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(Multi-armed) Bandits

Think about not one but 10 arms you may choose to pull.

p(s ′|s, a) and r(s, a, s ′) not known!
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10 armed bandit, what arm to pull?

28 Chapter 2: Multi-armed Bandits

select randomly from among all the actions with equal probability, independently of
the action-value estimates. We call methods using this near-greedy action selection rule
"-greedy methods. An advantage of these methods is that, in the limit as the number of
steps increases, every action will be sampled an infinite number of times, thus ensuring
that all the Qt(a) converge to q⇤(a). This of course implies that the probability of selecting
the optimal action converges to greater than 1� ", that is, to near certainty. These are
just asymptotic guarantees, however, and say little about the practical e↵ectiveness of
the methods.

Exercise 2.1 In "-greedy action selection, for the case of two actions and " = 0.5, what is
the probability that the greedy action is selected? ⇤

2.3 The 10-armed Testbed

To roughly assess the relative e↵ectiveness of the greedy and "-greedy action-value
methods, we compared them numerically on a suite of test problems. This was a set
of 2000 randomly generated k -armed bandit problems with k = 10. For each bandit
problem, such as the one shown in Figure 2.1, the action values, q⇤(a), a = 1, . . . , 10,
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Figure 2.1: An example bandit problem from the 10-armed testbed. The true value q⇤(a) of
each of the ten actions was selected according to a normal distribution with mean zero and unit
variance, and then the actual rewards were selected according to a mean q⇤(a) unit variance
normal distribution, as suggested by these gray distributions.

See chapters 2.2 and 2.3 in [4] for more detailed discussion 3 / 39



Goal-directed system

1
1Figure from http://www.cybsoc.org/gcyb.htm
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Reinforcement Learning - performing actions, learning from rewards

38 CHAPTER 3. FINITE MARKOV DECISION PROCESSES
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Figure 3.1: The agent–environment interaction in a Markov decision process.

its action, the agent receives a numerical reward , Rt+1 2 R ⇢ R, and finds itself in a new state, St+1.
4

The MDP and agent together thereby give rise to a sequence or trajectory that begins like this:

S0, A0, R1, S1, A1, R2, S2, A2, R3, . . . (3.1)

In a finite MDP, the sets of states, actions, and rewards (S, A, and R) all have a finite number of
elements. In this case, the random variables Rt and St have well defined discrete probability distribu-
tions dependent only on the preceding state and action. That is, for particular values of these random
variables, s0 2 S and r 2 R, there is a probability of those values occurring at time t, given particular
values of the preceding state and action:

p(s0, r |s, a)
.
= Pr{St =s0, Rt =r | St�1 =s, At�1 =a}, (3.2)

for all s0, s 2 S, r 2 R, and a 2 A(s). The dot over the equals sign in this equation reminds us that it
is a definition (in this case of the function p) rather than a fact that follows from previous definitions.
The function p : S⇥R⇥ S⇥A! [0, 1] is an ordinary deterministic function of four arguments. The ‘|’
in the middle of it comes from the notation for conditional probability, but here it just reminds us that
p specifies a probability distribution for each choice of s and a, that is, that

X

s02S

X

r2R

p(s0, r |s, a) = 1, for all s 2 S, a 2 A(s). (3.3)

The probabilities given by the four-argument function p completely characterize the dynamics of a
finite MDP. From it, one can compute anything else one might want to know about the environment,
such as the state-transition probabilities (which we denote, with a slight abuse of notation, as a three-
argument function p : S⇥ S⇥A! [0, 1]),

p(s0 |s, a)
.
= Pr{St =s0 | St�1 =s, At�1 =a} =

X

r2R

p(s0, r |s, a). (3.4)

We can also compute the expected rewards for state–action pairs as a two-argument function r : S⇥A!
R:

r(s, a)
.
= E[Rt | St�1 =s, At�1 =a] =

X

r2R

r
X

s02S

p(s0, r |s, a), (3.5)

or the expected rewards for state–action–next-state triples as a three-argument function r : S⇥A⇥S!
R,

r(s, a, s0)
.
= E[Rt | St�1 =s, At�1 =a, St = s0] =

X

r2R

r
p(s0, r |s, a)

p(s0 |s, a)
. (3.6)

it simply as A.
4We use Rt+1 instead of Rt to denote the reward due to At because it emphasizes that the next reward and next

state, Rt+1 and St+1, are jointly determined. Unfortunately, both conventions are widely used in the literature.

2

▶ Feedback in form of Rewards

▶ Learn to act so as to maximize expected rewards.
2Scheme from [4]
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Examples, robot learning, Atari games, . . .

