
Reinforcement learning II
Active learning

Tomáš Svoboda

Vision for Robots and Autonomous Systems, Center for Machine Perception
Department of Cybernetics

Faculty of Electrical Engineering, Czech Technical University in Prague

April 11, 2025

1 / 37

http://cyber.felk.cvut.cz/vras
http://cmp.felk.cvut.cz
http://cyber.felk.cvut.cz
http://fel.cvut.cz
http://cvut.cz


Recap: Reinforcement Learning

1

▶ Feedback in form of Rewards

▶ Learn to act so as to maximize sum of expected rewards.

▶ In kuimaze package, env.step(action) is the method.

1Scheme from [3]
2 / 37



Learning to control flippers

http://cyber.felk.cvut.cz/vras/

▶ What are the states?

▶ How to design rewards?

▶ How to perform training episodes
(roll-outs)?

▶ Simulator to reality gap.

3 / 37

http://cyber.felk.cvut.cz/vras/


4 / 37



5 / 37



6 / 37



7 / 37



From off-line (MDPs) to on-line (RL)

Markov decision process – MDPs. Off-line search, we know:

▶ A set of states s ∈ S (map)

▶ A set of actions per state, a ∈ A(s)
▶ A transition model p(s ′|s, a) (robot)
▶ A reward function r(s, a, s ′) (map, robot)

Looking for the optimal policy π(s). We can plan/search before the robot enters the
environment.

On-line problem:
▶ Transition p and reward r functions not known.

▶ Agent/robot must act and learn from experience.

8 / 37



(Transition) Model-based learning

The main idea: Do something and:

▶ Learn an approximate model from experiences.

▶ Solve as if the model were correct.

Learning MDP model:

▶ Try s, a, observe s ′, count s, a, s ′.

▶ Normalize to get and estimate of p(s ′|s, a)
▶ Discover each r(s, a, s ′) when experienced.

Solve the learned MDP.

9 / 37



Model-free learning

▶ r , p not known.

▶ Move around, observe.

▶ And learn on the way.

▶ Goal: Learn the state value v(s), or (better),
q-value q(s, a) functions.

Image from [1]

10 / 37



Recap: V− learning

Learn V (s) values as the robot/agent goes (temporal difference).

▶ time t, at St
▶ select and take At ∈ A(St), observe Rt+1, St+1

▶ compute sample estimate at time t
sample = Rt+1 + γV (St+1)

▶ α temporal difference update
V (St)← V (St) + α(sample− V (St))

▶ St ← St+1 and repeat (unless St is terminal)

St

St ,At

St+1

At

Rt+1

V (St)V (St)← · · ·

V (St+1)

11 / 37



Recap: V− learning

Learn V (s) values as the robot/agent goes (temporal difference).

▶ time t, at St
▶ select and take At ∈ A(St), observe Rt+1, St+1

▶ compute sample estimate at time t
sample = Rt+1 + γV (St+1)

▶ α temporal difference update
V (St)← V (St) + α(sample− V (St))

▶ St ← St+1 and repeat (unless St is terminal)

St

St ,At

St+1

At

Rt+1

V (St)V (St)← · · ·

V (St+1)

11 / 37



Recap: V− learning

Learn V (s) values as the robot/agent goes (temporal difference).

▶ time t, at St
▶ select and take At ∈ A(St), observe Rt+1, St+1

▶ compute sample estimate at time t
sample = Rt+1 + γV (St+1)

▶ α temporal difference update
V (St)← V (St) + α(sample− V (St))

▶ St ← St+1 and repeat (unless St is terminal)

St

St ,At

St+1

At

Rt+1

V (St)V (St)← · · ·

V (St+1)

11 / 37



Recap: V− learning

Learn V (s) values as the robot/agent goes (temporal difference).

