Sequential decisions under uncertainty
Markov Decision Processes (MDP)

Tomas Svoboda, Petr Posik

Vision for Robots and Autonomous Systems, Center for Machine Perception
Department of Cybernetics
Faculty of Electrical Engineering, Czech Technical University in Prague

March 19, 2025

1/29

http://cyber.felk.cvut.cz/vras
http://cmp.felk.cvut.cz
http://cyber.felk.cvut.cz
http://fel.cvut.cz
http://cvut.cz

Unreliable actions in observable grid world

START

[=1]

0.1

0.8

0.1

2/29

Unreliable actions in observable grid world

0.8

0.1 0.1
(1]

START

States s € S, actions a € A
(Transition) Model T(s,a,s’) = p(s’|s, a) = probability that a in s leads to s’/

2/29

Unreliable (results of) actions

3/29

Plan for uncertain world (MDPs)? Policy

» In deterministic world: Plan — sequence of actions
from Start to Goal.

4/29

Plan for uncertain world (MDPs)? Policy

» In deterministic world: Plan — sequence of actions
from Start to Goal.

> MDPs, we need a policy 7:S — A.

4/29

Plan for uncertain world (MDPs)? Policy

» In deterministic world: Plan — sequence of actions
from Start to Goal.

> MDPs, we need a policy 7:S — A.
» An action for each possible state. Why each?

4/29

Plan for uncertain world (MDPs)? Policy

» In deterministic world: Plan — sequence of actions
from Start to Goal.

> MDPs, we need a policy 7:S — A.
» An action for each possible state. Why each?
» What is the best policy?

4/29

Rewards, Reward function

Reward : Robot/Agent takes an action a and it is immediately rewarded.
Reward function r(s) (or r(s, a), r(s,a,s’))

| —0.04 (small penalty) for nonterminal states

N { +1 for terminal states

5/29

Markov Decision Processes (MDPs)

3 lilil 0.8
0.1 0.1
2 =]
1 START
1 2 3 4

(a) (b)

6/29

Markov Decision Processes (MDPs)

3 0.8
0.1 0.1
2 [=1]
1 START
1 2 3 4
(a) (b)

States s € S, actions a € A
Model T(s,a,s’) = p(s’|s,a) = probability that a in s leads to s’
Reward function r(s) (or r(s,a), r(s,a,s’))

[—0.04 (small penalty) for nonterminal states

N { +1 for terminal states

6/29

Robot/Agent walk — Episode

3
2 =11
1

1 2 3 4

(a) (b)

507

7/29

Robot/Agent walk — Episode

3
2 =11
1

1 2 3 4

(a) (b)

7/29

Robot/Agent walk — Episode

3
2 1]
1
1 2 3 4
(a) (b)

So, Ao, R1, S1,

7/29

Robot/Agent walk — Episode

3
2 1]
1
1 2 3 4
(a) (b)

So, Ao, R1, 51, As,

7/29

Robot/Agent walk — Episode

3
2 1]
1
1 2 3 4
(a) (b)

S0, Ao, R1,51,A1,R2, 52, A . ..

Episode : one walk from Sy to terminal.

7/29

Markovian property

» Given the present state, the future and the past are independent.

> MDP: Markov means action depends only on the current state.

» In search: successor function (transition model) depends on the current state only.

0.1

0.8

(b)

0.1

8/29

Desired robot/agent behavior specified through rewards

> Before: shortest/cheapest path
» Solution found by search.

9/29

Desired robot/agent behavior specified through rewards

> Before: shortest/cheapest path
» Solution found by search.
» Environment/problem is defined through the reward function.

» Optimal policy is to be computed/learned.

9/29

Desired robot/agent behavior specified through rewards

> Before: shortest/cheapest path

» Solution found by search.

» Environment/problem is defined through the reward function.
» Optimal policy is to be computed/learned.

We come back to this in more detail when discussing RL.

