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Deterministic opponent → stochastic environment
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b1, b2, b3 - stochastic branches, uncertain outcomes of a1 action (nature plays against(?)).

CHANCE nodes are “virtual”, b1, b2, b3 are not actions!
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Notes
Stochastic environment or stochastic opponent. Simply something that is playing against us.

CHANCE nodes are virtual – we use them to represent uncertain outcome of actions.
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Why? Actions may fail, . . .

Video: Slipping robot. Vision for Robotics and Autonomous Systems, http://cyber.felk.cvut.cz/vras, https://youtu.be/kvEEHNyCHMs
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Notes

At a certain moment, command is forward, flippers are rolling but the outcome is different, robot does not move

– it is slipping a bit until it catches the grip again.

file:///Users/svoboda/svoboda-git-clones/kui-felgit/kui-lectures/05_expectimax/figures/prague_rail_yard_mov_0075.avi
http://cyber.felk.cvut.cz/vras
https://youtu.be/kvEEHNyCHMs


Why? Action costs not deterministic, . . . , getting to work

A

R

3 12 8
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2 4 6

D
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minutes
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tram bike car
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? ? ?

Random variable: Function mapping situation on rails to values T (ri ) = ti :
t1 = T (r1) = 3 mins (free rails)
t2 = T (r2) = 12 mins (accident)
t3 = T (r3) = 8 mins (congestion)

MAX/MIN depends on what the ti options and terminal numbers mean. The goal may be to
get to work as fast as possible.
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Notes
We talk about games. However, game model may be well used for modeling real world problems.
This is just a two-ply game/tree. But think sequentially, or, recursively.
The numbers can be seen as journey duration - then A is the MIN node - min value is the best (MAX) for me.

We can convert it to a classical MAX thinking by changing the Utilies to Working hours-delay - and we want to

maximize the working hours.
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Chance nodes values
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?

▶ Average case, not the worst case.

▶ Calculate expected utilities . . .

▶ i.e. take weighted average (expectation) of successors
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Notes

Later we will learn how to formalize all this as Markov Decision Processes.
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Random variables, probability distribution, . . .
▶ Random variable - a function that maps experiment outcomes to values

▶ Probability distribution - assignment of probabilities (weights) to the values

▶ Random variable: T (s) - maps situation on rails to values

▶ Values of T (s): T (s) ∈ {3, 12, 8}, corresponding to outcomes s (free rails, accident,
congestion)

▶ Probability distribution: P(T = 3) = 0.3, P(T = 12) = 0.1, P(T = 8) = 0.6

A few reminders from laws of probability, Probabilities:

▶ always non-negative,

▶ sum over all possible outcomes is equal to 1.
6 / 33

Notes
You may also think about situation on rails s in continuous world:

• T (s) maps situation to a travel time, T : s → R+, depending on traffic intensity

• “free rails” corresponds to T (s) ≤ some threshold number.

• Probability has a meaning of: what is the chance that the traffic intensity will be higher than something
and smaller than something else. P(tlow ≤ T (s) < thigh).
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Expectations, . . .

How long does it take to go to work by tram?

▶ Depends on the random variable T with possible values t1, t2, t3 (corresponding to
situation on rails).

▶ What is the expectation of the time?
Using values t1, t2, t3 of random variable T :

E (T ) = P(T = t1)t1 + P(T = t2)t2 + P(T = t3)t3 = (1)

= pT (t1)t1 + pT (t2)t2 + pT (t3)t3 (2)

Or, using random outcomes r1, r2, r3:

E (T ) = P(r1)T (r1) + P(r2)T (r2) + P(r3)T (r3)

Expected value of a discrete r.v.: Weighted average

7 / 33

Notes

The Expectation is a kind of long-horizon/many-realizations value. Think about trials/simulations.
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Expectimax

function expectimax(state) return a value
if is-terminal(state): return utility(state)
if state (next agent) is MAX: return max-value(state)
if state (next agent) is CHANCE: return exp-value(state)

function max-value(state) return value v
v ← −∞
for a in actions(state) do

v ← max(v , expectimax(result(state,a)))

function exp-value(state) return value v
v ← 0
for all r ∈ random outcomes do

v ← v + P(r) expectimax(result(state,r))

8 / 33

Notes

The scheme very much resembles the MINIMAX algorithm. Before, we had the deterministic opponent – MIN

node.
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How about the Reversi game?

▶ Is there any space for randomness?

▶ Is the opponent really greedy and clever enough?

▶ Hope for chance when there is adversarial world – Dangerous optimism .

▶ Assuming worst case even if it is not likely – Dangerous pessimism .