▶ time t, at St
▶ select and take At ∈ A(St), observe Rt+1, St+1

▶ compute sample estimate at time t
sample = Rt+1 + γV (St+1)

▶ α temporal difference update
V (St)← V (St) + α(sample− V (St))

▶ St ← St+1 and repeat (unless St is terminal)

St

St ,At

St+1

At

Rt+1

V (St)V (St)← · · ·

V (St+1)

11 / 37



Recap: V− learning

Learn V (s) values as the robot/agent goes (temporal difference).

▶ time t, at St
▶ select and take At ∈ A(St), observe Rt+1, St+1

▶ compute sample estimate at time t
sample = Rt+1 + γV (St+1)

▶ α temporal difference update
V (St)← V (St) + α(sample− V (St))

▶ St ← St+1 and repeat (unless St is terminal)

St

St ,At

St+1

At

Rt+1

V (St)V (St)← · · ·

V (St+1)

11 / 37



Recap: V− values, converged . . .

γ = 1, rewards −1,+10,−10, and deterministic robot

V (St) = Rt+1 + V (St+1)

12 / 37



What is wrong with the temporal difference Value learning?

The Good: Model-free value learning by mimicking Bellman updates.
The Bad: How to turn values into a (new) policy?

▶ π(s) = argmax
a

∑
s′ p(s

′ | s, a) [r(s, a, s ′) + γV (s ′)]

▶ π(s) = argmax
a

Q(s, a)

13 / 37



What is wrong with the temporal difference Value learning?

The Good: Model-free value learning by mimicking Bellman updates.
The Bad: How to turn values into a (new) policy?

▶ π(s) = argmax
a

∑
s′ p(s

′ | s, a) [r(s, a, s ′) + γV (s ′)]

▶ π(s) = argmax
a

Q(s, a)

13 / 37



What is wrong with the temporal difference Value learning?

The Good: Model-free value learning by mimicking Bellman updates.
The Bad: How to turn values into a (new) policy?

▶ π(s) = argmax
a

∑
s′ p(s

′ | s, a) [r(s, a, s ′) + γV (s ′)]

▶ π(s) = argmax
a

Q(s, a)

13 / 37



Model-free TD learning, updating after each transition

▶ Observe, experience environment through learning episodes,
collecting:

St ,At ,Rt+1,St+1,At+1,Rt+2, . . .

▶ Update by mimicking Bellman updates after each transition
(St ,At ,Rt+1,St+1)

14 / 37



Recap: Bellman optimality equations for v(s) and q(s, a)

v(s) = max
a

∑
s′

p(s ′|s, a)
[
r(s, a, s ′) + γ v(s ′)

]
= max

a
q(s, a)

The value of a q-state (s, a):

q(s, a) =
∑
s′

p(s ′|s, a)
[
r(s, a, s ′) + γ v(s ′)

]
=

∑
s′

p(s ′|s, a)
[
r(s, a, s ′) + γmax

a′
q(s ′, a′)

]

s

s, a

s ′

s ′, a′

a

p(s ′|s, a)

q-stateq(s, a)

v(s ′)

q(s ′, a′)

v(s)

15 / 37



Q-learning (off-policy TD control)

Learn policy (Q-values) as the robot/agent goes (temporal difference). If some Q quantity not
known, initialize.

▶ time t, at St
▶ select and take At ∈ A(St), observe Rt+1, St+1

▶ compute sample estimate at time t
sample = Rt+1 + γmax

a
Q(St+1, a)

▶ α temporal difference update
Q(St ,At)← Q(St ,At) + α(sample− Q(St ,At))

▶ St ← St+1 and repeat (unless St is terminal)

In each step Q directly approximates the optimal q∗ func-
tion (learns optimal policy).

St

St ,At

St+1

St+1, a

At

Rt+1

Q(St ,At)Q(St ,At)← · · ·

Q(St+1, a)

16 / 37



Q-learning (off-policy TD control)

Learn policy (Q-values) as the robot/agent goes (temporal difference). If some Q quantity not
known, initialize.

