / 37

Notes
Robot/agent action changes environment.

• Environment is everything . . .

• battery state

• robot position

• object position (manipulation task)

• . . .



Learning to control flippers

http://cyber.felk.cvut.cz/vras/

▶ What are the states?

▶ How to design rewards?

▶ How to perform training episodes
(roll-outs)?

▶ Simulator to reality gap.

3 / 37

Notes

• States may contain interoceptive as well as exteroceptive sensing.

• Reward shaping.

• Train in simulator, then go for a real roll-out, back to simulator and so on.

• Physical simulator for robot terrain interactions.

• Sensor models.

Next few slides display a possible parameterization of the flipper control task.

http://cyber.felk.cvut.cz/vras/


4 / 37

Notes
This and the next three slides introduce some ideas and approaches published in:

• Karel Zimmermann, Petr Zuzanek, Michal Reinstein, Vaclav Hlavac. Adaptive traversability of unknown
complex terrain with obstacles for mobile robots. In 2014 IEEE international conference on robotics and
automation (ICRA).

The work has been exteneded in several directions:

• Martin Pecka, Vojtěch Šalanský, Karel Zimmermann, Tomáš Svoboda. Autonomous flipper control with
safety constraints. In 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

• M. Pecka, K. Zimmermann, M. Reinstein, and T. Svoboda. Controlling Robot Morphology from
Incomplete Measurements. In IEEE Transactions on Industrial Electronics, Feb 2017, Vol 64, Issue: 2, pp.
1773-1782

• M. Pecka, K. Zimmermann, T. Svoboda. Fast Simulation of Vehicles with Non-deformable Tracks. In
Intelligent Robots and Systems (IROS), 2017.

• Martin Pecka, Karel Zimmermann, Matěj Petrĺık, Tomáš Svoboda. Data-driven Policy Transfer with
Imprecise Perception Simulation. IEEE Robotics and Automation Letters, Vol. 3, Issue 4, Oct 2018



5 / 37

Notes

• Colors encode height of the terrain.

• Haar’s features: Think about sum of heights in white are - sum of heights in the black area.



6 / 37

Notes

• Discretization of the Action space.

• Colors of the flippers encode wheather they are stiff (red) or soft – terrain compliant (green).



7 / 37

Notes

• Hand-crafted reward function.

Discuss the difference with AlphaGo Zero, Atari games etc. There you can afford to learn about your performance
only at the end of the game, as you can play many many games.
In robotics, you usually can’t do that...



From off-line (MDPs) to on-line (RL)

Markov decision process – MDPs. Off-line search, we know:

▶ A set of states s ∈ S (map)

▶ A set of actions per state, a ∈ A(s)
▶ A transition model p(s ′|s, a) (robot)
▶ A reward function r(s, a, s ′) (map, robot)

Looking for the optimal policy π(s). We can plan/search before the robot enters the
environment.

On-line problem:
▶ Transition p and reward r functions not known.

▶ Agent/robot must act and learn from experience.

8 / 37

Notes

For MDPs, we know p, r for all possible states and actions.



(Transition) Model-based learning

The main idea: Do something and:

▶ Learn an approximate model from experiences.

▶ Solve as if the model were correct.

Learning MDP model:

▶ Try s, a, observe s ′, count s, a, s ′.

▶ Normalize to get and estimate of p(s ′|s, a)
▶ Discover each r(s, a, s ′) when experienced.

Solve the learned MDP.

9 / 37

Notes



Model-free learning

▶ r , p not known.

▶ Move around, observe.

▶ And learn on the way.

▶ Goal: Learn the state value v(s), or (better),
q-value q(s, a) functions.

Image from [1]

10 / 37

Notes

Executing policies - training, then learning from the observations. We want to do policy evaluation but the

necessary model is not known.



Recap: V− learning

Learn V (s) values as the robot/agent goes (temporal difference).

▶ time t, at St
▶ select and take At ∈ A(St), observe Rt+1, St+1

▶ compute sample estimate at time t
sample = Rt+1 + γV (St+1)

▶ α temporal difference update
V (St)← V (St) + α(sample− V (St))

▶ St ← St+1 and repeat (unless St is terminal)

St

St ,At

St+1

At

Rt+1

V (St)V (St)← · · ·

V (St+1)

11 / 37

Notes

The St ,At chance node is depicted in gray purposively. It is not directly observable, it is our model of uncertain

outcome of action At taken in state St .



Recap: V− learning

Learn V (s) values as the robot/agent goes (temporal difference).

▶ time t, at St
▶ select and take At ∈ A(St), observe Rt+1, St+1

▶ compute sample estimate at time t
sample = Rt+1 + γV (St+1)

▶ α temporal difference update
V (St)← V (St) + α(sample− V (St))

▶ St ← St+1 and repeat (unless St is terminal)

St

St ,At

St+1

At

Rt+1

V (St)V (St)← · · ·

V (St+1)

11 / 37

Notes

The St ,At chance node is depicted in gray purposively. It is not directly observable, it is our model of uncertain

outcome of action At taken in state St .



Recap: V− learning

Learn V (s) values as the robot/agent goes (temporal difference).