9 / 33

Notes

For games where there is only a single final outcome (value)—e.g., you win, looose, or draw—and no bonus for
winning fast, it does not pay off to be optimistic and assume your opponent is a fool. Such optimism can be
dangerous.
For other games, like the Pacman example in the UC Berkeley lecture where there is cost for every move you
make, assuming the ghost is a perfect adversary while it is behaving randomly may cost you some points.
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Games with chance and strategy

Images from https://en.wikipedia.org/wiki/Backgammon.
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Notes
Read the rules at: https://en.wikipedia.org/wiki/Backgammon or elsewhere.
White moves clockwise - toward 25, black counterclockwise - toward 0.
Moving step defined by the dice, one after another.
Moving out the gameboard from last quarter only after all stones are there.
No move to position where more than one opp stone.

https://en.wikipedia.org/wiki/Backgammon
https://en.wikipedia.org/wiki/Backgammon


Random variable: Throwing two dice

Do we care which die comes first?

What is the probability of , ?1

A 1/24

B 1/36

C 1/18

D 1/6

1Source of dice images: https://flyclipart.com/dice-clipart-tool-rolling-dice-clipart-248574
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Mixing MAX, CHANCE, and MIN nodes

CHANCE

MIN

MAX

CHANCE

MAX

. . .

. . .

B

1

. . .
1,1
1/36

1,2
1/18

TERMINAL

1,2
1/18

......

.........

......

1,1
1/36

...

...... ......

...
C

. . .

1/18
6,5 6,6

1/36

1/18
6,5 6,6

1/36

2 –11–1

1. (MAX) I play

2. (MIN) Opponent throws dices

3. (MIN) Opponent plays

4. (MAX) I throw dices

0. (MAX) I throw dices

12 / 33

Notes
What are the probabilities, what do they mean? Here, they represent solely the randomness (rolling dice).

This is a combination of playing against an opponent (minimax) and chance/randomness (expectimax) in one

game. Hence: expectiminimax.



Mixing MAX, CHANCE, and MIN nodes

12 / 33

Notes
What are the probabilities, what do they mean? Here, they represent solely the randomness (rolling dice).

This is a combination of playing against an opponent (minimax) and chance/randomness (expectimax) in one

game. Hence: expectiminimax.



Mixing layer types - chances inserted
CHANCE

MIN

MAX

CHANCE
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C
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1/18
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MAX A

B C D

3 12 8 2 4 6 14 5 2

3 2 2

3
a1 a2

a3

b1
b2

b3 c1
c2

c3 d1
d2

d3

MIN

Extra random agent that moves after each MAX and MIN agent

expectiminimax(s) =

=


utility(s,max) if is-terminal(s)
maxaexpectiminimax(result(s, a)) if to-play(s) = max
minaexpectiminimax(result(s, a)) if to-play(s) = min∑

r P(r)expectiminimax(result(s, r)) if to-play(s) = chance

13 / 33
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Mixing chance into min/max tree. How big is the tree going to be?
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▶ b branching factor

▶ m maximum depth

▶ n number of distinct rolls

What is the time complexity of
expectiminimax?

A O(bmn)

B O(bmn)

C O(bmnb)

D O(bmnm)

14 / 33

Notes

O(bmnm)

There are actually nm different minimax trees. Each layer of n distinct rolls multiplies the number of min-max
trees.
It is BIG! With roughly 20 legal moves in every position and 21 possible rolls of 2 dice, for expectimax search
into depth = 2, we allready have:
20 ∗ (21 ∗ 20)3 = 1.2 ∗ 109 possibilities.
So we cannot get very far with search. At the same time, given the stochasticity, the fact that we cannot search
so deep is less damaging.
We need an evaluation function.
Computer program for playing Backgammon – TD-Gammon, see Chapter 16.1 [4] for a thorough explanation.
We will discuss the Reinforcement learning and learning of linear classifiers later in the course.

• depth 2

• good evaluation function + reinforcement learning

• 1st AI world champion in any game



Evaluation function

CHANCE

MIN

MAX

2 2 3 3 1 1 4 4

2 3 1 4

.9 .1 .9 .1

2.1 1.3

20 20 30 30 1 1 400 400

20 30 1 400

.9 .1 .9 .1

21 40.9

a1 a2 a1 a2

▶ Left: a1 is the best. Right: a2 is the best. Ordering of the (terminal) leaves is the same.
▶ Scale matters! Not only ordering.
▶ Can we prune the tree? (α, β like?)

15 / 33

Notes
About the scale. Utilities will be discussed later in this lecture.

Note: Only linear transformations of utilities preserve the same optimal choice of actions.
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Pruning expectiminimax tree
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2 –11–1
▶ Bounds on terminal utilities needed. Terminal values from −2 to 2.

