
Uncertainty, Chance, and Utilities

Tomáš Svoboda and Petr Poš́ık

Vision for Robots and Autonomous Systems, Center for Machine Perception
Department of Cybernetics

Faculty of Electrical Engineering, Czech Technical University in Prague

March 12, 2025

1 / 33

http://cyber.felk.cvut.cz/vras
http://cmp.felk.cvut.cz
http://cyber.felk.cvut.cz
http://fel.cvut.cz
http://cvut.cz

Deterministic opponent → stochastic environment

A

B

3 12 8

C

2 4 6

D

14 5 2

B C D

MAX

MINCHANCE

a1 a2 a3

b1 b2 b3

3 2 2

3

b1, b2, b3 - stochastic branches, uncertain outcomes of a1 action (nature plays against(?)).

CHANCE nodes are “virtual”, b1, b2, b3 are not actions!

2 / 33

Deterministic opponent → stochastic environment

A

B

3 12 8

C

2 4 6

D

14 5 2

B C D

MAX

MINCHANCE

a1 a2 a3

b1 b2 b3

3 2 2

3

b1, b2, b3 - stochastic branches, uncertain outcomes of a1 action (nature plays against(?)).

CHANCE nodes are “virtual”, b1, b2, b3 are not actions!

2 / 33

Deterministic opponent → stochastic environment

A

B

3 12 8

C

2 4 6

D

14 5 2

B C D

MAX

MINCHANCE

a1 a2 a3

b1 b2 b3

3 2 2

3

b1, b2, b3 - stochastic branches, uncertain outcomes of a1 action (nature plays against(?)).

CHANCE nodes are “virtual”, b1, b2, b3 are not actions!

2 / 33

Deterministic opponent → stochastic environment

A

B

3 12 8

C

2 4 6

D

14 5 2

B C D

MAX

MINCHANCE

a1 a2 a3

b1 b2 b3

3 2 2

3

b1, b2, b3 - stochastic branches, uncertain outcomes of a1 action (nature plays against(?)).

CHANCE nodes are “virtual”, b1, b2, b3 are not actions!

2 / 33

Why? Actions may fail, . . .

Video: Slipping robot. Vision for Robotics and Autonomous Systems, http://cyber.felk.cvut.cz/vras, https://youtu.be/kvEEHNyCHMs
3 / 33

file:///Users/svoboda/svoboda-git-clones/kui-felgit/kui-lectures/05_expectimax/figures/prague_rail_yard_mov_0075.avi
http://cyber.felk.cvut.cz/vras
https://youtu.be/kvEEHNyCHMs

Why? Action costs not deterministic, . . . , getting to work

A

R

3 12 8

C

2 4 6

D

14 5 2

At home

minutes

MAX/MIN

CHANCE

tram bike car

r1 r2 r3

? ? ?

Random variable: Function mapping situation on rails to values T (ri) = ti :
t1 = T (r1) = 3 mins (free rails)
t2 = T (r2) = 12 mins (accident)
t3 = T (r3) = 8 mins (congestion)

MAX/MIN depends on what the ti options and terminal numbers mean. The goal may be to
get to work as fast as possible.

4 / 33

Why? Action costs not deterministic, . . . , getting to work

A

R

3 12 8

C

2 4 6

D

14 5 2

At home

minutes

MAX/MIN

CHANCE

tram bike car

r1 r2 r3

? ? ?

Random variable: Function mapping situation on rails to values T (ri) = ti :
t1 = T (r1) = 3 mins (free rails)
t2 = T (r2) = 12 mins (accident)
t3 = T (r3) = 8 mins (congestion)

MAX/MIN depends on what the ti options and terminal numbers mean. The goal may be to
get to work as fast as possible.

4 / 33

Why? Action costs not deterministic, . . . , getting to work

A

R

3 12 8

C

2 4 6

D

14 5 2

At home

minutes

MAX/MIN

CHANCE

tram bike car

r1 r2 r3

? ? ?

Random variable: Function mapping situation on rails to values T (ri) = ti :
t1 = T (r1) = 3 mins (free rails)
t2 = T (r2) = 12 mins (accident)
t3 = T (r3) = 8 mins (congestion)

MAX/MIN depends on what the ti options and terminal numbers mean. The goal may be to
get to work as fast as possible.

4 / 33

Why? Action costs not deterministic, . . . , getting to work

A

R

3 12 8

C

2 4 6

D

14 5 2

At home

minutes

MAX/MIN

CHANCE

tram bike car

r1 r2 r3

? ? ?