▶ time t, at St
▶ select and take At ∈ A(St), observe Rt+1, St+1

▶ compute sample estimate at time t
sample = Rt+1 + γV (St+1)

▶ α temporal difference update
V (St)← V (St) + α(sample− V (St))

▶ St ← St+1 and repeat (unless St is terminal)

St

St ,At

St+1

At

Rt+1

V (St)V (St)← · · ·

V (St+1)

11 / 37

Notes

The St ,At chance node is depicted in gray purposively. It is not directly observable, it is our model of uncertain

outcome of action At taken in state St .



Recap: V− learning

Learn V (s) values as the robot/agent goes (temporal difference).

▶ time t, at St
▶ select and take At ∈ A(St), observe Rt+1, St+1

▶ compute sample estimate at time t
sample = Rt+1 + γV (St+1)

▶ α temporal difference update
V (St)← V (St) + α(sample− V (St))

▶ St ← St+1 and repeat (unless St is terminal)

St

St ,At

St+1

At

Rt+1

V (St)V (St)← · · ·

V (St+1)

11 / 37

Notes

The St ,At chance node is depicted in gray purposively. It is not directly observable, it is our model of uncertain

outcome of action At taken in state St .



Recap: V− learning

Learn V (s) values as the robot/agent goes (temporal difference).

▶ time t, at St
▶ select and take At ∈ A(St), observe Rt+1, St+1

▶ compute sample estimate at time t
sample = Rt+1 + γV (St+1)

▶ α temporal difference update
V (St)← V (St) + α(sample− V (St))

▶ St ← St+1 and repeat (unless St is terminal)

St

St ,At

St+1

At

Rt+1

V (St)V (St)← · · ·

V (St+1)

11 / 37

Notes

The St ,At chance node is depicted in gray purposively. It is not directly observable, it is our model of uncertain

outcome of action At taken in state St .



Recap: V− values, converged . . .

γ = 1, rewards −1,+10,−10, and deterministic robot

V (St) = Rt+1 + V (St+1)

12 / 37

Notes
γ = 1, Rewards −1,+10,−10, and no uncertainty on the outcome of actions – deterministic robot/agent.
Rewards associated with leaving the state. Q values close next to terminal state includes the actual reward and
the transition cost steping in, or better, leaving the last living state.

How would the Values change if γ = 0.9?



What is wrong with the temporal difference Value learning?

The Good: Model-free value learning by mimicking Bellman updates.
The Bad: How to turn values into a (new) policy?

▶ π(s) = argmax
a

∑
s′ p(s

′ | s, a) [r(s, a, s ′) + γV (s ′)]

▶ π(s) = argmax
a

Q(s, a)

13 / 37

Notes

Learn Q-values, not V-values, and make the action selection model-free too!



What is wrong with the temporal difference Value learning?

The Good: Model-free value learning by mimicking Bellman updates.
The Bad: How to turn values into a (new) policy?

▶ π(s) = argmax
a

∑
s′ p(s

′ | s, a) [r(s, a, s ′) + γV (s ′)]

▶ π(s) = argmax
a

Q(s, a)

13 / 37

Notes

Learn Q-values, not V-values, and make the action selection model-free too!



What is wrong with the temporal difference Value learning?

The Good: Model-free value learning by mimicking Bellman updates.
The Bad: How to turn values into a (new) policy?

▶ π(s) = argmax
a

∑
s′ p(s

′ | s, a) [r(s, a, s ′) + γV (s ′)]

▶ π(s) = argmax
a

Q(s, a)

13 / 37

Notes

Learn Q-values, not V-values, and make the action selection model-free too!



Model-free TD learning, updating after each transition

▶ Observe, experience environment through learning episodes,
collecting:

St ,At ,Rt+1,St+1,At+1,Rt+2, . . .

▶ Update by mimicking Bellman updates after each transition
(St ,At ,Rt+1,St+1)

14 / 37

Notes

Think about St − At − St+1 − At+1 − St+2 tree with associated rewards. Episode starts in a start state and ends

in a terminal state.



Recap: Bellman optimality equations for v(s) and q(s, a)

v(s) = max
a

∑
s′

p(s ′|s, a)
[
r(s, a, s ′) + γ v(s ′)

]
= max

a
q(s, a)

The value of a q-state (s, a):

q(s, a) =
∑
s′

p(s ′|s, a)
[
r(s, a, s ′) + γ v(s ′)

]
=

∑
s′

p(s ′|s, a)
[
r(s, a, s ′) + γmax

a′
q(s ′, a′)

]

s

s, a

s ′

s ′, a′

a

p(s ′|s, a)

q-stateq(s, a)

v(s ′)

q(s ′, a′)

v(s)

15 / 37

Notes

The tree continues from s ′ through a′ and so on until it terminates.



Q-learning (off-policy TD control)

Learn policy (Q-values) as the robot/agent goes (temporal difference). If some Q quantity not
known, initialize.

▶ time t, at St
▶ select and take At ∈ A(St), observe Rt+1, St+1

▶ compute sample estimate at time t
sample = Rt+1 + γmax

a
Q(St+1, a)

▶ α temporal difference update
Q(St ,At)← Q(St ,At) + α(sample− Q(St ,At))

▶ St ← St+1 and repeat (unless St is terminal)

In each step Q directly approximates the optimal q∗ func-
tion (learns optimal policy).