▶ Monte Carlo simulation for evaluation of a position (state).
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Notes

Monte Carlo Simulation . From a given position play against itself, many times, use random dice rolls. Collect

results. Compute state value.
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Where to prune the Expectimax tree

▶ Assume terminal nodes bounded
to −2 to 2, inclusive

▶ Going from left to right.

▶ Which branches can be pruned
out?

71

0.5 0.50.5 0.5

2 2 1 2 0 2 -1 0

Figure 5.18 FILES: figures/pruning.eps (Tue Nov 3 16:23:22 2009). The complete game tree for
a trivial game with chance nodes.

17 / 33

Notes



A B

C D
Assume terminal nodes bounded to −2 to 2, inclusive. Going from left to right. 18 / 33

Notes



Multi-player games
to move

A

B

C

A
(1, 2, 6) (4, 2, 3) (6, 1, 2) (7, 4,1) (5,1,1) (1, 5, 2) (7, 7,1) (5, 4, 5)

(1, 2, 6) (6, 1, 2) (1, 5, 2) (5, 4, 5)

(1, 2, 6) (1, 5, 2)

(1, 2, 6)

X

▶ Utility tuples

▶ Each player maximizes its own

▶ Coalitions, cooperations, competitions may be dynamic

19 / 33

Notes
I bet everybody remembers playing this kind of game . . . Remember the games you played when being kids.
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Uncertainty recap (enough games, back to the robots/agents)

▶ Uncertain outcome of an action.

▶ Robot/Agent may not know the current state!

20 / 33

Notes
What is state for the robot?

• inner state of the robot (interoceptive measurement)

– speed
– inclination, orientation (N,E,S,W)
– battery status
– · · ·

• environment (exteroceptive measurement/sensing)

– terrain profile close to robot
– robot position within the world frame
– · · ·

All of this may influence the decision about the best next action(s).
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Uncertain outcome of an action

Video: Climbing stairs failure, From: http://robotics.fel.cvut.cz/cras/darpa-subt/
21 / 33

Notes

Climbing up, rear flipper got too weak, gave up supporting the robot and it flipped back. Reason uknown, the

robot climbed up similar stairs successfully many times.

file:///Users/svoboda/svoboda-git-clones/kui-felgit/kui-lectures/05_expectimax/figures/backflip.webm
http://robotics.fel.cvut.cz/cras/darpa-subt/


Uncertain, partially observable environment

▶ Current state s may be unknown, observations e

▶ Take action a

▶ Uncertain outcome result(a)

▶ Probability of outcome s ′ given e is

P(result(a) = s ′|a, e)

▶ Utility function U(s) corresponds to agent preferences.

▶ Expected utility of an action a given e:

EU(a|e) =
∑
s′

P(result(a) = s ′|a, e)U(s ′)

Amatrice, Italy, 2016. 22 / 33

Notes

See [3], Ch. 16 Making simple decisions.
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Rational agent

Agent’s expected utility of an action a given e:

EU(a|e) =
∑
s′

P(result(a) = s ′|a, e)U(s ′)

What should a rational agent do?
Is it then all solved? Do we know all what we need?

▶ P(result(a) = s ′|a, e)
▶ U(s ′)

23 / 33

Notes
Well, obviously take the action that maximizes the expected utility.

In some realms is the utility U(s) replaced by a loss L(s), and the rational agent picks the minimum loss.

Complete causal model is needed to compute the probabilites P, and a complete search/planning to the end

required for computing the utility U. And, eh, the state space may be, and often is, infinite. Enough pessimism,

we will come back to this in next lectures/courses.
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Utilities

▶ Where do utilities come from?

▶ Does averaging make sense?

▶ Do they exist?

▶ What if our preferences can’t be described by utilities?

24 / 33

Notes

Before we start solving all this, let’s talk about utilities. Where do they come from, are they unique, . . . . Actually,

let’s talk about preferences first, we all have some preferences . Later, we will derive utilities from them.



Agent/Robot Preferences

▶ Prizes A,B

▶ Lottery: uncertain prizes L = [p,A; (1− p),B]

Preference, indifference, . . .

▶ Robot prefers A over B: A ≻ B

▶ Robot has no preferences: A ∼ B

▶ in between: A ≿ B

25 / 33

Notes
You may use agent/robot/algorithm/. . . , according to your preferences.

Lottery can be seen as a chance node.
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Rational preferences

▶ Transitivity: (A ≻ B) ∧ (B ≻ C )⇒ (A ≻ C )

▶ Completeness: (A ≻ B) ∨ (B ≻ A) ∨ (A ∼ B)

▶ Continuity: (A ≻ B ≻ C )⇒ ∃p [p,A; 1− p,C ] ∼ B

▶ Substituability: A ∼ B ⇒ [p,A; 1− p,C ] ∼ [p,B; 1− pC ]. The same for ≻ and ∼.
▶ Monotonocity: A ≻ B ⇒ (p > q)⇔ [p,A; 1− p,B] ≻ [q,A; 1− q,B]. Agent must prefer

a lottery with higher chance to win.

