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Unreliable actions in observable grid world
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Unreliable (results of) actions
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Plan for uncertain world (MDPs)? Policy

▶ In deterministic world: Plan – sequence of actions
from Start to Goal.

▶ MDPs, we need a policy π : S → A.
▶ An action for each possible state. Why each?

▶ What is the best policy?
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Rewards, Reward function0
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Reward : Robot/Agent takes an action a and it is immediately rewarded.

Reward function r(s) (or r(s, a), r(s, a, s ′))

=

{
−0.04 (small penalty) for nonterminal states
±1 for terminal states
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Markov Decision Processes (MDPs)
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Robot/Agent walk – Episode
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Episode : one walk from S0 to terminal.
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Markovian property

▶ Given the present state, the future and the past are independent.

▶ MDP: Markov means action depends only on the current state.

▶ In search: successor function (transition model) depends on the current state only.
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Desired robot/agent behavior specified through rewards

▶ Before: shortest/cheapest path

▶ Solution found by search.

▶ Environment/problem is defined through the reward function.

▶ Optimal policy is to be computed/learned.

We come back to this in more detail when discussing RL.
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A B C
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Utilities of sequences; what is a better walk (episode)?

▶ State reward at time/step t, Rt .

▶ State at time t, St . State sequence [S0, S1, S2, . . . , ]

Typically, consider stationary preferences on reward sequences:

[R,R1,R2,R3, . . .] ≻ [R,R ′
1,R

′
2,R

′
3, . . .]⇔ [R1,R2,R3, . . .] ≻ [R ′

1,R
′
2,R

′
3, . . .]

If stationary preferences :
Utility (h-history)
Uh([S0,S1,S2, . . . , ]) = R1 + R2 + R3 + · · ·

If the horizon is finite - limited number of steps - preferences are nonstationary (depends on
how many steps left).
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Finite walk – Episode – and its Return (by introducing Terminal state)

▶ Executing policy - sequence of states and rewards.

▶ Episode starts at t, ends at T (ending in a terminal state).

▶ Return (Utility) of the episode (policy execution)

Gt = Rt+1 + Rt+2 + Rt+3 + · · ·+ RT

3.4. Unified Notation for Episodic and Continuing Tasks 57

3.4 Unified Notation for Episodic and Continuing Tasks

In the preceding section we described two kinds of reinforcement learning tasks, one
in which the agent–environment interaction naturally breaks down into a sequence of
separate episodes (episodic tasks), and one in which it does not (continuing tasks). The
former case is mathematically easier because each action a↵ects only the finite number of
rewards subsequently received during the episode. In this book we consider sometimes
one kind of problem and sometimes the other, but often both. It is therefore useful to
establish one notation that enables us to talk precisely about both cases simultaneously.

To be precise about episodic tasks requires some additional notation. Rather than one
long sequence of time steps, we need to consider a series of episodes, each of which consists
of a finite sequence of time steps. We number the time steps of each episode starting
anew from zero. Therefore, we have to refer not just to St, the state representation at
time t, but to St,i, the state representation at time t of episode i (and similarly for At,i,
Rt,i, ⇡t,i, Ti, etc.). However, it turns out that when we discuss episodic tasks we almost
never have to distinguish between di↵erent episodes. We are almost always considering a
particular single episode, or stating something that is true for all episodes. Accordingly,
in practice we almost always abuse notation slightly by dropping the explicit reference to
episode number. That is, we write St to refer to St,i, and so on.

We need one other convention to obtain a single notation that covers both episodic
and continuing tasks. We have defined the return as a sum over a finite number of terms
in one case (3.7) and as a sum over an infinite number of terms in the other (3.8). These
two can be unified by considering episode termination to be the entering of a special
absorbing state that transitions only to itself and that generates only rewards of zero. For
example, consider the state transition diagram:

R1 = +1S0 S1
R2 = +1 S2

R3 = +1 R4 = 0
R5 = 0. . .

Here the solid square represents the special absorbing state corresponding to the end of an
episode. Starting from S0, we get the reward sequence +1, +1, +1, 0, 0, 0, . . .. Summing
these, we get the same return whether we sum over the first T rewards (here T = 3) or
over the full infinite sequence. This remains true even if we introduce discounting. Thus,
we can define the return, in general, according to (3.8), using the convention of omitting
episode numbers when they are not needed, and including the possibility that � = 1 if the
sum remains defined (e.g., because all episodes terminate). Alternatively, we can write

Gt
.
=

TX

k=t+1

�k�t�1Rk, (3.11)

including the possibility that T =1 or � = 1 (but not both). We use these conventions
throughout the rest of the book to simplify notation and to express the close parallels
between episodic and continuing tasks. (Later, in Chapter 10, we will introduce a
formulation that is both continuing and undiscounted.)
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Horizon too far, infinite – Discount rewards

Problem: Infinite lifetime ⇒ additive utilities are infinite.

