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Deterministic opponent — stochastic environment
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b1, bo, b3 - stochastic branches, uncertain outcomes of a; action (nature plays against(?)).
CHANCE nodes are “virtual”, by, by, bz are not actions!

2/33



Why? Actions may fail, ...

Video: Slipping robot. Vision for Robotics and Autonomous Systems, http://cyber.felk.cvut.cz/vras, https://youtu.be/kvEEHNyCHMs
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https://youtu.be/kvEEHNyCHMs

Why? Action costs not deterministic, ..., getting to work
A At home

tram bike car
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Why? Action costs not deterministic, ..., getting to work

A At home
tram bike car
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3 12 8 minutes

Random variable: Function mapping situation on rails to values T(r;) = t;:
t1 = T(r1) = 3 mins (free rails)

ty = T(r2) = 12 mins (accident)

t3 = T(r3) = 8 mins (congestion)
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Why? Action costs not deterministic, ..., getting to work
A At home MAX/MIN

tram blke car

CHANCE

n f2 f3
3/

Random variable: Function mapping situation on rails to values T(r;) = t;:
t1 = T(r1) = 3 mins (free rails)

ty = T(r2) = 12 mins (accident)

t3 = T(r3) = 8 mins (congestion)

2  minutes

MAX/MIN depends on what the t; options and terminal numbers mean. The goal may be to
get to work as fast as possible.
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Chance nodes values
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Chance nodes values

? Athome MAX/MIN

tram
CHANCE

rn r2 f3
3 2  minutes
| 2 Average case, not the worst case.
» Calculate expected utilities . ..

> i.e. take weighted average (expectation) of successors
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Random variables, probability distribution, ...

» Random variable - a function that maps experiment outcomes to values
» Probability distribution - assignment of probabilities (weights) to the values
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» Random variable - a function that maps experiment outcomes to values
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» Random variable: T(s) - maps situation on rails to values
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Random variables, probability distribution,
» Random variable - a function that maps experiment outcomes to values
» Probability distribution - assignment of probabilities (weights) to the values

» Random variable: T(s) - maps situation on rails to values
> Values of T(s): T(s) € {3,12,8}, corresponding to outcomes s (free rails, accident,

congestion)
> Probability distribution: P(T =3) =0.3, P(T =12) =0.1, P(T =8) = 0.6
A few reminders from laws of probability, Probabilities:
P always non-negative,

» sum over all possible outcomes is equal to 1.
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Expectations, ...

How long does it take to go to work by tram?

» Depends on the random variable T with possible values tj, to, t3 (corresponding to
situation on rails).

> What is the expectation of the time?
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Expectations, ...

How long does it take to go to work by tram?
» Depends on the random variable T with possible values tj, to, t3 (corresponding to

situation on rails).

> What is the expectation of the time?
Using values t1, t2, t3 of random variable T:

E(T)=P(T=t1)t1 + P(T = to)ta + P(T = t3)t3 = (1)
= pr(t1)t1 + pr(t2)t2 + pr(t3)t3 (2)
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Expectations, ...

How long does it take to go to work by tram?

» Depends on the random variable T with possible values tj, to, t3 (corresponding to
situation on rails).

> What is the expectation of the time?
Using values t1, t2, t3 of random variable T:

E(T)=P(T=t1)t1 + P(T = to)ta + P(T = t3)t3 = (1)
= pr(t1)t1 + pr(t2)t2 + pr(t3)t3 (2)

Or, using random outcomes ry, 12, r3:
E(T) = P(rn)T(n) + P(r2) T(r2) + P(r3) T(r3)

Expected value of a discrete r.v.: Weighted average
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Expectimax

function EXPECTIMAX(state) return a value
if IS-TERMINAL(state): return UTILITY (state)
if state (next agent) is MAX: return MAX-VALUE(state)
if state (next agent) is CHANCE: return EXP-VALUE(state)

function MAX-VALUE(state) return value v
V ¢ —00
for a in ACTIONS(state) do
v < max(v, EXPECTIMAX(RESULT(state,a)))
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Expectimax

function EXPECTIMAX(state) return a value
if IS-TERMINAL(state): return UTILITY (state)
if state (next agent) is MAX: return MAX-VALUE(state)
if state (next agent) is CHANCE: return EXP-VALUE(state)

function MAX-VALUE(state) return value v
V ¢ —00
for a in ACTIONS(state) do
v < max(v, EXPECTIMAX(RESULT(state,a)))

function EXP-VALUE(state) return value v
v+ 0
for all r € random outcomes do
v < v + P(r) EXPECTIMAX(RESULT(state,r))
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How about the Reversi game?

