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Deterministic opponent → stochastic environment
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b1, b2, b3 - stochastic branches, uncertain outcomes of a1 action (nature plays against(?)).

CHANCE nodes are “virtual”, b1, b2, b3 are not actions!
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Why? Actions may fail, . . .

Video: Slipping robot. Vision for Robotics and Autonomous Systems, http://cyber.felk.cvut.cz/vras, https://youtu.be/kvEEHNyCHMs
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Why? Action costs not deterministic, . . . , getting to work
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Random variable: Function mapping situation on rails to values T (ri ) = ti :
t1 = T (r1) = 3 mins (free rails)
t2 = T (r2) = 12 mins (accident)
t3 = T (r3) = 8 mins (congestion)

MAX/MIN depends on what the ti options and terminal numbers mean. The goal may be to
get to work as fast as possible.
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Chance nodes values

A

R

3 12 8

C

2 4 6

D

14 5 2

At home

minutes

MAX/MIN

CHANCE

tram bike car

r1 r2 r3

? ? ?

?

▶ Average case, not the worst case.

▶ Calculate expected utilities . . .

▶ i.e. take weighted average (expectation) of successors
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Random variables, probability distribution, . . .
▶ Random variable - a function that maps experiment outcomes to values

▶ Probability distribution - assignment of probabilities (weights) to the values

▶ Random variable: T (s) - maps situation on rails to values

▶ Values of T (s): T (s) ∈ {3, 12, 8}, corresponding to outcomes s (free rails, accident,
congestion)

▶ Probability distribution: P(T = 3) = 0.3, P(T = 12) = 0.1, P(T = 8) = 0.6

A few reminders from laws of probability, Probabilities:

▶ always non-negative,

▶ sum over all possible outcomes is equal to 1.
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Expectations, . . .

How long does it take to go to work by tram?

▶ Depends on the random variable T with possible values t1, t2, t3 (corresponding to
situation on rails).

▶ What is the expectation of the time?
Using values t1, t2, t3 of random variable T :

E (T ) = P(T = t1)t1 + P(T = t2)t2 + P(T = t3)t3 = (1)

= pT (t1)t1 + pT (t2)t2 + pT (t3)t3 (2)

Or, using random outcomes r1, r2, r3:

E (T ) = P(r1)T (r1) + P(r2)T (r2) + P(r3)T (r3)

Expected value of a discrete r.v.: Weighted average
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Expectimax

function expectimax(state) return a value
if is-terminal(state): return utility(state)
if state (next agent) is MAX: return max-value(state)
if state (next agent) is CHANCE: return exp-value(state)

function max-value(state) return value v
v ← −∞
for a in actions(state) do

v ← max(v , expectimax(result(state,a)))

function exp-value(state) return value v
v ← 0
for all r ∈ random outcomes do

v ← v + P(r) expectimax(result(state,r))
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How about the Reversi game?

▶ Is there any space for randomness?

▶ Is the opponent really greedy and clever enough?

▶ Hope for chance when there is adversarial world – Dangerous optimism .

▶ Assuming worst case even if it is not likely – Dangerous pessimism .
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Games with chance and strategy

Images from https://en.wikipedia.org/wiki/Backgammon.

10 / 33
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Random variable: Throwing two dice

Do we care which die comes first?

What is the probability of , ?1

A 1/24

B 1/36

C 1/18

D 1/6

1Source of dice images: https://flyclipart.com/dice-clipart-tool-rolling-dice-clipart-248574
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Mixing MAX, CHANCE, and MIN nodes
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2 –11–1

1. (MAX) I play

2. (MIN) Opponent throws dices

3. (MIN) Opponent plays

4. (MAX) I throw dices

0. (MAX) I throw dices
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Mixing MAX, CHANCE, and MIN nodes

12 / 33



Mixing layer types - chances inserted
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MAX A

B C D

3 12 8 2 4 6 14 5 2

3 2 2

3
a1 a2

a3

b1
b2

b3 c1
c2

c3 d1
d2

d3

MIN

Extra random agent that moves after each MAX and MIN agent

expectiminimax(s) =

=


utility(s,max) if is-terminal(s)
maxaexpectiminimax(result(s, a)) if to-play(s) = max
minaexpectiminimax(result(s, a)) if to-play(s) = min∑

r P(r)expectiminimax(result(s, r)) if to-play(s) = chance
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Mixing chance into min/max tree. How big is the tree going to be?
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2 –11–1

▶ b branching factor

▶ m maximum depth

▶ n number of distinct rolls

What is the time complexity of
expectiminimax?