St

St ,At

St+1

St+1, a

At

Rt+1

Q(St ,At)Q(St ,At)← · · ·

Q(St+1, a)

16 / 37

Notes

Why off-policy ? It learns Q-values answering “What would be this action worth in this state, assuming
abandoning current policy and start according the policy that chooses the best action”



Q-learning (off-policy TD control)

Learn policy (Q-values) as the robot/agent goes (temporal difference). If some Q quantity not
known, initialize.

▶ time t, at St
▶ select and take At ∈ A(St), observe Rt+1, St+1

▶ compute sample estimate at time t
sample = Rt+1 + γmax

a
Q(St+1, a)

▶ α temporal difference update
Q(St ,At)← Q(St ,At) + α(sample− Q(St ,At))

▶ St ← St+1 and repeat (unless St is terminal)

In each step Q directly approximates the optimal q∗ func-
tion (learns optimal policy).

St

St ,At

St+1

St+1, a

At

Rt+1

Q(St ,At)Q(St ,At)← · · ·

Q(St+1, a)

16 / 37

Notes

Why off-policy ? It learns Q-values answering “What would be this action worth in this state, assuming
abandoning current policy and start according the policy that chooses the best action”



Q-learning (off-policy TD control)

Learn policy (Q-values) as the robot/agent goes (temporal difference). If some Q quantity not
known, initialize.

▶ time t, at St
▶ select and take At ∈ A(St), observe Rt+1, St+1

▶ compute sample estimate at time t
sample = Rt+1 + γmax

a
Q(St+1, a)

▶ α temporal difference update
Q(St ,At)← Q(St ,At) + α(sample− Q(St ,At))

▶ St ← St+1 and repeat (unless St is terminal)

In each step Q directly approximates the optimal q∗ func-
tion (learns optimal policy).

St

St ,At

St+1

St+1, a

At

Rt+1

Q(St ,At)Q(St ,At)← · · ·

Q(St+1, a)

16 / 37

Notes

Why off-policy ? It learns Q-values answering “What would be this action worth in this state, assuming
abandoning current policy and start according the policy that chooses the best action”



Q-learning (off-policy TD control)

Learn policy (Q-values) as the robot/agent goes (temporal difference). If some Q quantity not
known, initialize.

▶ time t, at St
▶ select and take At ∈ A(St), observe Rt+1, St+1

▶ compute sample estimate at time t
sample = Rt+1 + γmax

a
Q(St+1, a)

▶ α temporal difference update
Q(St ,At)← Q(St ,At) + α(sample− Q(St ,At))

▶ St ← St+1 and repeat (unless St is terminal)

In each step Q directly approximates the optimal q∗ func-
tion (learns optimal policy).

St

St ,At

St+1

St+1, a

At

Rt+1

Q(St ,At)Q(St ,At)← · · ·

Q(St+1, a)

16 / 37

Notes

Why off-policy ? It learns Q-values answering “What would be this action worth in this state, assuming
abandoning current policy and start according the policy that chooses the best action”



Q-learning (off-policy TD control)

Learn policy (Q-values) as the robot/agent goes (temporal difference). If some Q quantity not
known, initialize.

▶ time t, at St
▶ select and take At ∈ A(St), observe Rt+1, St+1

▶ compute sample estimate at time t
sample = Rt+1 + γmax

a
Q(St+1, a)

▶ α temporal difference update
Q(St ,At)← Q(St ,At) + α(sample− Q(St ,At))

▶ St ← St+1 and repeat (unless St is terminal)

In each step Q directly approximates the optimal q∗ func-
tion (learns optimal policy).

St

St ,At

St+1

St+1, a

At

Rt+1

Q(St ,At)Q(St ,At)← · · ·

Q(St+1, a)

16 / 37

Notes

Why off-policy ? It learns Q-values answering “What would be this action worth in this state, assuming
abandoning current policy and start according the policy that chooses the best action”



Q-learning (off-policy TD control)

Learn policy (Q-values) as the robot/agent goes (temporal difference). If some Q quantity not
known, initialize.

▶ time t, at St
▶ select and take At ∈ A(St), observe Rt+1, St+1

▶ compute sample estimate at time t
sample = Rt+1 + γmax

a
Q(St+1, a)

▶ α temporal difference update
Q(St ,At)← Q(St ,At) + α(sample− Q(St ,At))

▶ St ← St+1 and repeat (unless St is terminal)

In each step Q directly approximates the optimal q∗ func-
tion (learns optimal policy).

St

St ,At

St+1

St+1, a

At

Rt+1

Q(St ,At)Q(St ,At)← · · ·

Q(St+1, a)

16 / 37

Notes

Why off-policy ? It learns Q-values answering “What would be this action worth in this state, assuming
abandoning current policy and start according the policy that chooses the best action”



Recap: V− and Q− values, converged . . .
γ = 1, rewards −1,+10,−10, and deterministic robot

V (St) = Rt+1 + V (St+1)

Q(St ,At) = Rt+1 +max
a

Q(St+1, a)

17 / 37

Notes
γ = 1, Rewards −1,+10,−10, and no uncertainty on the outcome of actions – deterministic robot/agent.
Rewards associated with leaving the state. Q values close next to terminal state includes the actual reward and
the transition cost steping in, or better, leaving the last living state.
Q(s, a) – expected sum of rewards having taken the action and acting according to the (optimal) policy.