> |s there any space for randomness?

> Is the opponent really greedy and clever enough?
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How about the Reversi game?

> |s there any space for randomness?

> Is the opponent really greedy and clever enough?
» Hope for chance when there is adversarial world — Dangerous optimism

> Assuming worst case even if it is not likely — Dangerous pessimism .
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Games with chance and strategy
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https://en.wikipedia.org/wiki/Backgammon

Random variable: Throwing two dice

Do we care which die comes first?
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https://flyclipart.com/dice-clipart-tool-rolling-dice-clipart-248574

Random variable: Throwing two dice

Do we care which die comes first?

000 Q.Q
What is the probability of '.., ® 0.
A 1/24
B 1/36
C 1/18
D 1/6

'Source of dice images: https://flyclipart.com/dice-clipart-tool-rolling-dice-clipart-248574
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Random variable: Throwing two dice

Do we care which die comes first?

000 000
What is the probability of 000 , 000
A 1/24
B 1/36
C1/18
D 1/6

'Source of dice images: https://flyclipart.com/dice-clipart-tool-rolling-dice-clipart-248574
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Mixing MAX, CHANCE, and MIN nodes

MAX 0.(MAX) I throw dices /\

1. (MAX) | play

CHANCE () O O -+ O O

2. (MIN) Opponent throws dices

MIN S/ V ... V \V4

3. (MIN) Opponent plays

CHANCE (© O ... O O

4. (MAX) | throw dices

MAX /ANNEPUUY/AN £\

TERMINAL 2 -1 1 -1 1 12/33



Mixing MAX, CHANCE, and MIN nodes

MAX 0.(MAX) I throw dices /\

1. (MAX) | play
CHANCE () ) O --- O O
2. (MIN) Opponent throws dices
1/36 118 1/18 1/36
1,1 1,2 6,5 6,6
MIN YV WV \V/
3. (MIN) Opponent plays
CHANCE (©) O .. O O
4. (MAX) | throw dices
1/18 1/36
6,5 6,6
MAX A A
TERMINAL 2 -1 1 —1 1

12/33



MAX

Mixing hances inserted

CHANCE

MAX
MIN
CHANCE MIN

MAX

TERMINAL 2 -1 1 -1 1
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MIN
CHANCE

MAX

TERMINAL 2 -1 1 -1 1

Extra random agent that moves

EXPECTIMINIMAX(S) =

hances inserted

MAX

MIN

after each MAX and MIN agent
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MIN
CHANCE
MAX

TERMINAL 2 -1 1 -1 1

Extra random agent that moves

EXPECTIMINIMAX(S) =

UTILITY(S, MAX)

hances inserted

MAX

MIN

after each MAX and MIN agent

if IS-TERMINAL(S)
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hances inserted

MAX
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Extra random agent that moves after each MAX and MIN agent

EXPECTIMINIMAX(S) =
UTILITY(S, MAX) if IS-TERMINAL(S)
Max,EXPECTIMINIMAX(RESULT(s, a)) if TO-PLAY(s) = MAX
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hances inserted

MAX

MIN
CHANCE

MIN

MAX

TERMINAL 2 -1 1 -1 1

Extra random agent that moves after each MAX and MIN agent

EXPECTIMINIMAX(S) =

UTILITY(S, MAX) if IS-TERMINAL(S)
_}J max;EXPECTIMINIMAX(RESULT(S, a)) if TO-PLAY(s) = MAX
~ ] minEXPECTIMINIMAX(RESULT(s, a)) if TO-PLAY(S) = MIN

>, P(r)EXPECTIMINIMAX(RESULT(S, r)) if TO-PLAY(S) = CHANCE
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Mixing chance into min/max tree. How big is the tree going to be?