Random variable: Function mapping situation on rails to values T (ri) = ti :
t1 = T (r1) = 3 mins (free rails)
t2 = T (r2) = 12 mins (accident)
t3 = T (r3) = 8 mins (congestion)

MAX/MIN depends on what the ti options and terminal numbers mean. The goal may be to
get to work as fast as possible.

4 / 33

Why? Action costs not deterministic, . . . , getting to work

A

R

3 12 8

C

2 4 6

D

14 5 2

At home

minutes

MAX/MIN

CHANCE

tram bike car

r1 r2 r3

? ? ?

Random variable: Function mapping situation on rails to values T (ri) = ti :
t1 = T (r1) = 3 mins (free rails)
t2 = T (r2) = 12 mins (accident)
t3 = T (r3) = 8 mins (congestion)

MAX/MIN depends on what the ti options and terminal numbers mean. The goal may be to
get to work as fast as possible.

4 / 33

Chance nodes values

A

R

3 12 8

C

2 4 6

D

14 5 2

At home

minutes

MAX/MIN

CHANCE

tram bike car

r1 r2 r3

? ? ?

?

▶ Average case, not the worst case.

▶ Calculate expected utilities . . .

▶ i.e. take weighted average (expectation) of successors

5 / 33

Chance nodes values

A

R

3 12 8

C

2 4 6

D

14 5 2

At home

minutes

MAX/MIN

CHANCE

tram bike car

r1 r2 r3

? ? ?

?

▶ Average case, not the worst case.

▶ Calculate expected utilities . . .

▶ i.e. take weighted average (expectation) of successors

5 / 33

Chance nodes values

A

R

3 12 8

C

2 4 6

D

14 5 2

At home

minutes

MAX/MIN

CHANCE

tram bike car

r1 r2 r3

? ? ?

?

▶ Average case, not the worst case.

▶ Calculate expected utilities . . .

▶ i.e. take weighted average (expectation) of successors

5 / 33

Chance nodes values

A

R

3 12 8

C

2 4 6

D

14 5 2

At home

minutes

MAX/MIN

CHANCE

tram bike car

r1 r2 r3

? ? ?

?

▶ Average case, not the worst case.

▶ Calculate expected utilities . . .

▶ i.e. take weighted average (expectation) of successors

5 / 33

Random variables, probability distribution, . . .
▶ Random variable - a function that maps experiment outcomes to values

▶ Probability distribution - assignment of probabilities (weights) to the values

▶ Random variable: T (s) - maps situation on rails to values

▶ Values of T (s): T (s) ∈ {3, 12, 8}, corresponding to outcomes s (free rails, accident,
congestion)

▶ Probability distribution: P(T = 3) = 0.3, P(T = 12) = 0.1, P(T = 8) = 0.6

A few reminders from laws of probability, Probabilities:

▶ always non-negative,

▶ sum over all possible outcomes is equal to 1.
6 / 33

Random variables, probability distribution, . . .
▶ Random variable - a function that maps experiment outcomes to values

▶ Probability distribution - assignment of probabilities (weights) to the values

▶ Random variable: T (s) - maps situation on rails to values

▶ Values of T (s): T (s) ∈ {3, 12, 8}, corresponding to outcomes s (free rails, accident,
congestion)

▶ Probability distribution: P(T = 3) = 0.3, P(T = 12) = 0.1, P(T = 8) = 0.6

A few reminders from laws of probability, Probabilities:

▶ always non-negative,

▶ sum over all possible outcomes is equal to 1.
6 / 33

Random variables, probability distribution, . . .
▶ Random variable - a function that maps experiment outcomes to values

▶ Probability distribution - assignment of probabilities (weights) to the values

▶ Random variable: T (s) - maps situation on rails to values

▶ Values of T (s): T (s) ∈ {3, 12, 8}, corresponding to outcomes s (free rails, accident,
congestion)

▶ Probability distribution: P(T = 3) = 0.3, P(T = 12) = 0.1, P(T = 8) = 0.6

A few reminders from laws of probability, Probabilities:

▶ always non-negative,

▶ sum over all possible outcomes is equal to 1.
6 / 33

Random variables, probability distribution, . . .
▶ Random variable - a function that maps experiment outcomes to values

▶ Probability distribution - assignment of probabilities (weights) to the values

▶ Random variable: T (s) - maps situation on rails to values

▶ Values of T (s): T (s) ∈ {3, 12, 8}, corresponding to outcomes s (free rails, accident,
congestion)

