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(Multi-armed) Bandits

Think about not one but 10 arms you may choose to pull.
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(Multi-armed) Bandits

Think about not one but 10 arms you may choose to pull.

p(s'|s,a) and r(s, a,s’) not known!
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10 armed bandit, what arm to pull?
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See chapters 2.2 and 2.3 in [4] for more detailed discussion
Notes
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10 different arms

action pulling k—th arm

e value of the action, i.e. g(a) is stochastic (Gaussian around ¢*(a)) and uknown!

Think about expectimax tree. How would it look like?

Playing (pulling) many times, what is the policy? Think also that each sample costs something.



Goal-directed system
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Figure from http://www.cybsoc.org/gcyb.htm
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Reinforcement Learning - performing actions, learning from rewards

state

» Feedback in form of Rewards

Agent

reward
R,
< Rz+l (
¢St+l
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Environment

P> Learn to act so as to maximize expected rewards.

2Scheme from [4]
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Examples, robot learning, Atari games, ...

Autonomous Flipper Control with Safety Constraints

Martin Pecka, Vojtéch Salansky,
Karel Zimmermann, Tomas Svoboda

experiments utilizing
Constrained Relative Entropy Policy Search

Video: Learning safe policies®

3M. Pecka, V. Salansky, K. Zimmermann, T. Svoboda. Autonomous flipper control with safety constraints.

In Intelligent Robots and Systems (IROS), 2016, https://youtu.be/_oUMbBtoRcs
7/39

Notes
Policy search is a more advanced topic, only touched by this course. Later in master programme.
Reinforement learning beating humans in playing Atari games: https://deepmind.google/discover/blog/

agent57-outperforming-the-human-atari-benchmark/


https://deepmind.google/discover/blog/agent57-outperforming-the-human-atari-benchmark/
file:///Users/svoboda/svoboda-git-clones/kui-felgit/kui-lectures/08_rl/figures/iros-video.mp4
https://youtu.be/_oUMbBtoRcs
https://deepmind.google/discover/blog/agent57-outperforming-the-human-atari-benchmark/
https://deepmind.google/discover/blog/agent57-outperforming-the-human-atari-benchmark/

From off-line (MDPs) to on-line (RL)

Markov decision process — MDPs. Off-line search, we know:
> A set of states s € S (map)
P> A set of actions per state. a € A

)
(
Looking for the optimal policy m(s). We can plan/search before the robot enters the
environment.

/

» A transition model T (s, a,s’) or p(s'|s,a) (robot)

> A reward function r(s, a,s’) (map, robot)

8/39
Notes
For MDPs, we know p, r for all possible states and actions.




From off-line (MDPs) to on-line (RL)

Markov decision process — MDPs. Off-line search, we know:
> A set of states s € S (map)
P> A set of actions per state. a € A

)
(
Looking for the optimal policy m(s). We can plan/search before the robot enters the
environment.

/

» A transition model T (s, a,s’) or p(s'|s,a) (robot)

> A reward function r(s, a,s’) (map, robot)

On-line problem:
» Transition model p and reward function r not known.

» Agent/robot must act and learn from experience.
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Notes
For MDPs, we know p, r for all possible states and actions.




(Transition) Model-based learning

The main idea: Do something, and:
» Learn an approximate model from experiences.

» Solve as if the model was correct.

9/39
Notes

Where to start?
When does it end?

e How long does it take?

When to stop (the learning phase)?



(Transition) Model-based learning

The main idea: Do something, and:
» Learn an approximate model from experiences.
» Solve as if the model was correct.
Learning MDP model:
» In s try a, observe s, count (s, a,s’).
» Normalize to get and estimate of p(s’ | s, a).

» Discover (by observation) each r(s, a, s’) when experienced.
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(Transition) Model-based learning

The main idea: Do something, and:

» Learn an approximate model from experiences.

» Solve as if the model was correct.
Learning MDP model:

» In s try a, observe s, count (s, a,s’).

» Normalize to get and estimate of p(s’ | s, a).

» Discover (by observation) each r(s, a, s’) when experienced.
Solve the learned MDP.