A O(bmn)

B O(bmn)

C O(bmnb)

D O(bmnm)
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Evaluation function

CHANCE

MIN

MAX

2 2 3 3 1 1 4 4

2 3 1 4

.9 .1 .9 .1

2.1 1.3

20 20 30 30 1 1 400 400

20 30 1 400

.9 .1 .9 .1

21 40.9

a1 a2 a1 a2

▶ Left: a1 is the best. Right: a2 is the best. Ordering of the (terminal) leaves is the same.
▶ Scale matters! Not only ordering.
▶ Can we prune the tree? (α, β like?)
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Pruning expectiminimax tree
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2 –11–1
▶ Bounds on terminal utilities needed. Terminal values from −2 to 2.

▶ Monte Carlo simulation for evaluation of a position (state).
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Where to prune the Expectimax tree

▶ Assume terminal nodes bounded
to −2 to 2, inclusive

▶ Going from left to right.

▶ Which branches can be pruned
out?

71

0.5 0.50.5 0.5

2 2 1 2 0 2 -1 0

Figure 5.18 FILES: figures/pruning.eps (Tue Nov 3 16:23:22 2009). The complete game tree for
a trivial game with chance nodes.
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A B

C D
Assume terminal nodes bounded to −2 to 2, inclusive. Going from left to right. 18 / 33



Multi-player games
to move

A

B

C

A
(1, 2, 6) (4, 2, 3) (6, 1, 2) (7, 4,1) (5,1,1) (1, 5, 2) (7, 7,1) (5, 4, 5)

(1, 2, 6) (6, 1, 2) (1, 5, 2) (5, 4, 5)

(1, 2, 6) (1, 5, 2)

(1, 2, 6)

X

▶ Utility tuples

▶ Each player maximizes its own

▶ Coalitions, cooperations, competitions may be dynamic
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Uncertainty recap (enough games, back to the robots/agents)

▶ Uncertain outcome of an action.

▶ Robot/Agent may not know the current state!
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Uncertain outcome of an action

Video: Climbing stairs failure, From: http://robotics.fel.cvut.cz/cras/darpa-subt/
21 / 33

file:///Users/svoboda/svoboda-git-clones/kui-felgit/kui-lectures/05_expectimax/figures/backflip.webm
http://robotics.fel.cvut.cz/cras/darpa-subt/


Uncertain, partially observable environment

▶ Current state s may be unknown, observations e

▶ Take action a

▶ Uncertain outcome result(a)

▶ Probability of outcome s ′ given e is

P(result(a) = s ′|a, e)

▶ Utility function U(s) corresponds to agent preferences.

▶ Expected utility of an action a given e:

EU(a|e) =
∑
s′

P(result(a) = s ′|a, e)U(s ′)

Amatrice, Italy, 2016. 22 / 33
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Rational agent

Agent’s expected utility of an action a given e:

EU(a|e) =
∑
s′

P(result(a) = s ′|a, e)U(s ′)

What should a rational agent do?
Is it then all solved? Do we know all what we need?

▶ P(result(a) = s ′|a, e)
▶ U(s ′)
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Utilities

▶ Where do utilities come from?

▶ Does averaging make sense?

▶ Do they exist?

▶ What if our preferences can’t be described by utilities?
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Agent/Robot Preferences

▶ Prizes A,B

▶ Lottery: uncertain prizes L = [p,A; (1− p),B]

Preference, indifference, . . .

▶ Robot prefers A over B: A ≻ B

▶ Robot has no preferences: A ∼ B

▶ in between: A ≿ B
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Rational preferences

▶ Transitivity: (A ≻ B) ∧ (B ≻ C )⇒ (A ≻ C )

▶ Completeness: (A ≻ B) ∨ (B ≻ A) ∨ (A ∼ B)

▶ Continuity: (A ≻ B ≻ C )⇒ ∃p [p,A; 1− p,C ] ∼ B

▶ Substituability: A ∼ B ⇒ [p,A; 1− p,C ] ∼ [p,B; 1− pC ]. The same for ≻ and ∼.
▶ Monotonocity: A ≻ B ⇒ (p > q)⇔ [p,A; 1− p,B] ≻ [q,A; 1− q,B]. Agent must prefer

a lottery with higher chance to win.