▶ Probability distribution: P(T = 3) = 0.3, P(T = 12) = 0.1, P(T = 8) = 0.6

A few reminders from laws of probability, Probabilities:

▶ always non-negative,

▶ sum over all possible outcomes is equal to 1.
6 / 33

Random variables, probability distribution, . . .
▶ Random variable - a function that maps experiment outcomes to values

▶ Probability distribution - assignment of probabilities (weights) to the values

▶ Random variable: T (s) - maps situation on rails to values

▶ Values of T (s): T (s) ∈ {3, 12, 8}, corresponding to outcomes s (free rails, accident,
congestion)

▶ Probability distribution: P(T = 3) = 0.3, P(T = 12) = 0.1, P(T = 8) = 0.6

A few reminders from laws of probability, Probabilities:

▶ always non-negative,

▶ sum over all possible outcomes is equal to 1.
6 / 33

Expectations, . . .

How long does it take to go to work by tram?

▶ Depends on the random variable T with possible values t1, t2, t3 (corresponding to
situation on rails).

▶ What is the expectation of the time?
Using values t1, t2, t3 of random variable T :

E (T) = P(T = t1)t1 + P(T = t2)t2 + P(T = t3)t3 = (1)

= pT (t1)t1 + pT (t2)t2 + pT (t3)t3 (2)

Or, using random outcomes r1, r2, r3:

E (T) = P(r1)T (r1) + P(r2)T (r2) + P(r3)T (r3)

Expected value of a discrete r.v.: Weighted average

7 / 33

Expectations, . . .

How long does it take to go to work by tram?

▶ Depends on the random variable T with possible values t1, t2, t3 (corresponding to
situation on rails).

▶ What is the expectation of the time?
Using values t1, t2, t3 of random variable T :

E (T) = P(T = t1)t1 + P(T = t2)t2 + P(T = t3)t3 = (1)

= pT (t1)t1 + pT (t2)t2 + pT (t3)t3 (2)

Or, using random outcomes r1, r2, r3:

E (T) = P(r1)T (r1) + P(r2)T (r2) + P(r3)T (r3)

Expected value of a discrete r.v.: Weighted average

7 / 33

Expectations, . . .

How long does it take to go to work by tram?

▶ Depends on the random variable T with possible values t1, t2, t3 (corresponding to
situation on rails).

▶ What is the expectation of the time?
Using values t1, t2, t3 of random variable T :

E (T) = P(T = t1)t1 + P(T = t2)t2 + P(T = t3)t3 = (1)

= pT (t1)t1 + pT (t2)t2 + pT (t3)t3 (2)

Or, using random outcomes r1, r2, r3:

E (T) = P(r1)T (r1) + P(r2)T (r2) + P(r3)T (r3)

Expected value of a discrete r.v.: Weighted average

7 / 33

Expectimax

function expectimax(state) return a value
if is-terminal(state): return utility(state)
if state (next agent) is MAX: return max-value(state)
if state (next agent) is CHANCE: return exp-value(state)

function max-value(state) return value v
v ← −∞
for a in actions(state) do

v ← max(v , expectimax(result(state,a)))

function exp-value(state) return value v
v ← 0
for all r ∈ random outcomes do

v ← v + P(r) expectimax(result(state,r))

8 / 33

Expectimax

function expectimax(state) return a value
if is-terminal(state): return utility(state)
if state (next agent) is MAX: return max-value(state)
if state (next agent) is CHANCE: return exp-value(state)

function max-value(state) return value v
v ← −∞
for a in actions(state) do

v ← max(v , expectimax(result(state,a)))

function exp-value(state) return value v
v ← 0
for all r ∈ random outcomes do

v ← v + P(r) expectimax(result(state,r))

8 / 33

How about the Reversi game?

▶ Is there any space for randomness?

▶ Is the opponent really greedy and clever enough?

▶ Hope for chance when there is adversarial world – Dangerous optimism .

▶ Assuming worst case even if it is not likely – Dangerous pessimism .

9 / 33

How about the Reversi game?

▶ Is there any space for randomness?

▶ Is the opponent really greedy and clever enough?

▶ Hope for chance when there is adversarial world – Dangerous optimism .

▶ Assuming worst case even if it is not likely – Dangerous pessimism .

9 / 33

Games with chance and strategy

Images from https://en.wikipedia.org/wiki/Backgammon.

10 / 33

https://en.wikipedia.org/wiki/Backgammon

Random variable: Throwing two dice

Do we care which die comes first?