▶ time t, at St
▶ select and take At ∈ A(St), observe Rt+1, St+1

▶ compute sample estimate at time t
sample = Rt+1 + γmax

a
Q(St+1, a)

▶ α temporal difference update
Q(St ,At)← Q(St ,At) + α(sample− Q(St ,At))

▶ St ← St+1 and repeat (unless St is terminal)

In each step Q directly approximates the optimal q∗ func-
tion (learns optimal policy).

St

St ,At

St+1

St+1, a

At

Rt+1

Q(St ,At)Q(St ,At)← · · ·

Q(St+1, a)

16 / 37



Q-learning (off-policy TD control)

Learn policy (Q-values) as the robot/agent goes (temporal difference). If some Q quantity not
known, initialize.

▶ time t, at St
▶ select and take At ∈ A(St), observe Rt+1, St+1

▶ compute sample estimate at time t
sample = Rt+1 + γmax

a
Q(St+1, a)

▶ α temporal difference update
Q(St ,At)← Q(St ,At) + α(sample− Q(St ,At))

▶ St ← St+1 and repeat (unless St is terminal)

In each step Q directly approximates the optimal q∗ func-
tion (learns optimal policy).

St

St ,At

St+1

St+1, a

At

Rt+1

Q(St ,At)Q(St ,At)← · · ·

Q(St+1, a)

16 / 37



Q-learning (off-policy TD control)

Learn policy (Q-values) as the robot/agent goes (temporal difference). If some Q quantity not
known, initialize.

▶ time t, at St
▶ select and take At ∈ A(St), observe Rt+1, St+1

▶ compute sample estimate at time t
sample = Rt+1 + γmax

a
Q(St+1, a)

▶ α temporal difference update
Q(St ,At)← Q(St ,At) + α(sample− Q(St ,At))

▶ St ← St+1 and repeat (unless St is terminal)

In each step Q directly approximates the optimal q∗ func-
tion (learns optimal policy).

St

St ,At

St+1

St+1, a

At

Rt+1

Q(St ,At)Q(St ,At)← · · ·

Q(St+1, a)

16 / 37



Q-learning (off-policy TD control)

Learn policy (Q-values) as the robot/agent goes (temporal difference). If some Q quantity not
known, initialize.

▶ time t, at St
▶ select and take At ∈ A(St), observe Rt+1, St+1

▶ compute sample estimate at time t
sample = Rt+1 + γmax

a
Q(St+1, a)

▶ α temporal difference update
Q(St ,At)← Q(St ,At) + α(sample− Q(St ,At))

▶ St ← St+1 and repeat (unless St is terminal)

In each step Q directly approximates the optimal q∗ func-
tion (learns optimal policy).

St

St ,At

St+1

St+1, a

At

Rt+1

Q(St ,At)Q(St ,At)← · · ·

Q(St+1, a)

16 / 37



Q-learning (off-policy TD control)

Learn policy (Q-values) as the robot/agent goes (temporal difference). If some Q quantity not
known, initialize.

▶ time t, at St
▶ select and take At ∈ A(St), observe Rt+1, St+1

▶ compute sample estimate at time t
sample = Rt+1 + γmax

a
Q(St+1, a)

▶ α temporal difference update
Q(St ,At)← Q(St ,At) + α(sample− Q(St ,At))

▶ St ← St+1 and repeat (unless St is terminal)

In each step Q directly approximates the optimal q∗ func-
tion (learns optimal policy).

St

St ,At

St+1

St+1, a

At

Rt+1

Q(St ,At)Q(St ,At)← · · ·

Q(St+1, a)

16 / 37



Recap: V− and Q− values, converged . . .
γ = 1, rewards −1,+10,−10, and deterministic robot

V (St) = Rt+1 + V (St+1)

Q(St ,At) = Rt+1 +max
a

Q(St+1, a)

17 / 37



Sarsa (on-policy TD control)
Learn Q values as the robot/agent goes (temporal difference). If some Q quantity not known,
initialize.