How would the (q)values change if γ = 0.9?



Sarsa (on-policy TD control)
Learn Q values as the robot/agent goes (temporal difference). If some Q quantity not known,
initialize.

▶ time t, at St , select At ∈ A(St)
▶ take At , observe Rt+1, St+1

▶ select At+1 ∈ A(St+1)

▶ which gives sample estimate
sample = Rt+1 + γ Q(St+1,At+1)

▶ α temporal difference update
Q(St ,At)← Q(St ,At) + α(sample− Q(St ,At))

▶ St ← St+1, At ← At+1 and repeat (unless St is
terminal)

In each step learns Q.

St

St ,At

St+1

St+1,At+1

At

p(s ′|s, a)

At+1

Q(St ,At)

Q(St+1, At+1) 18 / 37

Notes

on-policy : It learns Q answering “What would be this action worth in this state, assuming I stick with my
policy?” SARSA – State-Action-Reward-State-Action.

• Q-learning: Learning from 4-tuples St ,At ,Rt+1, St+1.

• SARSA: Learning from 5-tuples St ,At ,Rt+1,St+1,At+1.



Sarsa (on-policy TD control)
Learn Q values as the robot/agent goes (temporal difference). If some Q quantity not known,
initialize.

▶ time t, at St , select At ∈ A(St)
▶ take At , observe Rt+1, St+1

▶ select At+1 ∈ A(St+1)

▶ which gives sample estimate
sample = Rt+1 + γ Q(St+1,At+1)

▶ α temporal difference update
Q(St ,At)← Q(St ,At) + α(sample− Q(St ,At))

▶ St ← St+1, At ← At+1 and repeat (unless St is
terminal)

In each step learns Q.

St

St ,At

St+1

St+1,At+1

At

p(s ′|s, a)

At+1

Q(St ,At)

Q(St+1, At+1) 18 / 37

Notes

on-policy : It learns Q answering “What would be this action worth in this state, assuming I stick with my
policy?” SARSA – State-Action-Reward-State-Action.

• Q-learning: Learning from 4-tuples St ,At ,Rt+1, St+1.

• SARSA: Learning from 5-tuples St ,At ,Rt+1,St+1,At+1.



Sarsa (on-policy TD control)
Learn Q values as the robot/agent goes (temporal difference). If some Q quantity not known,
initialize.

▶ time t, at St , select At ∈ A(St)
▶ take At , observe Rt+1, St+1

▶ select At+1 ∈ A(St+1)

▶ which gives sample estimate
sample = Rt+1 + γ Q(St+1,At+1)

▶ α temporal difference update
Q(St ,At)← Q(St ,At) + α(sample− Q(St ,At))

▶ St ← St+1, At ← At+1 and repeat (unless St is
terminal)

In each step learns Q.

St

St ,At

St+1

St+1,At+1

At

p(s ′|s, a)

At+1

Q(St ,At)

Q(St+1, At+1) 18 / 37

Notes

on-policy : It learns Q answering “What would be this action worth in this state, assuming I stick with my
policy?” SARSA – State-Action-Reward-State-Action.

• Q-learning: Learning from 4-tuples St ,At ,Rt+1, St+1.

• SARSA: Learning from 5-tuples St ,At ,Rt+1,St+1,At+1.



Sarsa (on-policy TD control)
Learn Q values as the robot/agent goes (temporal difference). If some Q quantity not known,
initialize.

▶ time t, at St , select At ∈ A(St)
▶ take At , observe Rt+1, St+1

▶ select At+1 ∈ A(St+1)

▶ which gives sample estimate
sample = Rt+1 + γ Q(St+1,At+1)

▶ α temporal difference update
Q(St ,At)← Q(St ,At) + α(sample− Q(St ,At))

▶ St ← St+1, At ← At+1 and repeat (unless St is
terminal)

In each step learns Q.

St

St ,At

St+1

St+1,At+1

At

p(s ′|s, a)

At+1

Q(St ,At)

Q(St+1, At+1) 18 / 37

Notes

on-policy : It learns Q answering “What would be this action worth in this state, assuming I stick with my
policy?” SARSA – State-Action-Reward-State-Action.

• Q-learning: Learning from 4-tuples St ,At ,Rt+1, St+1.

• SARSA: Learning from 5-tuples St ,At ,Rt+1,St+1,At+1.



Q-learning: algorithm

step size 0 < α ≤ 1
initialize Q(s, a) for all s ∈ S, a ∈ A(s)
repeat episodes:

initialize S
for each step of episode: do

choose A from A(S)
take action A, observe R, S ′

Q(S ,A)← Q(S ,A) + α
[
R + γmaxa Q(S ′, a)− Q(S ,A)

]
S ← S ′

until S is terminal
until Time is up, . . .

19 / 37

Notes



Sarsa: algorithm

step size 0 < α ≤ 1
initialize Q(s, a) for all s ∈ S, a ∈ A(s)
repeat episodes:

initialize S
choose A from A(S)
for each step of episode: do

take action A, observe R, S ′

choose A′ from A(S ′)
Q(S ,A)← Q(S ,A) + α

[
R + γQ(S ′,A′)− Q(S ,A)

]
S ← S ′, A← A′

until S is terminal
until Time is up, . . .

20 / 37

Notes



How to select At in St? What policy?