▶ Finite horizon: termination at a fixed time ⇒ nonstationary policy, π(s) depends on the
time left.

▶ Absorbing (terminal) state. (sooner or later walk ends here)

▶ Discounted return , γ < 1,Rt ≤ Rmax

Gt = Rt+1 + γRt+2 + γ2Rt+3 + · · · =
∞∑

k=0

γkRt+k+1 ≤
Rmax

1− γ

Returns are successive steps related to each other

Gt = Rt+1 + γRt+2 + γ2Rt+3 + γ3Rt+4 + · · ·
= Rt+1 + γ(Rt+2 + γ1Rt+3 + γ2Rt+4 + · · · )
= Rt+1 + γGt+1
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MDPs recap

Markov decision processes (MDPs):

▶ Set of states S
▶ Set of actions A
▶ Transitions p(s ′|s, a) or T (s, a, s ′)

▶ Reward function r(s, a, s ′); and discount γ

▶ Alternative to last two: p(s ′, r |s, a).
MDP quantities:

▶ (deterministic) Policy π(s) – choice of action for each state

▶ Return (Utility) of an episode (sequence) – sum of (discounted) rewards.
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Expected Return of a policy π

▶ Executing policy π → sequence of states (and rewards).

▶ Utility of a state sequence.

▶ But actions are unreliable - environment is stochastic.

▶ Expected return of a policy π.

Starting at time t, i.e. St ,

Uπ(St)
.
= Eπ

[ ∞∑

k=0

γkRt+k+1

]
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(State) Value functions given policy π

Expected return from that state (state, action)

Value function

vπ(s)
def
= Eπ [Gt | St = s] = Eπ

[ ∞∑

k=0

γkRt+k+1

∣∣∣∣ St = s

]

Action-value function (q-function)

qπ(s, a)
def
= Eπ [Gt | St = s,At = a] = Eπ

[ ∞∑

k=0

γkRt+k+1

∣∣∣∣ St = s,At = a

]
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Optimal policy π∗, and optimal value v ∗(s)

v∗(s) = expected (discounted) sum of rewards (until termination) assuming optimal actions.
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v∗(s) = expected (discounted) sum of rewards (until termination) assuming optimal actions.

Example 1, Robot deterministic: r(s) = {−0.04, 1,−1}, γ = 0.999999, ϵ = 0.03
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Optimal policy π∗, and optimal value v ∗(s)

v∗(s) = expected (discounted) sum of rewards (until termination) assuming optimal actions.

Example 2, Robot non-deterministic: r(s) = {−0.04, 1,−1}, γ = 0.999999, ϵ = 0.03
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Optimal policy π∗, and optimal value v ∗(s)

v∗(s) = expected (discounted) sum of rewards (until termination) assuming optimal actions.

Example 3, Robot non-deterministic: r(s) = {−0.01, 1,−1}, γ = 0.999999, ϵ = 0.03
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MDP search tree (Expectimax search)

The value of a q-state (s, a):

q∗(s, a) =
∑

s′

p(s ′|a, s)
[
r(s, a, s ′) + γ v∗(s ′)

]

The value of a state s:

v∗(s) = max
a

q∗(s, a)

s

s, a

s ′

a

p(s ′|s, a)

q-stateq∗(s, a)

v∗(s ′)

v∗(s)
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Bellman (optimality) equation

v∗(s) = max
a∈A(s)

∑

s′

p(s ′|a, s)
[
r(s, a, s ′) + γv∗(s ′)

]
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Value iteration – turn Bellman equation into Bellman update

v∗(s) = max
a∈A(s)

∑

s′

p(s ′|a, s)
[
r(s, a, s ′) + γv∗(s ′)

]

▶ Start with arbitrary V0(s) (except for terminals)

▶ Compute Bellman update (one ply of expectimax from each state)

Vk+1(s)← R(s) + γ max
a∈A(s)

∑

s′

p(s ′|s, a)Vk(s
′)

▶ Repeat until convergence

The idea: Bellman update makes local consistency with the Bellmann equation. Everywhere
locally consistent ⇒ globally optimal.