MAX /\

» b branching factor
CHANCE » m maximum depth
p

» n number of distinct rolls

1/36 118 11
1 , 6,5
MIN o Y What is the time complexity of
EXPECTIMINIMAX?
mn
CHANCE (© O ... O O A O(b )
Sl g ( by
MAX
A o(bma™)
TERMINAL 2 -1 1 -1 1
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Evaluation function
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Evaluation function
MAX
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MIN

2 2 3 3 1 1 4 4 20 20 30 30 1 1 400 400

> Left: aj is the best. Right: a; is the best. Ordering of the (terminal) leaves is the same.
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Evaluation function
MAX

CHANCE

MIN

2 2 3 3 1 1 4 4 20 20 30 30 1 1 400 400

> Left: aj is the best. Right: a; is the best. Ordering of the (terminal) leaves is the same.
» Scale matters! Not only ordering.
» Can we prune the tree? (a, S like?)
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Pruning expectiminimax tree

CHANCE

MAX

TERMINAL 2 -1 1 -1 1
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Pruning expectiminimax tree

CHANCE

MAX

TERMINAL 2 -1 1 -1 1

» Bounds on terminal utilities needed. Terminal values from —2 to 2.

» Monte Carlo simulation for evaluation of a position (state).
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Where to prune the Expectimax tree

» Assume terminal nodes bounded
to —2 to 2, inclusive

» Going from left to right.

» Which branches can be pruned
out?
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Assume terminal nodes bounded to —2 to 2, inclusive. Going from left to right. 18/33



Multi-player games

to move
A

(1,2,6) (4,2,3) (6,1,2) (7,4.,1) (5.1,1) (1,5,2) ((7,7,1) (5,4,5)
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Multi-player games

to move
A

(1,5,2)

C (1,2,6) 6,1,2)

1,5,2)

(1,2,6) (4,2,3) (6,1,2) (7,4.,1) (5.1,1) (1,5,2) ((7,7,1) (5,4,5)

» Utility tuples
» Each player maximizes its own

> Coalitions, cooperations, competitions may be dynamic
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ugh games, back to the robots/agents)

— -
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» Uncertain outcome of an action.
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robots/agents)

» Uncertain outcome of an action.

> Robot/Agent may not know the current state!
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Uncertain outcome of an action

9 ugv_min.rviz* - RViz 39 CE - 80°c B37% [B @ cs Streda, 26.Gnora, 1:39:08 ® 2 4L B ~

File Panels Help

N
[

0]
Eé!
@
®

Bl Reset  Left-Click: Rotate. Middle-Click: Move X/Y. Right-Click:: Move Z. Shift: More options.

Video: Climbing stairs failure, From: http://robotics.fel.cvut.cz/cras/darpa-subt/
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file:///Users/svoboda/svoboda-git-clones/kui-felgit/kui-lectures/05_expectimax/figures/backflip.webm
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Uncertain, partially observable environment
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Uncertain, partially observable environment

» Current state s may be unknown, observations e
> Take action a
» Uncertain outcome RESULT(a)

RESULT(a) a,e

Amatrice, Italy, 2016.
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> Take action a

» Uncertain outcome RESULT(a)
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Probability of outcome s’ given e is
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» Utility function U(s) corresponds to agent preferences.

Amatrice, Italy, 2016. 22/33



Uncertain, partially observable environment

Current state s may be unknown, observations e

>

> Take action a

» Uncertain outcome RESULT(a)
>

Probability of outcome s’ given e is

P(rRESULT(a) = §'|a, e)

\4

Utility function U(s) corresponds to agent preferences.

> Expected utility of an action a given e:

U(ale) = P(rEsuLT(a) = s'|a, e)U(s')

SI

Amatrice, Italy, 2016. 22/33



Rational agent

Agent's expected utility of an action a given e:

U(ale) = ZP RESULT(a) = s'|a, e)U(s')

What should a rational agent do?

23/33



Rational agent

Agent's expected utility of an action a given e:
U(ale) = ZP RESULT(a) = s'|a, e)U(s')

What should a rational agent do?
Is it then all solved? Do we know all what we need?

23/33



Rational agent

Agent's expected utility of an action a given e:
U(ale) = ZP RESULT(a) = s'|a, e)U(s')

What should a rational agent do?