9/29

r(s) e {-2,1,-1}

r(s) € {-0.04,1, -1}

r(s) € {-0.01,1, -1}

a b c
A: A-a, B-b, C-c 0.8
B: A-b, B-a, C-c
C: A-b, B-c, C-a 0.1 0.1
D: A-c, B-a, C-b

10/29

Utilities of sequences; what is a better walk (episode)?

> State reward at time/step t, R;.
> State at time t, S;. State sequence [Sp, S1, S2, - - -, |

11/29

Utilities of sequences; what is a better walk (episode)?

> State reward at time/step t, R;.
> State at time t, S;. State sequence [Sp, S1, S2, - - -, |

Typically, consider stationary preferences on reward sequences:

[R, Ri, Ry, R3,...] - [R, R{, Ré, Ré,] = [Rl,Rg, Rs,..] ~ [Ri,Ré,Ré,..]

11/29

Utilities of sequences; what is a better walk (episode)?

> State reward at time/step t, R;.
> State at time t, S;. State sequence [Sp, S1, S2, - - -, |

Typically, consider stationary preferences on reward sequences:

[R, Ri, Ry, R3,...] - [R, R{, Ré, Ré,] = [Rl,Rg, Rs,..] ~ [Ri,Ré,Ré,..]

If stationary preferences :
Utility (h-history)
Uh([507517527"')]) = R]. + R2 + R3+

11/29

Utilities of sequences; what is a better walk (episode)?

> State reward at time/step t, R;.
> State at time t, S;. State sequence [Sp, S1, S2, - - -, |

Typically, consider stationary preferences on reward sequences:

[R, Ri, Ry, R3,...] - [R, R{, Ré, Ré,] = [Rl,Rg, Rs,..] ~ [Ri,Ré,Ré,..]

If stationary preferences :
Utility (h-history)
Uh([507517527"'7]) = R]. + R2 + R3+

If the horizon is finite - limited number of steps - preferences are nonstationary (depends on
how many steps left).

11/29

Finite walk — Episode — and its Return (by introducing Terminal state)

» Executing policy - sequence of states and rewards.

> Episode starts at t, ends at T (ending in a terminal state).

» Return (Utility) of the episode (policy execution)

Gt = Reyi+ Repo + Reyz +--- + Ry

. () () Rs=0

12/29

Horizon too far, infinite — Discount rewards

Problem: Infinite lifetime = additive utilities are infinite.

13/29

Horizon too far, infinite — Discount rewards

Problem: Infinite lifetime = additive utilities are infinite.

» Finite horizon: termination at a fixed time = nonstationary policy, 7(s) depends on the
time left.

13/29

Horizon too far, infinite — Discount rewards

Problem: Infinite lifetime = additive utilities are infinite.

» Finite horizon: termination at a fixed time = nonstationary policy, 7(s) depends on the
time left.

» Absorbing (terminal) state. (sooner or later walk ends here)

13/29

Horizon too far, infinite — Discount rewards

Problem: Infinite lifetime = additive utilities are infinite.

» Finite horizon: termination at a fixed time = nonstationary policy, 7(s) depends on the
time left.

» Absorbing (terminal) state. (sooner or later walk ends here)
» Discounted return , v < 1, Rt < Rmax
Rmax

o0
Gt = Res1 +Rera + ¥Rz +-+- = > 7 Reppqa < 1
k=0 —7

13/29

Horizon too far, infinite — Discount rewards

Problem: Infinite lifetime = additive utilities are infinite.

» Finite horizon: termination at a fixed time = nonstationary policy, 7(s) depends on the
time left.

» Absorbing (terminal) state. (sooner or later walk ends here)
» Discounted return , v < 1, Rt < Rmax
Rmax

o0
Gt = Res1 +Rera + ¥Rz +-+- = > 7 Reppqa < 1
k=0 —7

Returns are successive steps related to each other

Gt = Res1+YRes2+ Rz + 7P Reya+ -

13/29

Horizon too far, infinite — Discount rewards

Problem: Infinite lifetime = additive utilities are infinite.