9/39
Notes

Where to start?
When does it end?

e How long does it take?

When to stop (the learning phase)?



Reward function r(s, a, s)

» r(s,a,s’) - reward for taking a in s and landing in s’.

» In Grid world, we assumed r(s, a,s’) to be the same

everywhere.

» In the real world, it is different (going up, down, ...

state reward

S, R,
R
_S.. | Environment |[e————

In ai-gym env.step(action) returns s’, r(s,action,s’).

action
A

10/39

Notes

In ai-gym env.step(action) returns s, r(s,action,s’), .... It is defined by the environment (robot simulator,

system, ...) not by the (algorithms)



Model-based learning: Grid example
Observed Episodes (Training)

Input Policy &t

Episode 1

Episode 2

B, east, C, -1
C,east, D, -1
D, exit, x, +10

B, east, C, -1
C,east, D, -1
D, exit, x, +10

Assume:y=1

Episode 3

Episode 4

E, north, C, -1
C,east, D, -1
D, exit, x, +10

E, north, C, -1
C,east, A -1

A, exit,

X, -10

*Figure from [1]

Notes
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Learned Model

T(s,a,s")

T(B, east, C) =1.00
T(C, east, D) =0.75
T(C, east, A) =0.25

R(s,a,s")

R(B, east, C) =-1
R(C, east, D) =-1
R(D, exit, x) =+10




Learning transition model

p(D | C,east) =7

Episode 1 Episode 2

B, east, C, -1
C,east, D, -1
D, exit, x, +10

B, east, C, -1
C,east, D, -1
D, exit, x, +10

Episode 3 Episode 4

E, north, C, -1 E, north, C, -1
C,east, D,-1 C,east, A, -1
D, exit, x, +10 A, exit, x,-10

12/39
Notes

(C, east) combination performed 4 times, 3 times landed in D, once in A. Hence, p(D | C, east) = 0.75.



Learning reward function

7(C,east,D) =7

Episode 1 Episode 2

B, east, C, -1
C, east, D, -1
D, exit, x, +10

B, east, C, -1
C, east, D, -1
D, exit, x, +10

Episode 3 Episode 4

E, north, C, -1 E, north, C, -1
C,east, D, -1 C,east, A, -1
D, exit, x, +10 A, exit, x,-10

13/39
Notes

Whenever (C, east, D) performed, received reward was —1. Hence, 7(C,east,D) = —1.



Model based vs model-free: Expected age E [A]

Random variable age A.

E[Al=> P(A=a)a

We do not know P(A = a). Instead, we collect N samples [a1, az, ... an].
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Notes
Just to avoid confusion. There are many more samples than possible ages (positive integer). Think about
N > 100.

e Model based — eventually, we learn the correct model.

e Model free — no need for weighting; this is achieved through the frequencies of different ages within the
samples (most frequent and hence most probable ages simply come up many times).
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Model based vs model-free: Expected age E [A]

Random variable age A.

E[Al=> P(A=a)a
a
We do not know P(A = a). Instead, we collect N samples [a1, az, ... an].

Model based Model free

P(a) = num(a) E[A] ~ ;Za,-

14/39

Notes
Just to avoid confusion. There are many more samples than possible ages (positive integer). Think about
N > 100.

e Model based — eventually, we learn the correct model.

e Model free — no need for weighting; this is achieved through the frequencies of different ages within the
samples (most frequent and hence most probable ages simply come up many times).



Model-free learning

15/39
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Passive learning (evaluating given policy)

» Input: a fixed policy 7(s)

> We want to know how good it is.

> r, p not known. 2 1 1 1]

» Execute policy ...

» and learn on the way.

» Goal: learn the state values v™(s) 1 t -~ | ~
1 2 3 4

Image from [2]

16 /39

Notes
Executing policies - training, then learning from the observations. We want to do the policy evaluation but the
necessary model is not known.

The word passive means we just follow a prescribed policy 7(s).