Video: Learning safe policies3

3M. Pecka, V. Salansky, K. Zimmermann, T. Svoboda. Autonomous flipper control with safety constraints.
In Intelligent Robots and Systems (IROS), 2016, https://youtu.be/ oUMbBtoRcs
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From off-line (MDPs) to on-line (RL)

Markov decision process – MDPs. Off-line search, we know:

▶ A set of states s ∈ S (map)

▶ A set of actions per state. a ∈ A
▶ A transition model T (s, a, s ′) or p(s ′|s, a) (robot)
▶ A reward function r(s, a, s ′) (map, robot)

Looking for the optimal policy π(s). We can plan/search before the robot enters the
environment.

On-line problem:
▶ Transition model p and reward function r not known.

▶ Agent/robot must act and learn from experience.
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(Transition) Model-based learning

The main idea: Do something, and:

▶ Learn an approximate model from experiences.

▶ Solve as if the model was correct.

Learning MDP model:

▶ In s try a, observe s ′, count (s, a, s ′).

▶ Normalize to get and estimate of p(s ′ | s, a).
▶ Discover (by observation) each r(s, a, s ′) when experienced.

Solve the learned MDP.
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Reward function r(s, a, s ′)

▶ r(s, a, s ′) - reward for taking a in s and landing in s ′.

▶ In Grid world, we assumed r(s, a, s ′) to be the same
everywhere.

▶ In the real world, it is different (going up, down, . . . )
38 CHAPTER 3. FINITE MARKOV DECISION PROCESSES
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state, Rt+1 and St+1, are jointly determined. Unfortunately, both conventions are widely used in the literature.

s

s, a

s ′

a

s, a, s ′

v(s)

v(s ′)

In ai-gym env.step(action) returns s ′, r(s, action, s ′).
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Model-based learning: Grid example

4
4Figure from [1]
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Learning transition model

p̂(D | C, east) =?
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Learning reward function

r̂(C, east,D) =?
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Model based vs model-free: Expected age E [A]

Random variable age A.

E [A] =
∑

a

P(A = a)a

We do not know P(A = a). Instead, we collect N samples [a1, a2, . . . aN ].

Model based

P̂(a) =
num(a)

N

E [A] ≈
∑

a

P̂(a)a

Model free

E [A] ≈ 1

N

∑

i

ai
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Model-free learning
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Passive learning (evaluating given policy)

▶ Input: a fixed policy π(s)

▶ We want to know how good it is.

▶ r , p not known.

▶ Execute policy . . .

▶ and learn on the way.

▶ Goal: learn the state values vπ(s)

Image from [2]
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Direct evaluation from episodes

Value of s for π – expected sum of discounted
rewards – expected return

vπ(St) = E

[ ∞∑

k=0

γkRt+k+1

]

vπ(St) = E [Gt ]
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Direct evaluation from episodes, vπ(St) = E [Gt], γ = 1

What is v(3, 2) after these episodes?

18 / 39



Direct evaluation: Grid example
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Direct evaluation: Grid example, γ = 1

What is v(C) after the 4 episodes?

Let M be the number of recorded episodes.
Let N be the number of samples used
to compute the averages.
What is the relation of M and N?

A N = M

B N ≤ M

C N ≥ M

D N has no relation to M
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Direct evaluation algorithm (every-visit version)

Input: a policy π to be evaluated
Initialize:

V (s) ∈ R, arbitrarily, for all s ∈ S
Returns(s)← an empty list, for all s ∈ S

Loop forever (for each episode):
Generate an episode following π: S0,A0,R1,S1,A1,R2, . . . ,ST−1,AT−1,RT

G ← 0
Loop backwards for each step of episode, t = T − 1,T − 2, . . . , 0:

G ← Rt+1 + γG
Append G to Returns(St)
V (St)← average(Returns(St))

21 / 39



Direct evaluation algorithm (first-visit version)

Input: a policy π to be evaluated
Initialize:

V (s) ∈ R, arbitrarily, for all s ∈ S
Returns(s)← an empty list, for all s ∈ S

Loop forever (for each episode):
Generate an episode following π: S0,A0,R1,S1,A1,R2, . . . ,ST−1,AT−1,RT

G ← 0
Loop backwards for each step of episode, t = T − 1,T − 2, . . . , 0:

G ← Rt+1 + γG
If St does not appear in S0, S1, . . . ,St−1: // Use the return for the first visit only

Append G to Returns(St)
V (St)← average(Returns(St))
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Direct evaluation: analysis

The good:

▶ Simple, easy to understand and implement.