» Finite horizon: termination at a fixed time = nonstationary policy, 7(s) depends on the
time left.

» Absorbing (terminal) state. (sooner or later walk ends here)
» Discounted return , v < 1, Rt < Rmax
Rmax

o0
Gt = Res1 +Rera + ¥Rz +-+- = > 7 Reppqa < 1
k=0 —7

Returns are successive steps related to each other

Gt = Repi+7Re42+ ’Yth+3 + 73Rt+4 + -
= Rep1+¥(Res2 + 7' Reyz + 7 Rea +)

13/29

Horizon too far, infinite — Discount rewards

Problem: Infinite lifetime = additive utilities are infinite.

» Finite horizon: termination at a fixed time = nonstationary policy, 7(s) depends on the
time left.

» Absorbing (terminal) state. (sooner or later walk ends here)
» Discounted return , v < 1, Rt < Rmax
Rmax

o0
Gt = Res1 +Rera + ¥Rz +-+- = > 7 Reppqa < 1
k=0 —7

Returns are successive steps related to each other

Gt = Repi+7Re42+ ’Yth+3 + 73Rt+4 + -
= Rep1+¥(Res2 + 7' Reyz + 7 Rea +)
= Rey1+76e1

13/29

MDPs recap

Markov decision processes (MDPs):
> Set of states S
» Set of actions A
» Transitions p(s’[s,a) or T(s,a,s’)
» Reward function r(s, a, s’); and discount ~
>

Alternative to last two: p(s’, rls, a).

14/29

MDPs recap

Markov decision processes (MDPs):
> Set of states S
» Set of actions A
» Transitions p(s’[s,a) or T(s,a,s’)
» Reward function r(s, a, s’); and discount ~
> Alternative to last two: p(s/, r|s, a).
MDP quantities:
» (deterministic) Policy 7(s) — choice of action for each state

» Return (Utility) of an episode (sequence) — sum of (discounted) rewards.

14/29

Expected Return of a policy 7

» Executing policy m — sequence of states (and rewards).

> Utility of a state sequence.

15/29

Expected Return of a policy 7

» Executing policy m — sequence of states (and rewards).
> Utility of a state sequence.

» But actions are unreliable - environment is stochastic.

15/29

Expected Return of a policy 7

» Executing policy m — sequence of states (and rewards).
> Utility of a state sequence.
P> But actions are unreliable - environment is stochastic.
> Expected return of a policy 7.

Starting at time t, i.e. S,

U™(Se) =E" [Z ’Yth+k+1]

k=0

15/29

(State) Value functions given policy 7

Expected return from that state (state, action)

Value function

r (o) 9F En ES
vi(s) £ ET[Ge| St =s] =E [Z’YthJrkH
k=0

St:5]

Action-value function (qg-function)

[oe)
def
q" (s, a) = E” [Gt | St =s,Ar=a] =FE" [E fyth+k+1
k=0

StZS,At:a]

16/29

Optimal policy 7*, and optimal value v*(s)

v*(s) = expected (discounted) sum of rewards (until termination) assuming optimal actions.

17/29

Optimal policy 7*, and optimal value v*(s)

v*(s) = expected (discounted) sum of rewards (until termination) assuming optimal actions.

Example 1, Robot deterministic: r(s) = {—0.04,1,—1}, v = 0.999999, ¢ = 0.03

0 1 2 3 0 1 2 3

17/29

Optimal policy 7*, and optimal value v*(s)

v*(s) = expected (discounted) sum of rewards (until termination) assuming optimal actions.

Example 2, Robot non-deterministic: r(s) = {—0.04,1,—1}, v = 0.999999, ¢ = 0.03

0 1 2 3 0 1 2 3

17/29

Optimal policy 7*, and optimal value v*(s)

v*(s) = expected (discounted) sum of rewards (until termination) assuming optimal actions.