What is the probability of , ?1

A 1/24

B 1/36

C 1/18

D 1/6

1Source of dice images: https://flyclipart.com/dice-clipart-tool-rolling-dice-clipart-248574
11 / 33

https://flyclipart.com/dice-clipart-tool-rolling-dice-clipart-248574

Random variable: Throwing two dice

Do we care which die comes first?

What is the probability of , ?1

A 1/24

B 1/36

C 1/18

D 1/6

1Source of dice images: https://flyclipart.com/dice-clipart-tool-rolling-dice-clipart-248574
11 / 33

https://flyclipart.com/dice-clipart-tool-rolling-dice-clipart-248574

Random variable: Throwing two dice

Do we care which die comes first?

What is the probability of , ?1

A 1/24

B 1/36

C 1/18

D 1/6

1Source of dice images: https://flyclipart.com/dice-clipart-tool-rolling-dice-clipart-248574
11 / 33

https://flyclipart.com/dice-clipart-tool-rolling-dice-clipart-248574

Mixing MAX, CHANCE, and MIN nodes

CHANCE

MIN

MAX

CHANCE

MAX

. . .

. . .

B

1

. . .
1,1
1/36

1,2
1/18

TERMINAL

1,2
1/18

......

.........

......

1,1
1/36

...

......

...
C

. . .

1/18
6,5 6,6

1/36

1/18
6,5 6,6

1/36

2 –11–1

1. (MAX) I play

2. (MIN) Opponent throws dices

3. (MIN) Opponent plays

4. (MAX) I throw dices

0. (MAX) I throw dices

12 / 33

Mixing MAX, CHANCE, and MIN nodes

12 / 33

Mixing layer types - chances inserted
CHANCE

MIN

MAX

CHANCE

MAX

. . .

. . .

B

1

. . .
1,1
1/36

1,2
1/18

TERMINAL

1,2
1/18

......

.........

......

1,1
1/36

...

......

...
C

. . .

1/18
6,5 6,6

1/36

1/18
6,5 6,6

1/36

2 –11–1

MAX A

B C D

3 12 8 2 4 6 14 5 2

3 2 2

3
a1 a2

a3

b1
b2

b3 c1
c2

c3 d1
d2

d3

MIN

Extra random agent that moves after each MAX and MIN agent

expectiminimax(s) =

=


utility(s,max) if is-terminal(s)
maxaexpectiminimax(result(s, a)) if to-play(s) = max
minaexpectiminimax(result(s, a)) if to-play(s) = min∑

r P(r)expectiminimax(result(s, r)) if to-play(s) = chance

13 / 33

Mixing layer types - chances inserted
CHANCE

MIN

MAX

CHANCE

MAX

. . .

. . .

B

1

. . .
1,1
1/36

1,2
1/18

TERMINAL

1,2
1/18

......

.........

......

1,1
1/36

...

......

...
C

. . .

1/18
6,5 6,6

1/36

1/18
6,5 6,6

1/36

2 –11–1

MAX A

B C D

3 12 8 2 4 6 14 5 2

3 2 2

3
a1 a2

a3

b1
b2

b3 c1
c2

c3 d1
d2

d3

MIN

Extra random agent that moves after each MAX and MIN agent

expectiminimax(s) =

=


utility(s,max) if is-terminal(s)
maxaexpectiminimax(result(s, a)) if to-play(s) = max
minaexpectiminimax(result(s, a)) if to-play(s) = min∑

r P(r)expectiminimax(result(s, r)) if to-play(s) = chance

13 / 33

Mixing layer types - chances inserted
CHANCE

MIN

MAX

CHANCE

MAX

. . .

. . .

B

1

. . .
1,1
1/36

1,2
1/18

TERMINAL

1,2
1/18

......

.........

......

1,1
1/36

...

......

...
C

. . .

1/18
6,5 6,6

1/36

1/18
6,5 6,6

1/36

2 –11–1

MAX A

B C D

3 12 8 2 4 6 14 5 2

3 2 2

3
a1 a2

a3

b1
b2

b3 c1
c2

c3 d1
d2

d3

MIN

Extra random agent that moves after each MAX and MIN agent

expectiminimax(s) =

=


utility(s,max) if is-terminal(s)
maxaexpectiminimax(result(s, a)) if to-play(s) = max
minaexpectiminimax(result(s, a)) if to-play(s) = min∑

r P(r)expectiminimax(result(s, r)) if to-play(s) = chance

13 / 33

Mixing layer types - chances inserted
CHANCE

MIN

MAX

CHANCE

MAX

. . .