Direct evaluation from episodes

Value of s for m — expected sum of discounted
rewards — expected return

3 — e —_—
vTi(S:) =E ’Yth+k+1
kz_;) 2 | 1 t =
VW(St) =E [Gt] 1 t - - -
1 2 3 4

17/39
Notes

Act according to the policy.
e When visiting a state, remember what the sum of discounted rewards (returns) turned out to be.

e Compute average of the returns.

Each trial episode provides a sample of v™.

What is v”(3,2) after these episodes?



Direct evaluation from episodes

Value of s for m — expected sum of discounted
rewards — expected return

o0 ® - - —
v”(St):E[ “R ]
kz_;)’Y +k+1 , T 1 .

V(S:) = E[Gi] = <=
(1,1).04~(1,2).04~ (1, 3)..0a~ (1, 2)..04~ (1, 3)-.04~ (2, 3)-.04~~ (3, 3)..04~~ (4, 3) 11
(1,1).04~(1,2).04~(1, 3)..04~(2, 3)-.04~ (3, 3)-.04~~ (3, 2)..04~ (3, 3)..04~~ (4, 3) 11
(1,1).04~(2,1).04~(3,1)-.04~(3, 2)-.04~(4,2).1 -
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Notes

e Act according to the policy.

e When visiting a state, remember what the sum of discounted rewards (returns) turned out to be.
e Compute average of the returns.

e Each trial episode provides a sample of v".

What is v”(3,2) after these episodes?



Direct evaluation from episodes, v™(5;) = E[G], 7 =1

(1,1)..04~(1,2).04~(1,3)..04~ (1, 2)-.0a~(1,3)..04~ N :
(1,1).04~+(1,2).04~ (1, 3)-.04~= (2, 3)-.04~~ (3, 3)-.04~~(3,2)..04~+(3, 3)-.04~> (4, 3
(1,1)..04~(2,1).04~(3,1)..04~ (3, 2)..04~(4,2).1 -

What is v(3,2) after these episodes?

18/39
Notes

Not visited during the first episode.

Visited once in the second, gathered return G = —0.04 — 0.04 + 1 = 0.92.
e Visited once in the third, return G = —0.04 — 1 = —1.04.

Value, average return is (0.92 — 1.04)/2 = —0.06.



Direct evaluation: Grid example

Input Policy & Observed Episodes (Training)
Episode 1 Episode 2
B, east, C, -1 B, east, C, -1
C,east, D, -1 C, east, D, -1
D, exit, x, +10 D, exit, x, +10
Episode 3 Episode 4
E, north, C, -1 E, north, C, -1
C, east, D,-1 C,east, A -1
Assume:y =1 D, exit, x,+10 A, exit, x,-10

19/39

Notes




Direct evaluation: Grid example, v =1

What is v(C) after the 4 episodes? Episode 1 Episode 2
B, east, C, -1 B, east, C, -1
C, east,D, -1 C, east, D, -1
D, exit, x, +10 D, exit, x, +10
Episode 3 Episode 4
E, north, C, -1 E, north, C, -1
C,east, D, -1 C,east, A, -1

D, exit, x, +10 A, exit, x,-10

20/39
Notes

Episode 1, G =—-1+10=9

Episode 2, G =—-1+10=9

e Episode3, G=-1+10=9

Episode 4, G = -1 -10= —11

o Average return v(C) = (9+9+9—11)/4=4

For first-visit variant, B is correct. For every-visit variant, D is correct.
N can be lower than M (state does not have to be attended in every episode). For every-visit variant, N can be

higher than M (a state can be visited several times in one episode).



Direct evaluation: Grid example, v =1

What is v(C) after the 4 episodes? Episode 1 Episode 2
B, east, C, -1 B, east, C, -1

Let M be the number of recorded episodes. C, east, D, -1 C, east, D, -1

Let N be the number of samples used D exit. x. +10 D exit. x. +10

to compute the averages.
What is the relation of M and N?