▶ Does not need p, r and eventually it computes the true vπ.

The bad:

▶ Each state value learned in isolation.

▶ State values are not independent

▶ vπ(s) =
∑

s′ p
(
s ′ | s, π(s)

)[
r(s, π(s), s ′) + γ vπ(s ′)

]
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(on-line) Policy evaluation?

In MDP, we did:

▶ Initialize the values: V π
0 (s) = 0

▶ In each iteration, replace V with a one-step-look-ahead:
V π
k+1(s)←

∑
s′ p

(
s ′ | s, π(s)

)[
r(s, π(s), s ′) + γ V π

k (s
′)
]

Problem: both p
(
s ′ | s, π(s)

)
and r(s, π(s), s ′) unknown!
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Use samples for evaluating policy?
MDP (p, r known) : Update V estimate by a weighted average:
V π
k+1(s)←

∑
s′ p

(
s ′ | s, π(s)

)[
r(s, π(s), s ′) + γ V π

k (s
′)
]

What about stop, try, try, . . . , and average?
Samples at time t. π(St)→ At , repeat At .

sample1 = R1
t+1 + γ V (S1

t+1)

sample2 = R2
t+1 + γ V (S2

t+1)

... =
...

samplen = Rn
t+1 + γ V (Sn

t+1)

V (St)←
1

n

∑

i

samplei

St

St ,At

S2
t+1 S1

t+1 Sn
t+1

At

R1
t+1

R2
t+1 Rn

t+1

Problem: We cannot re-set to St easily.
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t+1)

... =
...

samplen = Rn
t+1 + γ V (Sn

t+1)

V (St)←
1

n

∑

i

samplei

St

St ,At

S2
t+1 S1

t+1 Sn
t+1

At

R1
t+1

R2
t+1 Rn

t+1

Problem: We cannot re-set to St easily.
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Temporal-difference value learning

γ = 1

From first trial (episode): V (2, 3) =

0.92

, V (1, 3) =

0.84

, . . .
In second episode, going from St = (1, 3) to St+1 = (2, 3) with reward Rt+1 = −0.04, hence:

V (1, 3) = Rt+1 + V (2, 3) = −0.04 + 0.92 = 0.88

▶ First estimate 0.84 is a bit lower than 0.88. V (St) is different than Rt+1 + γV (St+1)

▶ Update (α× difference): V (St)← V (St) + α
([

Rt+1 + γV (St+1)
]
− V (St)

)

▶ α is the learning rate.

▶ V (St)← (1− α)V (St) + α (new sample)
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Exponential moving average

xn = (1− α)xn−1 + αxn

What does it remember about the past? Try to derive:

xn = f (α, xn, xn−1, xn−2, xn−3, . . . )
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Example: TD Value learning

V (St)← V (St) + α(Rt+1 + γV (St+1)− V (St))

▶ Values represent initial V (s)

▶ Assume: γ = 1, α = 0.5, π(s) =→

▶ (B,→,C ),−2,⇒ V (B)?

▶ (C ,→,D),−2,⇒ V (C )?
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Temporal difference value learning: algorithm

120 Chapter 6: Temporal-Di↵erence Learning

where Gt is the actual return following time t, and ↵ is a constant step-size parameter (c.f.,
Equation 2.4). Let us call this method constant-↵ MC. Whereas Monte Carlo methods
must wait until the end of the episode to determine the increment to V (St) (only then is
Gt known), TD methods need to wait only until the next time step. At time t + 1 they
immediately form a target and make a useful update using the observed reward Rt+1 and
the estimate V (St+1). The simplest TD method makes the update

V (St) V (St) + ↵
h
Rt+1 + �V (St+1)� V (St)

i
(6.2)

immediately on transition to St+1 and receiving Rt+1. In e↵ect, the target for the Monte
Carlo update is Gt, whereas the target for the TD update is Rt+1 + �V (St+1). This TD
method is called TD(0), or one-step TD, because it is a special case of the TD(�) and
n-step TD methods developed in Chapter 12 and Chapter 7. The box below specifies
TD(0) completely in procedural form.