▶ time t, at St , select At ∈ A(St)
▶ take At , observe Rt+1, St+1

▶ select At+1 ∈ A(St+1)

▶ which gives sample estimate
sample = Rt+1 + γ Q(St+1,At+1)

▶ α temporal difference update
Q(St ,At)← Q(St ,At) + α(sample− Q(St ,At))

▶ St ← St+1, At ← At+1 and repeat (unless St is
terminal)

In each step learns Q.

St

St ,At

St+1

St+1,At+1

At

p(s ′|s, a)

At+1

Q(St ,At)

Q(St+1, At+1) 18 / 37



Sarsa (on-policy TD control)
Learn Q values as the robot/agent goes (temporal difference). If some Q quantity not known,
initialize.

▶ time t, at St , select At ∈ A(St)
▶ take At , observe Rt+1, St+1

▶ select At+1 ∈ A(St+1)

▶ which gives sample estimate
sample = Rt+1 + γ Q(St+1,At+1)

▶ α temporal difference update
Q(St ,At)← Q(St ,At) + α(sample− Q(St ,At))

▶ St ← St+1, At ← At+1 and repeat (unless St is
terminal)

In each step learns Q.

St

St ,At

St+1

St+1,At+1

At

p(s ′|s, a)

At+1

Q(St ,At)

Q(St+1, At+1) 18 / 37



Sarsa (on-policy TD control)
Learn Q values as the robot/agent goes (temporal difference). If some Q quantity not known,
initialize.

▶ time t, at St , select At ∈ A(St)
▶ take At , observe Rt+1, St+1

▶ select At+1 ∈ A(St+1)

▶ which gives sample estimate
sample = Rt+1 + γ Q(St+1,At+1)

▶ α temporal difference update
Q(St ,At)← Q(St ,At) + α(sample− Q(St ,At))

▶ St ← St+1, At ← At+1 and repeat (unless St is
terminal)

In each step learns Q.

St

St ,At

St+1

St+1,At+1

At

p(s ′|s, a)

At+1

Q(St ,At)

Q(St+1, At+1) 18 / 37



Sarsa (on-policy TD control)
Learn Q values as the robot/agent goes (temporal difference). If some Q quantity not known,
initialize.

▶ time t, at St , select At ∈ A(St)
▶ take At , observe Rt+1, St+1

▶ select At+1 ∈ A(St+1)

▶ which gives sample estimate
sample = Rt+1 + γ Q(St+1,At+1)

▶ α temporal difference update
Q(St ,At)← Q(St ,At) + α(sample− Q(St ,At))

▶ St ← St+1, At ← At+1 and repeat (unless St is
terminal)

In each step learns Q.

St

St ,At

St+1

St+1,At+1

At

p(s ′|s, a)

At+1

Q(St ,At)

Q(St+1, At+1) 18 / 37



Q-learning: algorithm

step size 0 < α ≤ 1
initialize Q(s, a) for all s ∈ S, a ∈ A(s)
repeat episodes:

initialize S
for each step of episode: do

choose A from A(S)
take action A, observe R, S ′

Q(S ,A)← Q(S ,A) + α
[
R + γmaxa Q(S ′, a)− Q(S ,A)

]
S ← S ′

until S is terminal
until Time is up, . . .

19 / 37



Sarsa: algorithm

step size 0 < α ≤ 1
initialize Q(s, a) for all s ∈ S, a ∈ A(s)
repeat episodes:

initialize S
choose A from A(S)
for each step of episode: do

take action A, observe R, S ′

choose A′ from A(S ′)
Q(S ,A)← Q(S ,A) + α

[
R + γQ(S ′,A′)− Q(S ,A)

]
S ← S ′, A← A′

until S is terminal
until Time is up, . . .

20 / 37



How to select At in St? What policy?