AN=M Episode 3 Episode 4
BN<M E, north, C, -1 E, north, C, -1
CN=M C, east, D,-1 C,east, A, -1
D N has no relation to M D, exit, x, +10 A, exit, x,-10
20/39
Notes

e Episodel, G=-1+10=9

e Episode 2, G=-1+10=9

e Episode3, G=-1+10=9

e Episode 4, G = -1—-10=—11

e Average return v(C) =(94+9+9—11)/4=4

For first-visit variant, B is correct. For every-visit variant, D is correct.
N can be lower than M (state does not have to be attended in every episode). For every-visit variant, N can be

higher than M (a state can be visited several times in one episode).



Direct evaluation algorithm (every-visit version)

(1,1).0a~(1,2)..04~(1,3)-04~ (1, 2).04~ (1, 3)..04~+(2, 3)..04~~ (3, 3)_.04~ (4, 3) 1
(1,1)-04~(1,2).04~(1,3)..04~(2, 3)-.04~>(3, 3)-.04~ (3, 2)-.04~>(3, 3)..04~ (4, 3).11
(1,1)-04~(2,1).04~>(3, 1)-.04~(3, 2)..04~>(4,2).1 -
Input: a policy 7 to be evaluated
Initialize:

V(s) € R, arbitrarily, for all s € §

Returns(s) < an empty list, for all s € S
Loop forever (for each episode):

Generate an episode following m: Sg, Ao, R1, 51, A1, Ro, ..., S7-1,A1_1, RT
G<+0

Loop backwards for each step of episode, t =T —1, T —2,...,0:
G+ Rt+1 + ’)/G
Append G to Returns(S;)
V(S;) < average(Returns(S;))

Notes

21/39

The algorithm can be easily expanded to Q(S¢, A¢). Instead of visiting S; we consider visiting of a pair S, A;



Direct evaluation algorithm (first-visit version)

(1,1)..04~(1,2)-04~ (1, 3)..04~(1,2)..04~(1,3)..04~>(2, 3)-.04~>(3, 3).04~> (4, 3) 11
(1,1).0a~(1,2)..04~(1,3).04~(2, 3)-.04~= (3, 3)-.04~~(3,2)..04~> (3, 3)-.04~ (4, 3) 11
(1,1).0a~(2,1).04~(3,1).04~(3, 2).04~~ (4,2).1 .
Input: a policy 7 to be evaluated
Initialize:

V(s) € R, arbitrarily, for all s € S

Returns(s) < an empty list, for all s € S
Loop forever (for each episode):

Generate an episode following m: Sg, Ao, R1, 51, A1, Ro, ..., S7_1,A1_1, RT
G+0

Loop backwards for each step of episode, t =T —1, T —2,...,0:
G < Ry1+16G
If S; does not appear in Sp, S1,...,5;:_1:
Append G to Returns(S;)
V(S;) < average(Returns(S;))

// Use the return for the first visit only

21/39
Notes

The algorithm can be easily expanded to Q(S¢, A:). Instead of visiting S; we consider visiting of a pair S¢, A:.




Direct evaluation: analysis

The good:
» Simple, easy to understand and implement.

» Does not need p, r and eventually it computes the true v™.

22/39

Notes
In second trial, we visit (3,2) for the first time. We already know that the successor (3,3) has probably a high
value but the method does not use until the end of the trial episode.

Before updating V/(s) we have to wait until the training episode ends.
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The good:

» Simple, easy to understand and implement.

» Does not need p, r and eventually it computes the true v™.
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Direct evaluation: analysis

The good:

» Simple, easy to understand and implement.

» Does not need p, r and eventually it computes the true v™.
The bad:
(1,1).04~(1,2).04~>(1, 3)..04~(1,2).04~~ (1, 3)-.0a~ (
(1,1).04~(1,2)..04~(1,3)..04~(2, 3)-.04~(3, 3)-.04~>(3,2)-.04~> (3, 3)-.0a~ (4, 3) 1
(1,1).04~(2,1).04~(3,1)-.04~(3, 2)-.04~(4,2).1 -

» Each state value learned in isolation.

> State values are not independent

> vT(s) =g p(s' | 5.7(s)) [r(s, m(s),s") + v v7(s)]

22/39

Notes

In second trial, we visit (3,2) for the first time. We already know that the successor (3,3) has probably a high
value but the method does not use until the end of the trial episode.