Example 3, Robot non-deterministic: r(s) = {—0.01,1, -1}, v = 0.999999, ¢ = 0.03

0 1 2 3 0 1 2 3

17/29

MDP search tree (Expectimax search)

18/29

MDP search tree (Expectimax search)

The value of a g-state (s, a): Z%A

q*(s,a) = Z:P(Sl|a7 s) [r(s,a,s") + v v*(s')] A
s’ N

18/29

MDP search tree (Expectimax search)

The value of a g-state (s, a): Z%A v¥(s)

q*(s,a) = Z:P(SIL’:?7 s) [r(s,a,s") + v v*(s')] A
s’ N

The value of a state s:

vi(s) = max q (s,a) » @ Vi (s)

18/29

Bellman (optimality) equation

Ko\ ’ ’ *()
vi(s) = aQAaé);P(s |2,5) [r(s,a,8") + 7v*(5)]

2| sTART

-]

19/29

Value iteration — turn Bellman equation into Bellman update
* _ / / x ()
vi(s) = arenfé);p(s |a,5) [r(s,a,s) + 7" (5)]

» Start with arbitrary Vj(s) (except for terminals)

20/29

Value iteration — turn Bellman equation into Bellman update
* _ / / x ()
vi(s) = arenfé);p(s |a,5) [r(s,a,s) + 7" (5)]

» Start with arbitrary Vj(s) (except for terminals)
» Compute Bellman update (one ply of expectimax from each state)

Viea(s) = R() + 7 max 37 p(s's. 2)V(s)
S/

20/29

Value iteration — turn Bellman equation into Bellman update
vi(s) = max Zp 'la,s) [r(s,a,s") +yv*(s)]

» Start with arbitrary Vj(s) (except for terminals)
» Compute Bellman update (one ply of expectimax from each state)

Vica(9) RE) -+ a5 (s, V()

> Repeat until convergence

20/29

Value iteration — turn Bellman equation into Bellman update
vi(s) = max Zp 'la,s) [r(s,a,s") +yv*(s)]

» Start with arbitrary Vj(s) (except for terminals)
» Compute Bellman update (one ply of expectimax from each state)

Vica(9) RE) -+ a5 (s, V()

> Repeat until convergence

The idea: Bellman update makes local consistency with the Bellmann equation. Everywhere
locally consistent = globally optimal.

Value iteration algorithm is an example of Dynamic Programming method.

20/29

Value iteration - Complexity of one estimation sweep

Viea(s) < R() + 7 max 3 p(s]s. 2) Vu(s)
s/

Cow>
o)

21/29

Value iteration demo

Visa(s) R(s) 7 max 3~ P(s'ls, a)Vi(s)
acA(s
S/

22/29

Convergence

Vita(s) <= R(s) +~ ma, > " P(s'|s, a) Vi(s')
acA(s
S/

y<1
_Rmax S R(S) S Rmax

23/29

Convergence

Vita(s) <= R(s) +~ max, > P(s'|s, a) Vi(s')
acAl(s
S/

v<1
_Rmax S R(S) S Rmax
Max norm:

Voo = max|V(s)]

Rmax
1—7v

U([SO, 51,52, .- 7500]) = nytR(sf) S
t=0

23/29

Convergence cont'd
Vit1 < BV ... B as the Bellman update Vi i1(s) < R(s)+~ max) Yoo p(s']s, a) Vi(s')
a S

eA(
1BVi — BV|loo < IVi — ViIn
HBVk - VtrueHoo < 7||Vk - Vtrue”oo
Rewards are bounded, at the beginning then Value error is
||V0 - Vtrue”oo < 21Rfm,ayx
We run N iterations and reduce the error by factor v in each and want to stop the error is
below e:
YN2Rmax /(1 — 7) < € Taking logs, we find: N > %
To stop the iteration we want to find a bound relating the error to the size of one Bellman
update for any given iteration.