▶ time t, at St
▶ take At ∈ A(St) , observe Rt+1,St+1

▶ compute sample estimate at time t
sample = Rt+1 + γmax

a
Q(St+1, a)

▶ α temporal difference update
Q(St ,At)← Q(St ,At) + α(sample− Q(St ,At))

▶ St ← St+1 and repeat (unless St is terminal)

21 / 37



How to select At in St? What policy?

▶ time t, at St
▶ take At derived from Q , observe Rt+1, St+1

▶ compute sample estimate at time t
sample = Rt+1 + γmax

a
Q(St+1, a)

▶ α temporal difference update
Q(St ,At)← Q(St ,At) + α(sample− Q(St ,At))

▶ St ← St+1 and repeat (unless St is terminal)

21 / 37



. . .At derived from Q

What about keeping optimality, taking max?

At = argmaxaQ(St , a)

see the demo run of rl agents.py.

22 / 37



Two good goal states

0

0

1

1

2

2

3

3

0 0

1 1

2 2

-0.50

-0.50

0.00

0.00

-0.50

0.00

0.00

0.00

-0.50

0.00

0.00

0.00

-0.50

-0.50

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

-0.50

9.50

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

23 / 37



Exploration vs Exploitation

▶ Drive the known road or try a new one?

▶ Go to the university menza or try a nearby restaurant?

▶ Use the SW (operating system) I know or try new one?

▶ Go to bussiness or study a demanding program?

▶ . . .

24 / 37



How to explore?

Random (ϵ-greedy):

▶ Flip a coin every step.

▶ With probability ϵ, act randomly.

▶ With probability 1− ϵ, use the policy.

Problems with randomness?

▶ Keeps exploring forever.

▶ Should we keep ϵ fixed (over learning)?

▶ ϵ same everywhere?

25 / 37



How to explore?

Random (ϵ-greedy):

▶ Flip a coin every step.

▶ With probability ϵ, act randomly.

▶ With probability 1− ϵ, use the policy.

Problems with randomness?

▶ Keeps exploring forever.

▶ Should we keep ϵ fixed (over learning)?

▶ ϵ same everywhere?

25 / 37



How to explore?

Random (ϵ-greedy):

▶ Flip a coin every step.

▶ With probability ϵ, act randomly.

▶ With probability 1− ϵ, use the policy.

Problems with randomness?

▶ Keeps exploring forever.

▶ Should we keep ϵ fixed (over learning)?

▶ ϵ same everywhere?

25 / 37



How to evaluate the result? When to stop learning?

0

0

1

1

2

2

3

3

4

4

0 0

1 1

2 2

3 3

4 4

-0.04

-0.05

-0.04

-0.04

-0.02

-0.03

0.72

0.00

0.00

0.00

0.00

0.00

0.84

-0.02

-0.02

-0.02

0.44

-0.03

-0.02

-0.02

-0.06

-0.04

-0.04

-0.05

-0.03

-0.04

-0.03

0.21

-0.02

-0.52

-0.02

-0.03

-0.03

-0.05

-0.03

-0.02

-0.03

-0.04

-0.04

0.07

-0.06

-0.05

-0.06

-0.06

-0.05

-0.05

-0.03

-0.04

0.00

0.00

0.00

0.00

-0.52

-0.54

-0.05

-0.05

-0.06

-0.06

-0.06

-0.06

-0.06

-0.07

-0.06

-0.07

-0.07

-0.05

-0.09

-0.05

-0.52

-0.11

-0.10

-0.52

-0.10

-0.09

-0.09

-0.09

-0.10

-0.08

-0.08

-0.08

-0.08

-0.08

-0.07

-0.06

-0.08

-0.08

-0.07

-0.08

-0.10

-0.10

-0.10

-0.11

-0.09

-0.09

-0.09

-0.08

-0.09

-0.09

-0.10

-0.10

\/

\/

\/ \/

/\

< \/

< \/

<

/\

>

/\

<

/\

<

<

>

><

>

<

/\

\/

/\

▶ What is the actual result of q-learning?