Before updating V/(s) we have to wait until the training episode ends.



(on-line) Policy evaluation?

In MDP, we did:
» Initialize the values: V{'(s) =0

P In each iteration, replace V with a one-step-look-ahead:

Via(s) « 2o p(s' | s,7m(s)) [r(s, m(s), ') + 7 V()]

Notes

23/39




(on-line) Policy evaluation?

In MDP, we did:
» Initialize the values: V{'(s) =0

P In each iteration, replace V with a one-step-look-ahead:
V,Zr+1(s) — >y p(s’ | s, 71(5)) [r(s, 7(s),s’) +~ V[(s’)}

Problem: both p(s’ | s,7(s)) and r(s, n(s),s’) unknown!

23/39
Notes




Use samples for evaluating policy?
MDP (p, r known) : Update V estimate by a weighted average:

Viia(s) = 2o p(s' | s,7m(s)) [r(s,m(s), s') + 7 Vi (s')]

24 /39

Notes
It looks promising. Unfortunately, we cannot do it that way. After an action, the robot is in a next state and cannot
go back to the very same state where it was before. Energy was consumed and some actions may be irreversible;

think about falling into a hole. We have to utilize the s, a, s’ experience anytime when performed /visited.



Use samples for evaluating policy?

MDP (p, r known) : Update V estimate by a weighted average:
VE(s) « 2y p(s' | s,7(s)) [r(s, m(s), s") + 7 V()]

What about stop, try, try, ..., and average? @
Samples at time t. w(S¢) — A¢, repeat A:. YR
! \
// ! \ \\
/ ! \ \
/7 1 \ \
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’ I \ \
/ \ \
// \ \\
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MDP (p, r known) : Update V estimate by a weighted average:
VE(s) « 2y p(s' | s,7(s)) [r(s, m(s), s") + 7 V()]

What about stop, try, try, ..., and average?
Samples at time t. w(S¢) — A¢, repeat A:.

sample! = R, +vV(St4)
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MDP (p, r known) : Update V estimate by a weighted average:

Viia(s) = 2o p(s' | s,7m(s)) [r(s,m(s), s') + 7 Vi (s')]

What about stop, try, try, ..., and average?
Samples at time t. w(S¢) — A¢, repeat A:.
1 _ pl 1
sample” = Ry, +vV(S:1)
sample? = RZ., +vV(S24)

2
Rt+1

|
|
|
|
|
|
¥ DA
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VE(s) « 2y p(s' | s,7(s)) [r(s, m(s), s") + 7 V()]

What about stop, try, try, ..., and average?
Samples at time t. w(S¢) — A¢, repeat A:.
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sample” = Ry, +vV(S:1)
sample? = RZ., +vV(S24)
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go back to the very same state where it was before. Energy was consumed and some actions may be irreversible;
think about falling into a hole. We have to utilize the s, a, s’ experience anytime when performed /visited.



Use samples for evaluating policy?
MDP (p, r known) : Update V estimate by a weighted average:

Viia(s) = 2o p(s' | s,7m(s)) [r(s,m(s), s') + 7 Vi (s')]

What about stop, try, try, ..., and average?
Samples at time t. w(S¢) — A¢, repeat A:.
1 _ pl 1
sample” = Ry, +vV(S:1)
sample? = RZ., +vV(S24)
sample” = R} ;+7V(5/1)

1 .
vV - le'
(5¢) p zf:samp e

Problem: We cannot re-set to S; easily.
24/39

Notes
It looks promising. Unfortunately, we cannot do it that way. After an action, the robot is in a next state and cannot
go back to the very same state where it was before. Energy was consumed and some actions may be irreversible;

think about falling into a hole. We have to utilize the s, a, s’ experience anytime when performed /visited.
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Notes
Trial episode: acting, observing, until it stops (in a terminal state or by a limit).
We visit 5(1, 3) twice during the first episode. Its value estimate is the average of two returns.
Note the main difference. In Direct evaluation, we had to wait until the end of the episode, compute G; for each
t on the way, and then we update V/(S;). We can do it a incrementally