Is it then all solved? Do we know all what we need?
» P(RESULT(a) = s'|a, e)
> U(s)

23/33



Utilities

» Where do utilities come from?

» Does averaging make sense?

» Do they exist?

> What if our preferences can't be described by utilities?

24/33



Agent/Robot Preferences

» Prizes A, B
> Lottery: uncertain prizes L = [p, A; (1 — p), B]
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Agent/Robot Preferences

» Prizes A, B

> Lottery: uncertain prizes L = [p, A; (1 — p), B]
Preference, indifference, ...

» Robot prefers A over B: A~ B

» Robot has no preferences: A~ B

» in between: A B

25/33



Rational preferences

Transitivity: (A>= B)A (B> C)= (A> ()

Completeness: (A= B)V (B> A)V (A~ B)

Continuity: (A> B> C)=3p[p,A1l—p,C]~B

Substituability: A~ B = [p,A;1—p,C] ~ [p,B;1— pC]. The same for > and ~.

Monotonocity: A= B = (p > q) < [p,A;1— p,B] = [q,A; 1 — q, B]. Agent must prefer
a lottery with higher chance to win.

VVYy VY VY

» Decomposability, compressing compound lotteries into one:
[P, A1~ p,[q,B;1~q,C]] ~ [p,A; (1 - p)g, B; (1 — p)(1 — ), C]
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Rational preferences

» Transitivity: (A> B)A (B> C)= (A> ()
» Completeness: (A> B)V (B> A)V (A~ B)
» Continuity: (A>= B > C)=3p[p,Al—p,C]~B
» Substituability: A~ B = [p,A;1—p,C|] ~ [p,B;1— pC]. The same for > and ~.
» Monotonocity: A> B=(p > q) < [p,A;1—p,B| > [q,A;1— g, B]. Agent must prefer
a lottery with higher chance to win.
» Decomposability, compressing compound lotteries into one:
[p,Ai1—p,[q.B;1—q,C]] ~ [p,Ai (1 = p)g, B; (1 - p)(1—q),C]
Axioms of utility theory.
Motivation: if agent/robot violates an axiom =- irrational agent/robot.
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Transitivity and decomposability
Goods A, B, C and (nontransitive) preferences of an (irrational) agent A = B > C > A.

A
p
A B
q
¢ ¢ (1-p)

(l_Q) C

is equivalent to A

B C P
\_/ (AP,
l¢
(I-p)(1-q) €

(a) (b) 27/33



Maximum expected utility principle
Given the rational preferences (constraints), there exists a real valued function u such that:

u(A)>u(B) & A>-B
u(A)=u(B) & A~B

28/33



Maximum expected utility principle

Given the rational preferences (constraints), there exists a real valued function u such that:

u(A)>u(B) & A>-B
u(A)=u(B) & A~B

Expected utility of a Lotery L (outcomes s; with probabilities p;):
L([p1, Sti+++ i Pny Sal) = Y _ piti(Si)

Proof in [5].
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Maximum expected utility principle

Given the rational preferences (constraints), there exists a real valued function u such that:

u(A)>u(B) & A>-B
u(A)=u(B) & A~B

Expected utility of a Lotery L (outcomes s; with probabilities p;):
L([p1, Sti+++ i Pny Sal) = Y _ piti(Si)

Proof in [5].
Is a utility v function unique?

28/33



Human utilities




Utility of money

You triumphed in a TV show!
a) Take $1,000,000 ... or
b) Flip a coin and loose all or win $2,500, 000

30/33



Utility of money: human psychology vs

U

Empirical data over limited range

T
150,000

,//(»‘_TH$

800,000

(a)

. hard data
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Utility of money: human psychology vs. hard data

U

|

Empirical data over limited range

T
150,000

y

(@)

/"/(»‘—_T_u $ debts

human perceived utility

Full range

Slope is decreasing
=> risk-averse action

800,000

Slope is increasing
=> risk-seeking

ts
ﬁ!ﬁ% o

(b)

monetary value

/,a(a/ 7/0’/#
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Some figures from [3], Chapters 5, 16. Human utilities are discussed in [2]. This lecture has
been also greatly inspired by the 7th lecture of CS 188 at http://ai.berkeley.edu as it
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worlds.
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