▶ How to evaluate it?

▶ When to stop learning?

26 / 37



Going beyond tables – generalizing across states

0

0

1

1

2

2

3

3

4

4

0 00.960.920.880.84 1.00

27 / 37



Going beyond tables – generalizing across states

0

0

1

1

2

2

3

3

4

4

0 0

1 1

2 2

3 3

4 4

0.88 0.80

0.84 0.72

1.00 0.96

0.92 0.88

0.80

0.92

0.76

0.80

0.96

0.68

0.88

0.84

0.720.76

0.84

0.92

0.76

0.80

0.84

0.88

0.84

28 / 37



v(s) not as a table but as an approximation function v̂(s,w)

0

0

1

1

2

2

3

3

4

4

0 00.960.920.880.84 1.00

v̂(s,w) = w0 + w1s

What are w0,w1 equal to?
Instead of the complete table, only 2 parameters to learn w = [w0,w1]

⊤

29 / 37



Linear value functions

v̂(s,w) = w1f1(s) + w2f2(s) + w3f3(s) + · · ·+ wnfn(s)

q̂(s, a,w) = w1f1(s, a) + w2f2(s, a) + w3f3(s, a) + · · ·+ wnfn(s, a)

30 / 37



Směrová a parciálńı derivace (a stolen slide)
Motivace

At’ f : D ✓ R2 ! R p̌rǐrazuje bodům na mapě D nadmǒrskou výšku.

V mapě se vydáme z bodu a rovnoměrně p̌ŕımočǎre rychlost́ı v. Jaká
bude okamžitá změna nadmǒrské výšky v bodě a?

a

v

-3 -2 -1 1 2 3
x

-3

-2

-1

1

2

3

y

Martin Bohata Matematická analýza 2 Směrová a parciálńı derivace 2 / 22

31 / 37



Learning w by Stochastic Gradient Descent (SGD)

▶ assume v̂(s,w) differentiable in all states

▶ we update w in discrete time steps t

▶ in each step St we observe a new example of (true) vπ(St)

▶ v̂(St ,w) is an approximator → error = vπ(St)− v̂(St ,wt)

wt+1
.
= wt −

1

2
α∇

[
vπ(St)− v̂(St ,wt)

]2
= wt + α

[
vπ(St)− v̂(St ,wt)

]
∇v̂(St ,wt)

∇f (w)
.
=

[
∂f (w)

∂w1
,
∂f (w)

∂w2
, · · · , ∂f (w)

∂wd

]⊤

32 / 37



Learning w by Stochastic Gradient Descent (SGD)

▶ assume v̂(s,w) differentiable in all states

▶ we update w in discrete time steps t

▶ in each step St we observe a new example of (true) vπ(St)

▶ v̂(St ,w) is an approximator → error = vπ(St)− v̂(St ,wt)

wt+1
.
= wt −

1

2
α∇

[
vπ(St)− v̂(St ,wt)

]2
= wt + α

[
vπ(St)− v̂(St ,wt)

]
∇v̂(St ,wt)

∇f (w)
.
=

[
∂f (w)

∂w1
,
∂f (w)

∂w2
, · · · , ∂f (w)

∂wd

]⊤

32 / 37



Approximate Q-learning (of a linear combination)

q̂(s, a,w) = w1f1(s, a) + w2f2(s, a) + w3f3(s, a) + · · ·+ wnfn(s, a)

▶ transition = St ,At ,Rt+1,St+1

▶ sample Rt+1 + γmax
a

q̂(St+1, a,wt)

▶ diff =
[
Rt+1 + γmax

a
q̂(St+1, a,wt)

]
− q̂(St ,At ,wt)

▶ Update: w = [w1,w2, · · · ,wd ]
⊤

from previous slide we know that wt+1 = wt + α
[
vπ(St)− v̂(St ,wt)

]
∇v̂(St ,wt)

and q̂(s, a,w) is linear in w

wi ← wi + α [diff ] fi (St ,At)

33 / 37



How to design the q-function? Overfitting . . .