V(S:) ¢ V(S:) + a(Gt - V(St))

In TD learning, we update as we go.
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> Update (ax difference): V(S¢) < V(S:) + a([Rt+1 +yV(Se41)] — V(St))
P> « is the learning rate.
> V(S5:) «+ (1 — a)V(S5:) + a(new sample)
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Exponential moving average

Xn = (1 — a)Xp_1 + axy

What does it remember about the past? Try to derive:

}n - f(a7 Xm Xn—l: Xn—27 Xn—37 R )

Notes

26 /39

Recursively insetring we end up with

Xn = [X,, +(1-a)xo—1+(1— a)2x,,,2 4.

We already know the sum of geometric series for r < 1

1

l+r+r+r+.. =
1—r

Putting r = 1 — «, we see that

1

- =14+(1-a)+(1—-a)+---
And hence:

Xo + (1= a)xp-1+ (1 — @)’Xo—2 + - -

Xn

a weighted average that exponentially forgets about the past.

Tl (l-a) @ -aP+(l—aP+--



Example: TD Value learning

V(St) < V(St) + a(Rer1 +7V(Se11) — V(St))

» Values represent initial V(s)
» Assume: v =1,a =0.5,7(s) =—
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States Observed Transitions

B, east, C, -2 C, east, D, -2

Assume:y=1,a=1/2
V() = (1= a)V™(s) 4 a [R(s,7(s),s') + V()]
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» Assume: v =1,a =0.5,7(s) =—
> (B,—,C),—-2,= V(B)?

» (C,—,D),-2,= V(C)?
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Notes

States Observed Transitions

B, east, C, -2 C, east, D, -2

Assume:y=1,a=1/2
V() = (1= a)V™(s) 4 a [R(s,7(s),s') + V()]




Temporal difference value learning: algorithm

Input: the policy m to be evaluated
Algorithm parameter: step size a € (0, 1]
Initialize V (s), for all s € 8, arbitrarily except that V (terminal) = 0

Loop for each episode:
Initialize S
Loop for each step of episode:
A + action given by 7 for S
Take action A, observe R, S’
V(S)« V(S)+ a[R +~V(S") — V(S)]
S+« 5

until S is terminal

28 /39
Notes




What is wrong with the temporal difference Value learning?

The Good: Model-free value learning by mimicking Bellman updates.

29/39
Notes

Learn Q-values, not V-values, and make the action selection model-free too!
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What is wrong with the temporal difference Value learning?

The Good: Model-free value learning by mimicking Bellman updates.
The Bad: How to turn values into a (new) policy?

> 7(s) = arg;nax o p(s|s,a)[r(s,a,s)+vV(s)]

» 7(s) = argmaxQ(s, a)
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Notes

Learn Q-values, not V-values, and make the action selection model-free too!




Q-learning

30/39

Notes

So far we walked as prescribed by a 7(s) because we did not know how to act better.



Reminder: V, Q-value iteration for MDPs

Value/Utility iteration (depth limited evaluation):
> Start: Vp(s) =0
P In each step update V by looking one step ahead:
Vipa(s) + max 3= p(s' | 5.3) [r(5.2,5') + 7 Vi(S)]
Q values more useful (think about updating )
> Start: Qu(s,a) =0
» In each step update @ by looking one step ahead:

Quials.3) ¢ S pls' | 5:3) |r(5,0.9) + 9 mx Qu(5' )

31/39
Notes

Draw the (s)-(s,a)-(s')-(s",a’) tree. It will be also handy when discussing exploration vs. exploitation — where to

drive next.



Q-learning (one episode of)

MDP update: Qx+1(s,a) <= > g p(s'[s,a) |r(s,a,s") +vmax Qk(s', &)

32/39
Notes
There are alternatives how to compute the sample value. SARSA method takes Q(Si+1, As+1) directly, not the

max. More next week.
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MDP update: Qx+1(s,a) <= > g p(s'[s,a) |r(s,a,s") +vmax Qk(s', &)

Learn Q values as the robot/agent goes (temporal difference)
» Drive the robot (take action a in state s) and fetch rewards (s, a,s’, R)

> We know old estimates Q(s, a) (and Q(s', a)), if not, initialize.