▶ Decomposability, compressing compound lotteries into one:
[p,A; 1− p, [q,B; 1− q,C ]] ∼ [p,A; (1− p)q,B; (1− p)(1− q),C ]

Axioms of utility theory.
Motivation: if agent/robot violates an axiom ⇒ irrational agent/robot.

26 / 33

Notes
If you think it through you will see that the properties of rational preferences are quite logical, rational if you
want ;-)

• Transitivity: (A ≻ B) ∧ (B ≻ C) ⇒ (A ≻ C)
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• Monotonocity: A ≻ B ⇒ (p > q) ⇔ [p,A; 1− p,B] ≻ [q,A; 1− q,B]. Agent must prefer a lottery with
higher chance to win.

• Decomposability, compressing compound lotteries into one:
[p,A; 1− p, [q,B; 1− q,C ]] ∼ [p,A; (1− p)q,B; (1− p)(1− q),C ]

Any agent that breaks the rules can be shown irrational.
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Transitivity and decomposability
Goods A,B,C and (nontransitive) preferences of an (irrational) agent A ≻ B ≻ C ≻ A.

1¢

1¢

1¢
A

B C

p

q

A

B

C

p

(1–p)

(1–p)(1–q)

(1–q)

A

B

C

is equivalent to

(a) (b)

(1–p)q

27 / 33

Notes

A,B,C are goods. Suppose an agent has A. As the agent prefers C ≻ A we offer him/her the exchange plus the

agent gives one cent (the smallest currency unit). The same for B ≻ C , and A ≻ B. At the end of the round,

the agent has A again but also 3 cents less. And this can continue until the poor agent has no money at all.



Maximum expected utility principle

Given the rational preferences (constraints), there exists a real valued function u such that:

u(A) > u(B) ⇔ A ≻ B

u(A) = u(B) ⇔ A ∼ B

Expected utility of a Lotery L (outcomes si with probabilities pi ):

L([p1,S1; · · · ; pn, Sn]) =
∑
i

piu(Si )

Proof in [5].
Is a utility u function unique?

28 / 33

Notes
In other words, we can find a utility to any preferences.
No, it is not unique:

u′(S) = au(S) + b

a > 0 makes the agent behavior the same. Think about Fahrenheit to Celsius conversion.
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L([p1,S1; · · · ; pn, Sn]) =
∑
i

piu(Si )

Proof in [5].
Is a utility u function unique?
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Notes
In other words, we can find a utility to any preferences.
No, it is not unique:

u′(S) = au(S) + b

a > 0 makes the agent behavior the same. Think about Fahrenheit to Celsius conversion.



Human utilities
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Utility of money

You triumphed in a TV show!

a) Take $1, 000, 000 . . . or

b) Flip a coin and loose all or win $2, 500, 000
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Notes

Lottery b) Expected monetary value (EMP) vs. utility. Clearly EMP(b) is bigger than EMP(a). But what about

the (human) Utility?



Utility of money: human psychology vs. hard data

Slope	is	decreasing
=>	risk-averse	action

Slope	is	increasing
=>	risk-seeking

Empirical	data	over	limited	range
Full	range

debts

h
u
m
a
n
	p
e
rc
e
iv
e
d
	u
ti
lit
y

monetary	value

31 / 33

Notes
Lottery b) Expected monetary value (EMP) vs. utility. Clearly EMP(b) is bigger than EMP(a). But what about
the (human) Utility?

u(a) = u(Sk+1,000,000)

u(b) =
1

2
u(Sk) +

1

2
u(Sk+2,500,000),

where Sk is the state of possessing k$ (current wealth).
E.g., imagine u(Sk) = 5, u(Sk+1000000) = 8, U(Sk+2500000) = 9. Then the rational decision is to decline the
gamble.

Based on empirical studies, the human utility of money is rather logarithmic. People are in general risk-averse.

This also motivates insurances.
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Notes
Lottery b) Expected monetary value (EMP) vs. utility. Clearly EMP(b) is bigger than EMP(a). But what about
the (human) Utility?

u(a) = u(Sk+1,000,000)

u(b) =
1

2
u(Sk) +
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where Sk is the state of possessing k$ (current wealth).
E.g., imagine u(Sk) = 5, u(Sk+1000000) = 8, U(Sk+2500000) = 9. Then the rational decision is to decline the
gamble.
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