Value iteration algorithm is an example of Dynamic Programming method.
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Value iteration - Complexity of one estimation sweep

Vk+1(s)← R(s) + γ max
a∈A(s)

∑

s′

p(s ′|s, a)Vk(s
′)

A: O(AS)

B: O(S2)

C: O(AS2)

D: O(A2S2)
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Value iteration demo

Vk+1(s)← R(s) + γ max
a∈A(s)

∑

s′

P(s ′|s, a)Vk(s
′)

0

0

1

1

2

2

3

3

0 0

1 1

2 2

0.76

0.66 0.39

0.81 1.00

-1.000.66

0.92

0.61

0.87

0.71
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Convergence

Vk+1(s)← R(s) + γ max
a∈A(s)

∑

s′

P(s ′|s, a)Vk(s
′)

γ < 1

−Rmax ≤ R(s) ≤ Rmax

Max norm:
∥V ∥∞ = max

s
|V (s)|

U([s0, s1, s2, . . . , s∞]) =
∞∑

t=0

γtR(st) ≤
Rmax

1− γ
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Convergence cont’d

Vk+1 ← BVk . . .B as the Bellman update Vk+1(s)← R(s) + γ max
a∈A(s)

∑
s′ p(s

′|s, a)Vk(s
′)

∥BVk − BV ′
k∥∞ ≤ γ∥Vk − V ′

k∥∞
∥BVk − Vtrue∥∞ ≤ γ∥Vk − Vtrue∥∞
Rewards are bounded, at the beginning then Value error is
∥V0 − Vtrue∥∞ ≤ 2Rmax

1−γ
We run N iterations and reduce the error by factor γ in each and want to stop the error is
below ϵ:
γN2Rmax/(1− γ) ≤ ϵ Taking logs, we find: N ≥ log(2Rmax/ϵ(1−γ))

log(1/γ)
To stop the iteration we want to find a bound relating the error to the size of one Bellman
update for any given iteration.
If we stop when

∥Vk+1 − Vk∥∞ ≤
ϵ(1− γ)

γ

then also: ∥Vk+1 − Vtrue∥∞ ≤ ϵ Proof on the next slide
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Convergence cont’d

∥Vk+1 − Vtrue∥∞ ≤ ϵ is the same as ∥Vk+1 − V∞∥∞ ≤ ϵ
Assume ∥Vk+1 − Vk∥∞ = err
In each of the following iteration steps we reduce the error by the factor γ (because
∥BVk − Vtrue∥∞ ≤ γ∥Vk − Vtrue∥∞). Till ∞, the total sum of reduced errors is:

total = γerr + γ2err + γ3err + γ4err + · · · = γerr

(1− γ)

We want to have total < ϵ.
γerr

(1− γ)
< ϵ

From it follows that

err <
ϵ(1− γ)

γ

Hence we can stop if ∥Vk+1 − Vk∥∞ < ϵ(1− γ)/γ
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Value iteration algorithm

function value-iteration(env,ϵ) returns: state values V
input: env - MDP problem, ϵ
V ′ ← 0 in all states
repeat ▷ iterate values until convergence

V ← V ′ ▷ keep the last known values (deepcopy)
δ ← 0 ▷ reset the max difference
for each state s in S do

V ′[s]← R(s) + γ max
a∈A(s)

∑
s′ P(s

′|s, a)V (s ′)

if |V ′[s]− V [s]| > δ then δ ← |V ′[s]− V [s]|
until δ < ϵ(1− γ)/γ
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Sync vs. async Value iteration

function value-iteration(env,ϵ) returns: state values V
input: env - MDP problem, ϵ
V ′ ← 0 in all states
repeat ▷ iterate values until convergence

V = V ′ ▷ don’t keep the last known values
δ ← 0 ▷ reset the max difference
for each state s in S do

V ′[s]← R(s) + γ max
a∈A(s)

∑
s′ P(s

′|s, a)V (s ′)

if |V ′[s]− V [s]| > δ then δ ← |V ′[s]− V [s]|
until δ < ϵ(1− γ)/γ
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What we have learned

▶ Uncertain outcome of an action

▶ Optimal policy (strategy, sequence of decisions) maximizes expected return (utility, sum
of rewards)

▶ (State) Value function given policy

▶ Value iteration method - through local (optimal) updated to global optimality
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