▶ time t, at St
▶ take At ∈ A(St) , observe Rt+1,St+1

▶ compute sample estimate at time t
sample = Rt+1 + γmax

a
Q(St+1, a)

▶ α temporal difference update
Q(St ,At)← Q(St ,At) + α(sample− Q(St ,At))

▶ St ← St+1 and repeat (unless St is terminal)

21 / 37

Notes



How to select At in St? What policy?

▶ time t, at St
▶ take At derived from Q , observe Rt+1, St+1

▶ compute sample estimate at time t
sample = Rt+1 + γmax

a
Q(St+1, a)

▶ α temporal difference update
Q(St ,At)← Q(St ,At) + α(sample− Q(St ,At))

▶ St ← St+1 and repeat (unless St is terminal)

21 / 37

Notes



. . .At derived from Q

What about keeping optimality, taking max?

At = argmaxaQ(St , a)

see the demo run of rl agents.py.

22 / 37

Notes



Two good goal states

0

0

1

1

2

2

3

3

0 0

1 1

2 2

-0.50

-0.50

0.00

0.00

-0.50

0.00

0.00

0.00

-0.50

0.00

0.00

0.00

-0.50

-0.50

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

-0.50

9.50

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

23 / 37

Notes
Discuss the on-line demo with two good goal states. γ = 1, α = 0.5, Living reward −1, R(1, 2) = 10,R(0, 3) =
20,R(1, 1) = −10. Taking the action, corresponding the max Q. If equal options, than in the 0, 1, 2, 3 action
order. 50 training episodes. What happened?

• No exploration step: https://youtu.be/Y5yLttbkPMM

• Exploring steps involved (will be talking in a few minutes): https://youtu.be/cAr-IrawF c

0

0

1

1

2

2

3

3

0 0

1 1

2 2

-0.50

-0.50

0.00

0.00

-0.50

8.00

0.00

0.00

7.00

-0.75

-1.00

-1.00

-0.50

-0.50

-0.50

0.00

-0.50

9.00

0.00

0.00

-0.50

-0.50

0.00

0.00

-0.50

9.50

0.00

0.00

0.00

0.00

0.00

0.00

4.50

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

>

\/ /\

\/ /\

/\/\

/\

>

/\

<

>

https://youtu.be/Y5yLttbkPMM
https://youtu.be/cAr-IrawF_c


Exploration vs Exploitation

▶ Drive the known road or try a new one?

▶ Go to the university menza or try a nearby restaurant?

▶ Use the SW (operating system) I know or try new one?

▶ Go to bussiness or study a demanding program?

▶ . . .

24 / 37

Notes



How to explore?

Random (ϵ-greedy):

▶ Flip a coin every step.

▶ With probability ϵ, act randomly.

▶ With probability 1− ϵ, use the policy.

Problems with randomness?

▶ Keeps exploring forever.

▶ Should we keep ϵ fixed (over learning)?

▶ ϵ same everywhere?

25 / 37

Notes

We can think about lowering ϵ as the learning progresses.



How to explore?

Random (ϵ-greedy):

▶ Flip a coin every step.

▶ With probability ϵ, act randomly.

▶ With probability 1− ϵ, use the policy.

Problems with randomness?

▶ Keeps exploring forever.

▶ Should we keep ϵ fixed (over learning)?

▶ ϵ same everywhere?

25 / 37

Notes

We can think about lowering ϵ as the learning progresses.



How to explore?

Random (ϵ-greedy):

▶ Flip a coin every step.

▶ With probability ϵ, act randomly.

▶ With probability 1− ϵ, use the policy.

Problems with randomness?

▶ Keeps exploring forever.

▶ Should we keep ϵ fixed (over learning)?

▶ ϵ same everywhere?

25 / 37

Notes

We can think about lowering ϵ as the learning progresses.



How to evaluate the result? When to stop learning?

0

0

1

1

2

2

3

3

4

4

0 0

1 1

2 2

3 3

4 4

-0.04

-0.05

-0.04

-0.04

-0.02

-0.03

0.72

0.00

0.00

0.00

0.00

0.00

0.84

-0.02

-0.02

-0.02

0.44

-0.03

-0.02

-0.02

-0.06

-0.04

-0.04

-0.05

-0.03

-0.04

-0.03

0.21

-0.02

-0.52

-0.02

-0.03

-0.03

-0.05

-0.03

-0.02

-0.03

-0.04

-0.04

0.07

-0.06

-0.05

-0.06

-0.06

-0.05

-0.05

-0.03

-0.04

0.00

0.00

0.00

0.00

-0.52

-0.54

-0.05

-0.05

-0.06

-0.06

-0.06

-0.06

-0.06

-0.07

-0.06

-0.07

-0.07

-0.05

-0.09

-0.05

-0.52

-0.11

-0.10

-0.52

-0.10

-0.09

-0.09

-0.09

-0.10

-0.08

-0.08

-0.08

-0.08

-0.08

-0.07

-0.06

-0.08

-0.08

-0.07

-0.08

-0.10

-0.10

-0.10

-0.11

-0.09

-0.09

-0.09

-0.08

-0.09

-0.09

-0.10

-0.10

\/

\/

\/ \/

/\

< \/

< \/

<

/\

>

/\

<

/\

<

<

>

><

>

<

/\

\/

/\

▶ What is the actual result of q-learning?

