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Unreliable actions in observable grid world
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Unreliable actions in observable grid world
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(Transition) Model T(s,a,s’) = p(s’|s, a) = probability that a in s leads to s’/
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Unreliable (results of) actions
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Plan for uncertain world (MDPs)? Policy

» In deterministic world: Plan — sequence of actions
from Start to Goal.
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Plan for uncertain world (MDPs)? Policy

» In deterministic world: Plan — sequence of actions
from Start to Goal.

> MDPs, we need a policy 7:S — A.
» An action for each possible state. Why each?
» What is the best policy?
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Rewards, Reward function

Reward : Robot/Agent takes an action a and it is immediately rewarded.
Reward function r(s) (or r(s, a), r(s,a,s’))

| —0.04 (small penalty) for nonterminal states

N { +1 for terminal states
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Markov Decision Processes (MDPs)
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Robot/Agent walk — Episode
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Robot/Agent walk — Episode
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S0, Ao, R1,51,A1,R2, 52, A . ..

Episode : one walk from Sy to terminal.
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Markovian property

» Given the present state, the future and the past are independent.

> MDP: Markov means action depends only on the current state.

» In search: successor function (transition model) depends on the current state only.
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Desired robot/agent behavior specified through rewards

> Before: shortest/cheapest path
» Solution found by search.
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Desired robot/agent behavior specified through rewards

> Before: shortest/cheapest path

» Solution found by search.

» Environment/problem is defined through the reward function.
» Optimal policy is to be computed/learned.

We come back to this in more detail when discussing RL.
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r(s) e {-2,1,-1}

r(s) € {-0.04,1, -1}

r(s) € {-0.01,1, -1}

a b c
A: A-a, B-b, C-c 0.8
B: A-b, B-a, C-c
C: A-b, B-c, C-a 0.1 0.1
D: A-c, B-a, C-b
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Utilities of sequences; what is a better walk (episode)?

> State reward at time/step t, R;.
> State at time t, S;. State sequence [Sp, S1, S2, - - -, |
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Utilities of sequences; what is a better walk (episode)?

> State reward at time/step t, R;.
> State at time t, S;. State sequence [Sp, S1, S2, - - -, |

Typically, consider stationary preferences on reward sequences:

[R, Ri, Ry, R3,...] - [R, R{, Ré, Ré,] = [Rl,Rg, Rs,.. ] ~ [Ri,Ré,Ré,.. ]

If stationary preferences :
Utility (h-history)
Uh([507517527"'7]) = R]. + R2 + R3+

If the horizon is finite - limited number of steps - preferences are nonstationary (depends on
how many steps left).
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Finite walk — Episode — and its Return (by introducing Terminal state)

» Executing policy - sequence of states and rewards.

> Episode starts at t, ends at T (ending in a terminal state).

» Return (Utility) of the episode (policy execution)

Gt = Reyi+ Repo + Reyz +--- + Ry

. () () Rs=0
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Horizon too far, infinite — Discount rewards

Problem: Infinite lifetime = additive utilities are infinite.
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Horizon too far, infinite — Discount rewards

Problem: Infinite lifetime = additive utilities are infinite.

» Finite horizon: termination at a fixed time = nonstationary policy, 7(s) depends on the
time left.

» Absorbing (terminal) state. (sooner or later walk ends here)
» Discounted return , v < 1, Rt < Rmax
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MDPs recap

Markov decision processes (MDPs):
> Set of states S
» Set of actions A
» Transitions p(s’[s,a) or T(s,a,s’)
» Reward function r(s, a, s’); and discount ~
>

Alternative to last two: p(s’, rls, a).
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MDPs recap

Markov decision processes (MDPs):
> Set of states S
» Set of actions A
» Transitions p(s’[s,a) or T(s,a,s’)
» Reward function r(s, a, s’); and discount ~
> Alternative to last two: p(s/, r|s, a).
MDP quantities:
» (deterministic) Policy 7(s) — choice of action for each state

» Return (Utility) of an episode (sequence) — sum of (discounted) rewards.
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Expected Return of a policy 7

» Executing policy m — sequence of states (and rewards).

> Utility of a state sequence.
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Expected Return of a policy 7

» Executing policy m — sequence of states (and rewards).
> Utility of a state sequence.
P> But actions are unreliable - environment is stochastic.
> Expected return of a policy 7.

Starting at time t, i.e. S,

U™(Se) =E" [Z ’Yth+k+1]

k=0
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(State) Value functions given policy 7

Expected return from that state (state, action)

Value function

r (o) 9F En ES
vi(s) £ ET[Ge| St =s] =E [Z’YthJrkH
k=0

St:5]

Action-value function (qg-function)

[oe)
def
q" (s, a) = E” [Gt | St =s,Ar=a] =FE" [E fyth+k+1
k=0

StZS,At:a]
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Optimal policy 7*, and optimal value v*(s)

v*(s) = expected (discounted) sum of rewards (until termination) assuming optimal actions.
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Optimal policy 7*, and optimal value v*(s)

v*(s) = expected (discounted) sum of rewards (until termination) assuming optimal actions.