» A new sample estimate (of Q(s,a)) at time t
sample = Ry + 7y max Q(St+1,a)

> « update

Q(St, At) < Q(St, At) + a(sample — Q(St, At))
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MDP update: Qx+1(s,a) <= > g p(s'[s,a) |r(s,a,s") +vmax Qk(s', &)

Learn Q values as the robot/agent goes (temporal difference)
» Drive the robot (take action a in state s) and fetch rewards (s, a,s’, R)
> We know old estimates Q(s, a) (and Q(s', a)), if not, initialize.

» A new sample estimate (of Q(s,a)) at time t
sample = Ry + 7y max Q(St+1,a)

> « update

Q(St, At) < Q(St, At) + a(sample — Q(St, At))
or (the same)

Q(St, Ar) + (1 — @) Q(St, At) + avsample
In each step @ approximates the optimal g* function.

Notes
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There are alternatives how to compute the sample value. SARSA method takes Q(Si+1, As+1) directly, not the

max. More next week.



Q-learning: algorithm (repeating episodes, until terminal or exhausted)

stepsize0<a <1
initialize Q(s,a) for all s € S, a € A(s)
repeat episodes:
initialize S
for for each step of episode: do
choose A from A(S)
take action A, observe R, S’
Q(S,A) < Q(S,A) + a[R +ymax, Q(5',a) — Q(S, A)]

=S .
until S is terminal
until Time is up, ...

33/39
Notes




From Q-learning to Q-learning agent

» Drive the robot and fetch rewards. (s, a,s’, R)
» We know old estimates Q(s, a) (and Q(s’,a’)), if not, initialize.
» A new sample estimate: sample = Ry11 + v max Q(St+1, a)

a

> « update: Q(St, Ar)  Q(St, Ar) + a(sample — Q(St, At))
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Q-function for a discrete, finite problem? But what about continous space or discrete but a very large one?

Use the (s)-(s,a)-(s’)-(s',a’) tree to discuss the next-action selection.
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From Q-learning to Q-learning agent

» Drive the robot and fetch rewards. (s, a,s’, R)
» We know old estimates Q(s, a) (and Q(s’,a’)), if not, initialize.
» A new sample estimate: sample = Ry11 + v max Q(St+1, a)

a

> « update: Q(St, Ar)  Q(St, Ar) + a(sample — Q(St, At))

Technicalities for the Q-learning agent

> How to represent the Q-function?
» What is the value for terminal? Q(s, Exit) or Q(s, None)

» How to drive? Where to drive next? Does it change over the course?

34/39

Notes
Q-function for a discrete, finite problem? But what about continous space or discrete but a very large one?

Use the (s)-(s,a)-(s’)-(s',a’) tree to discuss the next-action selection.
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Exploration vs. Exploitation

Drive the known road or try a new one?
Go to the university menza or try a nearby restaurant?
Use the SW (operating system) | know or try a new one?

Go to bussiness or study a demanding program?
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How to explore?

Random (e-greedy):
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Notes

e We can think about lowering € as the learning progresses.

e Favor unexplored states - be optimistic - exploration functions - f(u, n) = u + k/n, where u is the value
estimated, and n is the visit count, and k is the training/simulation episode.
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How to explore?

Random (e-greedy):

» Flip a coin every step.

» With probability €, act randomly.

> With probability 1 — ¢, use the policy.
Problems with randomness?

> Keeps exploring forever.

» Should we keep ¢ fixed (over learning)?

P> ¢ same everywhere?
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Notes

e We can think about lowering € as the learning progresses.

e Favor unexplored states - be optimistic - exploration functions - f(u, n) = u + k/n, where u is the value
estimated, and n is the visit count, and k is the training/simulation episode.



What we have learned

> Agent/robot may learn by acting an getting rewards
» Model based vs. model-free methods
» Direct learning vs. temporal-difference learning

» From learning state values to Q-learning
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