Tabular TD(0) for estimating v⇡

Input: the policy ⇡ to be evaluated
Algorithm parameter: step size ↵ 2 (0, 1]
Initialize V (s), for all s 2 S+, arbitrarily except that V (terminal) = 0

Loop for each episode:
Initialize S
Loop for each step of episode:

A action given by ⇡ for S
Take action A, observe R, S0

V (S) V (S) + ↵
⇥
R + �V (S0)� V (S)

⇤

S  S0

until S is terminal

Because TD(0) bases its update in part on an existing estimate, we say that it is a
bootstrapping method, like DP. We know from Chapter 3 that

v⇡(s)
.
= E⇡[Gt | St =s] (6.3)

= E⇡[Rt+1 + �Gt+1 | St =s] (from (3.9))

= E⇡[Rt+1 + �v⇡(St+1) | St =s] . (6.4)

Roughly speaking, Monte Carlo methods use an estimate of (6.3) as a target, whereas
DP methods use an estimate of (6.4) as a target. The Monte Carlo target is an estimate
because the expected value in (6.3) is not known; a sample return is used in place of the
real expected return. The DP target is an estimate not because of the expected values,
which are assumed to be completely provided by a model of the environment, but because
v⇡(St+1) is not known and the current estimate, V (St+1), is used instead. The TD target
is an estimate for both reasons: it samples the expected values in (6.4) and it uses the
current estimate V instead of the true v⇡. Thus, TD methods combine the sampling of
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What is wrong with the temporal difference Value learning?

The Good: Model-free value learning by mimicking Bellman updates.

The Bad: How to turn values into a (new) policy?

▶ π(s) = argmax
a

∑
s′ p(s

′ | s, a) [r(s, a, s ′) + γV (s ′)]

▶ π(s) = argmax
a

Q(s, a)
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Q-learning
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Reminder: V ,Q-value iteration for MDPs

Value/Utility iteration (depth limited evaluation):

▶ Start: V0(s) = 0

▶ In each step update V by looking one step ahead:
Vk+1(s)← max

a

∑
s′ p(s

′ | s, a) [r(s, a, s ′) + γVk(s
′)]

Q values more useful (think about updating π)

▶ Start: Q0(s, a) = 0

▶ In each step update Q by looking one step ahead:

Qk+1(s, a)←
∑

s′ p(s
′ | s, a)

[
r(s, a, s ′) + γmax

a′
Qk(s

′, a′)

]
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Q-learning (one episode of)

MDP update: Qk+1(s, a)←
∑

s′ p(s
′ | s, a)

[
r(s, a, s ′) + γmax

a′
Qk(s

′, a′)

]

Learn Q values as the robot/agent goes (temporal difference)

▶ Drive the robot (take action a in state s) and fetch rewards (s, a, s ′,R)

▶ We know old estimates Q(s, a) (and Q(s ′, a′)), if not, initialize.
▶ A new sample estimate (of Q(s, a)) at time t

sample = Rt+1 + γmax
a

Q(St+1, a)

▶ α update
Q(St ,At)← Q(St ,At) + α(sample− Q(St ,At))
or (the same)
Q(St ,At)← (1− α)Q(St ,At) + α sample

In each step Q approximates the optimal q∗ function.
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Q-learning: algorithm (repeating episodes, until terminal or exhausted)

step size 0 < α ≤ 1
initialize Q(s, a) for all s ∈ S, a ∈ A(s)
repeat episodes:

initialize S
for for each step of episode: do

choose A from A(S)
take action A, observe R, S ′

Q(S ,A)← Q(S ,A) + α
[
R + γmaxa Q(S ′, a)− Q(S ,A)

]

S ← S ′
until S is terminal

until Time is up, . . .
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From Q-learning to Q-learning agent

▶ Drive the robot and fetch rewards. (s, a, s ′,R)

▶ We know old estimates Q(s, a) (and Q(s ′, a′)), if not, initialize.

▶ A new sample estimate: sample = Rt+1 + γmax
a

Q(St+1, a)

▶ α update: Q(St ,At)← Q(St ,At) + α(sample− Q(St ,At))

Technicalities for the Q-learning agent

▶ How to represent the Q-function?

▶ What is the value for terminal? Q(s,Exit) or Q(s,None)

▶ How to drive? Where to drive next? Does it change over the course?
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Exploration vs. Exploitation

▶ Drive the known road or try a new one?

▶ Go to the university menza or try a nearby restaurant?

▶ Use the SW (operating system) I know or try a new one?

▶ Go to bussiness or study a demanding program?

▶ . . .
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How to explore?

Random (ϵ-greedy):

▶ Flip a coin every step.

▶ With probability ϵ, act randomly.

▶ With probability 1− ϵ, use the policy.

Problems with randomness?

▶ Keeps exploring forever.

▶ Should we keep ϵ fixed (over learning)?

▶ ϵ same everywhere?
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What we have learned

▶ Agent/robot may learn by acting an getting rewards

▶ Model based vs. model-free methods

▶ Direct learning vs. temporal-difference learning

▶ From learning state values to Q-learning
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