0

0

1

1

2

2

3

3

4

4

0 00.960.920.880.84 1.00

-2 -1 0 1 2 3 4 5 6
0.6

0.7

0.8

0.9

1

1.1

1.2
original data
exact lin fit
noisy data
approximate lin fit to noisy data
exact fit, polynomial of degree 4

34 / 37



Going beyond - Dyna-Q integration planning, acting, learning

8.2. DYNA: INTEGRATING PLANNING, ACTING, AND LEARNING 131

Random-sample one-step tabular Q-planning

Loop forever:
1. Select a state, S 2 S, and an action, A 2 A(s), at random
2. Send S, A to a sample model, and obtain

a sample next reward, R, and a sample next state, S0

3. Apply one-step tabular Q-learning to S, A, R, S0:
Q(S, A) Q(S, A) + ↵

⇥
R + � maxa Q(S0, a)�Q(S, A)

⇤

In addition to the unified view of planning and learning methods, a second theme in this chapter
is the benefits of planning in small, incremental steps. This enables planning to be interrupted or
redirected at any time with little wasted computation, which appears to be a key requirement for
e�ciently intermixing planning with acting and with learning of the model. Planning in very small
steps may be the most e�cient approach even on pure planning problems if the problem is too large to
be solved exactly.

8.2 Dyna: Integrating Planning, Acting, and Learning

When planning is done on-line, while interacting with the environment, a number of interesting issues
arise. New information gained from the interaction may change the model and thereby interact with
planning. It may be desirable to customize the planning process in some way to the states or decisions
currently under consideration, or expected in the near future. If decision making and model learning
are both computation-intensive processes, then the available computational resources may need to be
divided between them. To begin exploring these issues, in this section we present Dyna-Q, a simple
architecture integrating the major functions needed in an on-line planning agent. Each function appears
in Dyna-Q in a simple, almost trivial, form. In subsequent sections we elaborate some of the alternate
ways of achieving each function and the trade-o↵s between them. For now, we seek merely to illustrate
the ideas and stimulate your intuition.

Within a planning agent, there are at least two roles for real experience: it can be used to improve the
model (to make it more accurately match the real environment) and it can be used to directly improve
the value function and policy using the kinds of reinforcement learning methods we have discussed in
previous chapters. The former we call model-learning , and the latter we call direct reinforcement learning
(direct RL). The possible relationships between experience, model, values, and policy are summarized
in Figure 8.1. Each arrow shows a relationship of influence and presumed improvement. Note how
experience can improve value functions and policies either directly or indirectly via the model. It is the
latter, which is sometimes called indirect reinforcement learning, that is involved in planning.

planning

value/policy

experiencemodel

model
learning

acting

direct
RL

Figure 8.1: Relationships among learning, planning, and acting.

132 CHAPTER 8. PLANNING AND LEARNING WITH TABULAR METHODS

Both direct and indirect methods have advantages and disadvantages. Indirect methods often make
fuller use of a limited amount of experience and thus achieve a better policy with fewer environmental
interactions. On the other hand, direct methods are much simpler and are not a↵ected by biases in
the design of the model. Some have argued that indirect methods are always superior to direct ones,
while others have argued that direct methods are responsible for most human and animal learning.
Related debates in psychology and artificial intelligence concern the relative importance of cognition as
opposed to trial-and-error learning, and of deliberative planning as opposed to reactive decision making
(see Chapter 14 for discussion of some of these issues from the perspective of psychology). Our view is
that the contrast between the alternatives in all these debates has been exaggerated, that more insight
can be gained by recognizing the similarities between these two sides than by opposing them. For
example, in this book we have emphasized the deep similarities between dynamic programming and
temporal-di↵erence methods, even though one was designed for planning and the other for model-free
learning.