If we stop when

e(l —
Wiets — Villoo < X7

then also: || V11 — Viruelloo < € Proof on the next slide

24/29

Convergence cont'd

I Vik+1 — Viruelloo < € is the same as || Vi1 — Violloo < €

Assume || Vi1 — Vi|loo = err

In each of the following iteration steps we reduce the error by the factor v (because
1BV — Virvelloo <]| Vk — Viruelloo)- Till oo, the total sum of reduced errors is:

err
total = ~err + fyzerr + 73err + ’y4err 4= v
(1-7)
We want to have total < €.
yerr <.
(1-7)
From it follows that)
err < u
Y

Hence we can stop if || Vi1 — Villoo < €(1 —7) /v

25 /29

Value iteration algorithm

function VALUE-ITERATION(env,€) returns: state values V
input: env - MDP problem, ¢
V' < 0 in all states

26 /29

Value iteration algorithm

function VALUE-ITERATION(env,€) returns: state values V
input: env - MDP problem, ¢
V' < 0 in all states
repeat > iterate values until convergence

26 /29

Value iteration algorithm

function VALUE-ITERATION(env,€) returns: state values V
input: env - MDP problem, ¢
V' < 0 in all states

repeat > iterate values until convergence
VvV > keep the last known values (deepcopy)
0«0 > reset the max difference

26 /29

Value iteration algorithm

function VALUE-ITERATION(env,€) returns: state values V
input: env - MDP problem, ¢
V' < 0 in all states

repeat > iterate values until convergence
VvV > keep the last known values (deepcopy)
0«0 > reset the max difference

for each state s in S do
V'[s] < R(s) +~ m:(x) Yoo P(s'[s,a)V(s')
acA(s

if |V'[s] — V][s]| > ¢ then § < |V'[s] — V[s]|

26/29

Value iteration algorithm

function VALUE-ITERATION(env,€) returns: state values V
input: env - MDP problem, ¢
V' < 0 in all states

repeat > iterate values until convergence
VvV > keep the last known values (deepcopy)
0«0 > reset the max difference

for each state s in S do
V'[s] < R(s) +~ m:(x) Yoo P(s'[s,a)V(s')
acA(s

if |V'[s] — V][s]| > ¢ then § < |V'[s] — V[s]|
until § < e(1—7)/y

26/29

Sync vs. async Value iteration

function VALUE-ITERATION(env,€) returns: state values V
input: env - MDP problem, ¢
V' < 0 in all states

repeat > iterate values until convergence
V=V > don't keep the last known values
60+ 0 > reset the max difference

for each state s in S do
V'[s] + R(s) +~ m:(x) Yo P(s'[s,a)V(s')
acA(s

if |V/[s] — V][s]| > 6 then § < |V'[s] — V[s]|
until § < ¢e(1—7)/y

27 /29

What we have learned

» Uncertain outcome of an action

» Optimal policy (strategy, sequence of decisions) maximizes expected return (utility, sum
of rewards)

> (State) Value function given policy

» Value iteration method - through local (optimal) updated to global optimality

28 /29

References

Some figures from [1] (chapter 17) but notation slightly changed in order to adapt notation

from [2] (chapters 3, 4) which will help us in the Reinforcement Learning part of the course.
Note that the book [2] is available on-line.

[1] Stuart Russell and Peter Norvig.
Artificial Intelligence: A Modern Approach.
Prentice Hall, 3rd edition, 2010.
http://aima.cs.berkeley.edu/.

[2] Richard S. Sutton and Andrew G. Barto.
Reinforcement Learning; an Introduction.
MIT Press, 2nd edition, 2018.

http://www.incompleteideas.net/book/the-book-2nd.html.

29 /29

http://aima.cs.berkeley.edu/
http://www.incompleteideas.net/book/the-book-2nd.html

	Introduction
	Rewards

	MDPs
	Utilities

	Solving MDPs
	Utilities, Values, MEU
	Value iteration

	References