. . .

B

1

. . .
1,1
1/36

1,2
1/18

TERMINAL

1,2
1/18

......

.........

......

1,1
1/36

...

......

...
C

. . .

1/18
6,5 6,6

1/36

1/18
6,5 6,6

1/36

2 –11–1

MAX A

B C D

3 12 8 2 4 6 14 5 2

3 2 2

3
a1 a2

a3

b1
b2

b3 c1
c2

c3 d1
d2

d3

MIN

Extra random agent that moves after each MAX and MIN agent

expectiminimax(s) =

=


utility(s,max) if is-terminal(s)
maxaexpectiminimax(result(s, a)) if to-play(s) = max
minaexpectiminimax(result(s, a)) if to-play(s) = min∑

r P(r)expectiminimax(result(s, r)) if to-play(s) = chance

13 / 33

Mixing layer types - chances inserted
CHANCE

MIN

MAX

CHANCE

MAX

. . .

. . .

B

1

. . .
1,1
1/36

1,2
1/18

TERMINAL

1,2
1/18

......

.........

......

1,1
1/36

...

......

...
C

. . .

1/18
6,5 6,6

1/36

1/18
6,5 6,6

1/36

2 –11–1

MAX A

B C D

3 12 8 2 4 6 14 5 2

3 2 2

3
a1 a2

a3

b1
b2

b3 c1
c2

c3 d1
d2

d3

MIN

Extra random agent that moves after each MAX and MIN agent

expectiminimax(s) =

=


utility(s,max) if is-terminal(s)
maxaexpectiminimax(result(s, a)) if to-play(s) = max
minaexpectiminimax(result(s, a)) if to-play(s) = min∑

r P(r)expectiminimax(result(s, r)) if to-play(s) = chance

13 / 33

Mixing layer types - chances inserted
CHANCE

MIN

MAX

CHANCE

MAX

. . .

. . .

B

1

. . .
1,1
1/36

1,2
1/18

TERMINAL

1,2
1/18

......

.........

......

1,1
1/36

...

......

...
C

. . .

1/18
6,5 6,6

1/36

1/18
6,5 6,6

1/36

2 –11–1

MAX A

B C D

3 12 8 2 4 6 14 5 2

3 2 2

3
a1 a2

a3

b1
b2

b3 c1
c2

c3 d1
d2

d3

MIN

Extra random agent that moves after each MAX and MIN agent

expectiminimax(s) =

=


utility(s,max) if is-terminal(s)
maxaexpectiminimax(result(s, a)) if to-play(s) = max
minaexpectiminimax(result(s, a)) if to-play(s) = min∑

r P(r)expectiminimax(result(s, r)) if to-play(s) = chance

13 / 33

Mixing chance into min/max tree. How big is the tree going to be?

CHANCE

MIN

MAX

CHANCE

MAX

. . .

. . .

B

1

. . .
1,1
1/36

1,2
1/18

TERMINAL

1,2
1/18

......

.........

......

1,1
1/36

...

......

...
C

. . .

1/18
6,5 6,6

1/36

1/18
6,5 6,6

1/36

2 –11–1

▶ b branching factor

▶ m maximum depth

▶ n number of distinct rolls

What is the time complexity of
expectiminimax?

A O(bmn)

B O(bmn)

C O(bmnb)

D O(bmnm)

14 / 33

Evaluation function

CHANCE

MIN

MAX

2 2 3 3 1 1 4 4

2 3 1 4

.9 .1 .9 .1

2.1 1.3

20 20 30 30 1 1 400 400

20 30 1 400

.9 .1 .9 .1

21 40.9

a1 a2 a1 a2

▶ Left: a1 is the best. Right: a2 is the best. Ordering of the (terminal) leaves is the same.
▶ Scale matters! Not only ordering.
▶ Can we prune the tree? (α, β like?)

15 / 33

Evaluation function

CHANCE

MIN

MAX

2 2 3 3 1 1 4 4

2 3 1 4

.9 .1 .9 .1

2.1 1.3

20 20 30 30 1 1 400 400

20 30 1 400

.9 .1 .9 .1

21 40.9

a1 a2 a1 a2

▶ Left: a1 is the best. Right: a2 is the best. Ordering of the (terminal) leaves is the same.
▶ Scale matters! Not only ordering.
▶ Can we prune the tree? (α, β like?)