▶ How to evaluate it?

▶ When to stop learning?

26 / 37

Notes

• Accurate estimation of q-values in every state, which gives:

1. Estimate of the sum of expected future rewards from every state.
2. Policy – which action to take in every state. Simply a max over q-values.

• Note that the policy can be poorly estimated in areas less visited.

• Evaluating learning progress. Recall (Q-learning, but similar for SARSA):

– sample = Rt+1 + γmax
a

Q(St+1, a)

– α temporal difference update
Q(St ,At)← Q(St ,At) + α(sample− Q(St ,At))

– learning progress / convergence: (sample− Q(St ,At))→ 0

• When to stop learning

– The more learning the better - think about visiting all places/states.
– Never... If you can afford it, keep learning with a small learning rate...
– Note: the learning rate is embedded in two parameters: α and ϵ



Going beyond tables – generalizing across states

0

0

1

1

2

2

3

3

4

4

0 00.960.920.880.84 1.00

27 / 37

Notes

We were talking about v− and q− functions but what was the representation? (look-up) Tables. Looking at
v(s), we need a table for each of the state!
Btw., we always visualize RL on the grid but note that the agent does not know about the topology of the world.
It only knows about q-values! Even in model-based RL: One learns also the transition functions, but these are
still do not give a map of the state space. With stochastic action outcomes, the agent can at most estimate how
the world looks like. This knowledge is, however, irrelevant for the algorithms we study.
This world is small, but think bigger!



Going beyond tables – generalizing across states

0

0

1

1

2

2

3

3

4

4

0 0

1 1

2 2

3 3

4 4

0.88 0.80

0.84 0.72

1.00 0.96

0.92 0.88

0.80

0.92

0.76

0.80

0.96

0.68

0.88

0.84

0.720.76

0.84

0.92

0.76

0.80

0.84

0.88

0.84

28 / 37

Notes

Looking a V (s), we need a table for each of the states! This world is small, but think bigger!



v(s) not as a table but as an approximation function v̂(s,w)

0

0

1

1

2

2

3

3

4

4

0 00.960.920.880.84 1.00

v̂(s,w) = w0 + w1s

What are w0,w1 equal to?
Instead of the complete table, only 2 parameters to learn w = [w0,w1]

⊤

29 / 37

Notes
Note: we can approximate v(s) or q(s, a).
Two key benefits as opposed to keeping the table with v(s) / q(s, a) for every state:

• Space complexity – for large worlds, the table simply won’t fit in memory.

• Generalization.

– Pacman example (UC Berkeley, Lecture 11 Reinforcement Learning II). Running away from
the ghost is what matters, not running away only when pacman is in state (5,7) and ghost is
in position (7,8)...

– Tracked robot – obstacle type not its detailed shape/coordinates determine the action...

What are w0,w1 equal to?, we can start from left, target is the true v(s = 0) = 0.84, next target is v(s = 1) =
0.88, ...

Note about notation. Bold lower case letters are used to denote vectors. Vectors are always considered oriented

column-wise unless explicitly stated otherwise.



Linear value functions

v̂(s,w) = w1f1(s) + w2f2(s) + w3f3(s) + · · ·+ wnfn(s)

q̂(s, a,w) = w1f1(s, a) + w2f2(s, a) + w3f3(s, a) + · · ·+ wnfn(s, a)

30 / 37

Notes
Note: the state description/encoding has to contain useful information about the context.
What could be the f functions for the grid world?

• Coordinates: (x,y)? Probably not.

• Pit is ahead... These kind of things would be useful, but currently not part of the state description...

Obviously, when data are available, we can fit. How to do it on-line?



Směrová a parciálńı derivace (a stolen slide)
Motivace

At’ f : D ✓ R2 ! R p̌rǐrazuje bodům na mapě D nadmǒrskou výšku.

V mapě se vydáme z bodu a rovnoměrně p̌ŕımočǎre rychlost́ı v. Jaká
bude okamžitá změna nadmǒrské výšky v bodě a?

a

v

-3 -2 -1 1 2 3
x

-3

-2

-1

1

2

3

y

Martin Bohata Matematická analýza 2 Směrová a parciálńı derivace 2 / 22

31 / 37

Notes



Learning w by Stochastic Gradient Descent (SGD)

▶ assume v̂(s,w) differentiable in all states

▶ we update w in discrete time steps t

▶ in each step St we observe a new example of (true) vπ(St)

▶ v̂(St ,w) is an approximator → error = vπ(St)− v̂(St ,wt)

wt+1
.
= wt −

1

2
α∇

[
vπ(St)− v̂(St ,wt)

]2
= wt + α

[
vπ(St)− v̂(St ,wt)

]
∇v̂(St ,wt)

∇f (w)
.
=

[
∂f (w)

∂w1
,
∂f (w)

∂w2
, · · · , ∂f (w)

∂wd

]⊤

32 / 37

Notes
Gradient descent - all samples are known, Stochastic GD - update after each sample
α is a kind of damping factor, convergence of SGD requires that α decreases over time.
v̂(s,w) could be quite complex, e.g. a Multi Layer Perceptron (MLP), Deep Network, and w represents the
weights. See, e.g.