Example 2, Robot non-deterministic: r(s) = {—0.04,1,—1}, v = 0.999999, ¢ = 0.03
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Optimal policy 7*, and optimal value v*(s)

v*(s) = expected (discounted) sum of rewards (until termination) assuming optimal actions.

Example 3, Robot non-deterministic: r(s) = {—0.01,1, -1}, v = 0.999999, ¢ = 0.03

0 1 2 3 0 1 2 3
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MDP search tree (Expectimax search)
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MDP search tree (Expectimax search)

The value of a g-state (s, a): Z%A

q*(s,a) = Z:P(Sl|a7 s) [r(s,a,s") + v v*(s')] A
s’ N
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MDP search tree (Expectimax search)

The value of a g-state (s, a): Z%A v¥(s)

q*(s,a) = Z:P(SIL’:?7 s) [r(s,a,s") + v v*(s')] A
s’ N

The value of a state s:

vi(s) = max q (s,a) » @ Vi (s)
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Bellman (optimality) equation

Ko\ ’ ’ *( )
vi(s) = aQAaé);P(s |2,5) [r(s,a,8") + 7v*(5)]

2| sTART

-]
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Value iteration — turn Bellman equation into Bellman update
* _ / / x ()
vi(s) = arenfé);p(s |a,5) [r(s,a,s) + 7" (5)]

» Start with arbitrary Vj(s) (except for terminals)
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* _ / / x ()
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Value iteration — turn Bellman equation into Bellman update
vi(s) = max Zp 'la,s) [r(s,a,s") +yv*(s)]

» Start with arbitrary Vj(s) (except for terminals)
» Compute Bellman update (one ply of expectimax from each state)

Vica(9)  RE) -+ a5 (s, V()

> Repeat until convergence

The idea: Bellman update makes local consistency with the Bellmann equation. Everywhere
locally consistent = globally optimal.

Value iteration algorithm is an example of Dynamic Programming method.
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Value iteration - Complexity of one estimation sweep

Viea(s) < R() + 7 max 3 p(s]s. 2) Vu(s)
s/

Cow>
o)
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Value iteration demo

Visa(s)  R(s) 7 max 3~ P(s'ls, a)Vi(s)
acA(s
S/
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Convergence

Vita(s) <= R(s) +~ ma, > " P(s'|s, a) Vi(s')
acA(s
S/

y<1
_Rmax S R(S) S Rmax
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Convergence

Vita(s) <= R(s) +~ max, > P(s'|s, a) Vi(s')
acAl(s
S/

v<1
_Rmax S R(S) S Rmax
Max norm:

Voo = max|V(s)]

Rmax
1—7v

U([SO, 51,52, .- 7500]) = nytR(sf) S
t=0
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Convergence cont'd
Vit1 < BV ... B as the Bellman update Vi i1(s) < R(s)+~ max) Yoo p(s']s, a) Vi(s')
a S

eA(
1BVi — BV|loo < IVi — ViIn
HBVk - VtrueHoo < 7||Vk - Vtrue”oo
Rewards are bounded, at the beginning then Value error is
||V0 - Vtrue”oo < 21Rfm,ayx
We run N iterations and reduce the error by factor v in each and want to stop the error is
below e:
YN2Rmax /(1 — 7) < € Taking logs, we find: N > %
To stop the iteration we want to find a bound relating the error to the size of one Bellman
update for any given iteration.

If we stop when

e(l —
Wiets — Villoo < X7

then also: || V11 — Viruelloo < € Proof on the next slide
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Convergence cont'd

I Vik+1 — Viruelloo < € is the same as || Vi1 — Violloo < €

Assume || Vi1 — Vi|loo = err

In each of the following iteration steps we reduce the error by the factor v (because
1BV — Virvelloo < ]| Vk — Viruelloo)- Till oo, the total sum of reduced errors is:

err
total = ~err + fyzerr + 73err + ’y4err 4= v
(1-7)
We want to have total < €.
yerr <.
(1-7)
From it follows that )
err < u
Y

Hence we can stop if || Vi1 — Villoo < €(1 —7) /v

25 /29



Value iteration algorithm

function VALUE-ITERATION(env,€) returns: state values V
input: env - MDP problem, ¢
V' < 0 in all states
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Value iteration algorithm

function VALUE-ITERATION(env,€) returns: state values V
input: env - MDP problem, ¢
V' < 0 in all states

repeat > iterate values until convergence
VvV > keep the last known values (deepcopy)
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for each state s in S do
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Sync vs. async Value iteration

function VALUE-ITERATION(env,€) returns: state values V
input: env - MDP problem, ¢
V' < 0 in all states

repeat > iterate values until convergence
V=V > don't keep the last known values
60+ 0 > reset the max difference

for each state s in S do
V'[s] + R(s) +~ m:(x) Yo P(s'[s,a)V(s')
acA(s

if |V/[s] — V][s]| > 6 then § < |V'[s] — V[s]|
until § < ¢e(1—7)/y
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What we have learned

» Uncertain outcome of an action

» Optimal policy (strategy, sequence of decisions) maximizes expected return (utility, sum
of rewards)

> (State) Value function given policy

» Value iteration method - through local (optimal) updated to global optimality
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