▶ Decomposability, compressing compound lotteries into one:
[p,A; 1− p, [q,B; 1− q,C ]] ∼ [p,A; (1− p)q,B; (1− p)(1− q),C ]

Axioms of utility theory.
Motivation: if agent/robot violates an axiom ⇒ irrational agent/robot.
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Transitivity and decomposability
Goods A,B,C and (nontransitive) preferences of an (irrational) agent A ≻ B ≻ C ≻ A.

1¢

1¢

1¢
A

B C

p

q

A

B

C

p

(1–p)

(1–p)(1–q)

(1–q)

A

B

C

is equivalent to

(a) (b)

(1–p)q
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Maximum expected utility principle

Given the rational preferences (constraints), there exists a real valued function u such that:

u(A) > u(B) ⇔ A ≻ B

u(A) = u(B) ⇔ A ∼ B

Expected utility of a Lotery L (outcomes si with probabilities pi ):

L([p1,S1; · · · ; pn, Sn]) =
∑
i

piu(Si )

Proof in [5].
Is a utility u function unique?
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Human utilities
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Utility of money

You triumphed in a TV show!

a) Take $1, 000, 000 . . . or

b) Flip a coin and loose all or win $2, 500, 000

30 / 33



Utility of money: human psychology vs. hard data

Slope	is	decreasing
=>	risk-averse	action

Slope	is	increasing
=>	risk-seeking

Empirical	data	over	limited	range
Full	range

debts

h
u
m
a
n
	p
e
rc
e
iv
e
d
	u
ti
lit
y

monetary	value

31 / 33



Utility of money: human psychology vs. hard data

Slope	is	decreasing
=>	risk-averse	action

Slope	is	increasing
=>	risk-seeking

Empirical	data	over	limited	range
Full	range

debts

h
u
m
a
n
	p
e
rc
e
iv
e
d
	u
ti
lit
y

monetary	value

Slope	is	decreasing
=>	risk-averse	action

Slope	is	increasing
=>	risk-seeking

Empirical	data	over	limited	range
Full	range

debts

h
u
m
a
n
	p
e
rc
e
iv
e
d
	u
ti
lit
y

monetary	value

31 / 33



References I

Some figures from [3], Chapters 5, 16. Human utilities are discussed in [2]. This lecture has
been also greatly inspired by the 7th lecture of CS 188 at http://ai.berkeley.edu as it
convenietly bridges the world of deterministic search and sequential decisions in uncertain
worlds.

[1] Christopher M. Bishop.
Pattern Recognition and Machine Learning.
Springer Science+Bussiness Media, New York, NY, 2006.
https://www.microsoft.com/en-us/research/uploads/prod/2006/01/
Bishop-Pattern-Recognition-and-Machine-Learning-2006.pdf.

[2] Daniel Kahneman.
Thinking, Fast and Slow.
Farrar, Straus and Giroux, 2011.

32 / 33

http://ai.berkeley.edu
https://www.microsoft.com/en-us/research/uploads/prod/2006/01/Bishop-Pattern-Recognition-and-Machine-Learning-2006.pdf
https://www.microsoft.com/en-us/research/uploads/prod/2006/01/Bishop-Pattern-Recognition-and-Machine-Learning-2006.pdf


References II

[3] Stuart Russell and Peter Norvig.
Artificial Intelligence: A Modern Approach.
Prentice Hall, 3rd edition, 2010.
http://aima.cs.berkeley.edu/.

[4] Richard S. Sutton and Andrew G. Barto.
Reinforcement Learning; an Introduction.
MIT Press, 2nd edition, 2018.
http://www.incompleteideas.net/book/the-book-2nd.html.

[5] John von Neumann and Oskar Morgenstern.
Theory of Games and Economic Behavior.
Princeton, 1944.
https://en.wikipedia.org/wiki/Theory of Games and Economic Behavior, Utility theorem.

33 / 33

http://aima.cs.berkeley.edu/
http://www.incompleteideas.net/book/the-book-2nd.html
https://en.wikipedia.org/wiki/Theory_of_Games_and_Economic_Behavior
https://en.wikipedia.org/wiki/Von_Neumann–Morgenstern_utility_theorem

	Introduction
	Chance nodes
	Expectimax algorithm

	Probabilities
	Games mixing chances and strategy
	Mixing layer types

	Decisions under uncertainty
	Utilities

	References