• https://skymind.ai/wiki/deep-reinforcement-learning

• Vision for robotics course you may take next term. https://cw.fel.cvut.cz/wiki/courses/b3b33vir/start

https://skymind.ai/wiki/deep-reinforcement-learning
https://cw.fel.cvut.cz/wiki/courses/b3b33vir/start
https://cw.fel.cvut.cz/wiki/courses/b3b33vir/start


Learning w by Stochastic Gradient Descent (SGD)

▶ assume v̂(s,w) differentiable in all states

▶ we update w in discrete time steps t

▶ in each step St we observe a new example of (true) vπ(St)

▶ v̂(St ,w) is an approximator → error = vπ(St)− v̂(St ,wt)

wt+1
.
= wt −

1

2
α∇

[
vπ(St)− v̂(St ,wt)

]2
= wt + α

[
vπ(St)− v̂(St ,wt)

]
∇v̂(St ,wt)

∇f (w)
.
=

[
∂f (w)

∂w1
,
∂f (w)

∂w2
, · · · , ∂f (w)

∂wd

]⊤

32 / 37

Notes
Gradient descent - all samples are known, Stochastic GD - update after each sample
α is a kind of damping factor, convergence of SGD requires that α decreases over time.
v̂(s,w) could be quite complex, e.g. a Multi Layer Perceptron (MLP), Deep Network, and w represents the
weights. See, e.g.

• https://skymind.ai/wiki/deep-reinforcement-learning

• Vision for robotics course you may take next term. https://cw.fel.cvut.cz/wiki/courses/b3b33vir/start

https://skymind.ai/wiki/deep-reinforcement-learning
https://cw.fel.cvut.cz/wiki/courses/b3b33vir/start
https://cw.fel.cvut.cz/wiki/courses/b3b33vir/start


Approximate Q-learning (of a linear combination)

q̂(s, a,w) = w1f1(s, a) + w2f2(s, a) + w3f3(s, a) + · · ·+ wnfn(s, a)

▶ transition = St ,At ,Rt+1,St+1

▶ sample Rt+1 + γmax
a

q̂(St+1, a,wt)

▶ diff =
[
Rt+1 + γmax

a
q̂(St+1, a,wt)

]
− q̂(St ,At ,wt)

▶ Update: w = [w1,w2, · · · ,wd ]
⊤

from previous slide we know that wt+1 = wt + α
[
vπ(St)− v̂(St ,wt)

]
∇v̂(St ,wt)

and q̂(s, a,w) is linear in w

wi ← wi + α [diff ] fi (St ,At)

33 / 37

Notes

• We are minimizing the error at the point where we measure (sample).

• However, we know we only approximate.

• α is a kind of damping factor; convergence of SGD requires that α decreases over time.

How is it possible at all? On-line least squares!

By Krishnavedala - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=15462765

https://commons.wikimedia.org/w/index.php?curid=15462765


How to design the q-function? Overfitting . . .

0

0

1

1

2

2

3

3

4

4

0 00.960.920.880.84 1.00

-2 -1 0 1 2 3 4 5 6
0.6

0.7

0.8

0.9

1

1.1

1.2
original data
exact lin fit
noisy data
approximate lin fit to noisy data
exact fit, polynomial of degree 4

34 / 37

Notes

See the fitdemo.m run, higher degree polynomials perfectly fits, but poorly generalizes outside the range



Going beyond - Dyna-Q integration planning, acting, learning

8.2. DYNA: INTEGRATING PLANNING, ACTING, AND LEARNING 131

Random-sample one-step tabular Q-planning

Loop forever:
1. Select a state, S 2 S, and an action, A 2 A(s), at random
2. Send S, A to a sample model, and obtain

a sample next reward, R, and a sample next state, S0

3. Apply one-step tabular Q-learning to S, A, R, S0:
Q(S, A) Q(S, A) + ↵

⇥
R + � maxa Q(S0, a)�Q(S, A)

⇤

In addition to the unified view of planning and learning methods, a second theme in this chapter
is the benefits of planning in small, incremental steps. This enables planning to be interrupted or
redirected at any time with little wasted computation, which appears to be a key requirement for
e�ciently intermixing planning with acting and with learning of the model. Planning in very small
steps may be the most e�cient approach even on pure planning problems if the problem is too large to
be solved exactly.

8.2 Dyna: Integrating Planning, Acting, and Learning

When planning is done on-line, while interacting with the environment, a number of interesting issues
arise. New information gained from the interaction may change the model and thereby interact with
planning. It may be desirable to customize the planning process in some way to the states or decisions
currently under consideration, or expected in the near future. If decision making and model learning
are both computation-intensive processes, then the available computational resources may need to be
divided between them. To begin exploring these issues, in this section we present Dyna-Q, a simple
architecture integrating the major functions needed in an on-line planning agent. Each function appears
in Dyna-Q in a simple, almost trivial, form. In subsequent sections we elaborate some of the alternate
ways of achieving each function and the trade-o↵s between them. For now, we seek merely to illustrate
the ideas and stimulate your intuition.