Dyna-Q includes all of the processes shown in Figure 8.1—planning, acting, model-learning, and
direct RL—all occurring continuously. The planning method is the random-sample one-step tabular
Q-planning method given in Figure 8.1. The direct RL method is one-step tabular Q-learning. The
model-learning method is also table-based and assumes the environment is deterministic. After each
transition St, At ! Rt+1, St+1, the model records in its table entry for St, At the prediction that
Rt+1, St+1 will deterministically follow. Thus, if the model is queried with a state–action pair that has
been experienced before, it simply returns the last-observed next state and next reward as its prediction.
During planning, the Q-planning algorithm randomly samples only from state–action pairs that have
previously been experienced (in Step 1), so the model is never queried with a pair about which it has
no information.

The overall architecture of Dyna agents, of which the Dyna-Q algorithm is one example, is shown in
Figure 8.2. The central column represents the basic interaction between agent and environment, giving
rise to a trajectory of real experience. The arrow on the left of the figure represents direct reinforcement
learning operating on real experience to improve the value function and the policy. On the right are
model-based processes. The model is learned from real experience and gives rise to simulated experience.
We use the term search control to refer to the process that selects the starting states and actions for the

real

direct RL

update

Model

planning update

search

control

Policy/value functions

experience

model
learning

Environment

simulated
experience

Figure 8.2: The general Dyna Architecture. Real experience, passing back and forth between the environment
and the policy, a↵ects policy and value functions in much the same way as does simulated experience generated
by the model of the environment.

2

2Schemes from [3]
35 / 37



References I

Further reading: Chapter 21 of [1] (chapter 23 of [2]). More detailed discussion in [3]
Chapters 6 and 9. You can read about strategies for exploratory moves at various places,
Tensor Flow related3. More RL URLs at the course pages4.

[1] Stuart Russell and Peter Norvig.
Artificial Intelligence: A Modern Approach.
Prentice Hall, 3rd edition, 2010.
http://aima.cs.berkeley.edu/.

[2] Stuart Russell and Peter Norvig.
Artificial Intelligence: A Modern Approach.
Prentice Hall, 4th edition, 2021.

36 / 37

https://medium.com/emergent-future/simple-reinforcement-learning-with-tensorflow-part-7-action-selection-strategies-for-exploration-d3a97b7cceaf
https://cw.fel.cvut.cz/wiki/courses/b3b33kui/cviceni/program_po_tydnech/tyden_09#reinforcement_learning_plus
http://aima.cs.berkeley.edu/


References II

[3] Richard S. Sutton and Andrew G. Barto.
Reinforcement Learning; an Introduction.
MIT Press, 2nd edition, 2018.
http://www.incompleteideas.net/book/the-book-2nd.html.

3https://medium.com/emergent-future/
simple-reinforcement-learning-with-tensorflow-part-7-action-selection-strategies-for-exploration-d3a97b7cceaf

4https:
//cw.fel.cvut.cz/wiki/courses/b3b33kui/cviceni/program po tydnech/tyden 09#reinforcement learning plus

37 / 37

http://www.incompleteideas.net/book/the-book-2nd.html
https://medium.com/emergent-future/simple-reinforcement-learning-with-tensorflow-part-7-action-selection-strategies-for-exploration-d3a97b7cceaf
https://medium.com/emergent-future/simple-reinforcement-learning-with-tensorflow-part-7-action-selection-strategies-for-exploration-d3a97b7cceaf
https://cw.fel.cvut.cz/wiki/courses/b3b33kui/cviceni/program_po_tydnech/tyden_09#reinforcement_learning_plus
https://cw.fel.cvut.cz/wiki/courses/b3b33kui/cviceni/program_po_tydnech/tyden_09#reinforcement_learning_plus

	Introduction
	Model-based learning
	Model-free learning
	Active reinforcement learning
	Exploration vs. Exploitation

	References