Within a planning agent, there are at least two roles for real experience: it can be used to improve the
model (to make it more accurately match the real environment) and it can be used to directly improve
the value function and policy using the kinds of reinforcement learning methods we have discussed in
previous chapters. The former we call model-learning , and the latter we call direct reinforcement learning
(direct RL). The possible relationships between experience, model, values, and policy are summarized
in Figure 8.1. Each arrow shows a relationship of influence and presumed improvement. Note how
experience can improve value functions and policies either directly or indirectly via the model. It is the
latter, which is sometimes called indirect reinforcement learning, that is involved in planning.

planning

value/policy

experiencemodel

model
learning

acting

direct
RL

Figure 8.1: Relationships among learning, planning, and acting.

132 CHAPTER 8. PLANNING AND LEARNING WITH TABULAR METHODS

Both direct and indirect methods have advantages and disadvantages. Indirect methods often make
fuller use of a limited amount of experience and thus achieve a better policy with fewer environmental
interactions. On the other hand, direct methods are much simpler and are not a↵ected by biases in
the design of the model. Some have argued that indirect methods are always superior to direct ones,
while others have argued that direct methods are responsible for most human and animal learning.
Related debates in psychology and artificial intelligence concern the relative importance of cognition as
opposed to trial-and-error learning, and of deliberative planning as opposed to reactive decision making
(see Chapter 14 for discussion of some of these issues from the perspective of psychology). Our view is
that the contrast between the alternatives in all these debates has been exaggerated, that more insight
can be gained by recognizing the similarities between these two sides than by opposing them. For
example, in this book we have emphasized the deep similarities between dynamic programming and
temporal-di↵erence methods, even though one was designed for planning and the other for model-free
learning.

Dyna-Q includes all of the processes shown in Figure 8.1—planning, acting, model-learning, and
direct RL—all occurring continuously. The planning method is the random-sample one-step tabular
Q-planning method given in Figure 8.1. The direct RL method is one-step tabular Q-learning. The
model-learning method is also table-based and assumes the environment is deterministic. After each
transition St, At ! Rt+1, St+1, the model records in its table entry for St, At the prediction that
Rt+1, St+1 will deterministically follow. Thus, if the model is queried with a state–action pair that has
been experienced before, it simply returns the last-observed next state and next reward as its prediction.
During planning, the Q-planning algorithm randomly samples only from state–action pairs that have
previously been experienced (in Step 1), so the model is never queried with a pair about which it has
no information.

The overall architecture of Dyna agents, of which the Dyna-Q algorithm is one example, is shown in
Figure 8.2. The central column represents the basic interaction between agent and environment, giving
rise to a trajectory of real experience. The arrow on the left of the figure represents direct reinforcement
learning operating on real experience to improve the value function and the policy. On the right are
model-based processes. The model is learned from real experience and gives rise to simulated experience.
We use the term search control to refer to the process that selects the starting states and actions for the

real

direct RL

update

Model

planning update

search

control

Policy/value functions

experience

model
learning

Environment

simulated
experience

Figure 8.2: The general Dyna Architecture. Real experience, passing back and forth between the environment
and the policy, a↵ects policy and value functions in much the same way as does simulated experience generated
by the model of the environment.

2

2Schemes from [3]
35 / 37

Notes



References I

Further reading: Chapter 21 of [1] (chapter 23 of [2]). More detailed discussion in [3]
Chapters 6 and 9. You can read about strategies for exploratory moves at various places,
Tensor Flow related3. More RL URLs at the course pages4.

[1] Stuart Russell and Peter Norvig.
Artificial Intelligence: A Modern Approach.
Prentice Hall, 3rd edition, 2010.
http://aima.cs.berkeley.edu/.

[2] Stuart Russell and Peter Norvig.
Artificial Intelligence: A Modern Approach.
Prentice Hall, 4th edition, 2021.

36 / 37

Notes

https://medium.com/emergent-future/simple-reinforcement-learning-with-tensorflow-part-7-action-selection-strategies-for-exploration-d3a97b7cceaf
https://cw.fel.cvut.cz/wiki/courses/b3b33kui/cviceni/program_po_tydnech/tyden_09#reinforcement_learning_plus
http://aima.cs.berkeley.edu/


References II

[3] Richard S. Sutton and Andrew G. Barto.
Reinforcement Learning; an Introduction.
MIT Press, 2nd edition, 2018.
http://www.incompleteideas.net/book/the-book-2nd.html.

3https://medium.com/emergent-future/
simple-reinforcement-learning-with-tensorflow-part-7-action-selection-strategies-for-exploration-d3a97b7cceaf

4https:
//cw.fel.cvut.cz/wiki/courses/b3b33kui/cviceni/program po tydnech/tyden 09#reinforcement learning plus

37 / 37

Notes

http://www.incompleteideas.net/book/the-book-2nd.html
https://medium.com/emergent-future/simple-reinforcement-learning-with-tensorflow-part-7-action-selection-strategies-for-exploration-d3a97b7cceaf
https://medium.com/emergent-future/simple-reinforcement-learning-with-tensorflow-part-7-action-selection-strategies-for-exploration-d3a97b7cceaf
https://cw.fel.cvut.cz/wiki/courses/b3b33kui/cviceni/program_po_tydnech/tyden_09#reinforcement_learning_plus
https://cw.fel.cvut.cz/wiki/courses/b3b33kui/cviceni/program_po_tydnech/tyden_09#reinforcement_learning_plus

	Introduction
	Model-based learning
	Model-free learning
	Active reinforcement learning
	Exploration vs. Exploitation

	References