15 / 33

Evaluation function

CHANCE

MIN

MAX

2 2 3 3 1 1 4 4

2 3 1 4

.9 .1 .9 .1

2.1 1.3

20 20 30 30 1 1 400 400

20 30 1 400

.9 .1 .9 .1

21 40.9

a1 a2 a1 a2

▶ Left: a1 is the best. Right: a2 is the best. Ordering of the (terminal) leaves is the same.
▶ Scale matters! Not only ordering.
▶ Can we prune the tree? (α, β like?)

15 / 33

Evaluation function

CHANCE

MIN

MAX

2 2 3 3 1 1 4 4

2 3 1 4

.9 .1 .9 .1

2.1 1.3

20 20 30 30 1 1 400 400

20 30 1 400

.9 .1 .9 .1

21 40.9

a1 a2 a1 a2

▶ Left: a1 is the best. Right: a2 is the best. Ordering of the (terminal) leaves is the same.
▶ Scale matters! Not only ordering.
▶ Can we prune the tree? (α, β like?)

15 / 33

Pruning expectiminimax tree

CHANCE

MIN

MAX

CHANCE

MAX

. . .

. . .

B

1

. . .
1,1
1/36

1,2
1/18

TERMINAL

1,2
1/18

......

.........

......

1,1
1/36

...

......

...
C

. . .

1/18
6,5 6,6

1/36

1/18
6,5 6,6

1/36

2 –11–1
▶ Bounds on terminal utilities needed. Terminal values from −2 to 2.

▶ Monte Carlo simulation for evaluation of a position (state).

16 / 33

Pruning expectiminimax tree

CHANCE

MIN

MAX

CHANCE

MAX

. . .

. . .

B

1

. . .
1,1
1/36

1,2
1/18

TERMINAL

1,2
1/18

......

.........

......

1,1
1/36

...

......

...
C

. . .

1/18
6,5 6,6

1/36

1/18
6,5 6,6

1/36

2 –11–1
▶ Bounds on terminal utilities needed. Terminal values from −2 to 2.

▶ Monte Carlo simulation for evaluation of a position (state).

16 / 33

Where to prune the Expectimax tree

▶ Assume terminal nodes bounded
to −2 to 2, inclusive

▶ Going from left to right.

▶ Which branches can be pruned
out?

71

0.5 0.50.5 0.5

2 2 1 2 0 2 -1 0

Figure 5.18 FILES: figures/pruning.eps (Tue Nov 3 16:23:22 2009). The complete game tree for
a trivial game with chance nodes.

17 / 33

A B

C D
Assume terminal nodes bounded to −2 to 2, inclusive. Going from left to right. 18 / 33

Multi-player games
to move

A

B

C

A
(1, 2, 6) (4, 2, 3) (6, 1, 2) (7, 4,1) (5,1,1) (1, 5, 2) (7, 7,1) (5, 4, 5)

(1, 2, 6) (6, 1, 2) (1, 5, 2) (5, 4, 5)

(1, 2, 6) (1, 5, 2)

(1, 2, 6)

X

▶ Utility tuples

▶ Each player maximizes its own

▶ Coalitions, cooperations, competitions may be dynamic

19 / 33

Multi-player games
to move

A

B

C

A
(1, 2, 6) (4, 2, 3) (6, 1, 2) (7, 4,1) (5,1,1) (1, 5, 2) (7, 7,1) (5, 4, 5)

(1, 2, 6) (6, 1, 2) (1, 5, 2) (5, 4, 5)

(1, 2, 6) (1, 5, 2)

(1, 2, 6)

X

▶ Utility tuples

▶ Each player maximizes its own

▶ Coalitions, cooperations, competitions may be dynamic

19 / 33

Uncertainty recap (enough games, back to the robots/agents)

▶ Uncertain outcome of an action.

▶ Robot/Agent may not know the current state!

20 / 33

Uncertainty recap (enough games, back to the robots/agents)

▶ Uncertain outcome of an action.

▶ Robot/Agent may not know the current state!

20 / 33

Uncertainty recap (enough games, back to the robots/agents)

▶ Uncertain outcome of an action.

▶ Robot/Agent may not know the current state!

20 / 33

Uncertain outcome of an action

Video: Climbing stairs failure, From: http://robotics.fel.cvut.cz/cras/darpa-subt/
21 / 33

file:///Users/svoboda/svoboda-git-clones/kui-felgit/kui-lectures/05_expectimax/figures/backflip.webm
http://robotics.fel.cvut.cz/cras/darpa-subt/

Uncertain, partially observable environment

▶ Current state s may be unknown, observations e

▶ Take action a

▶ Uncertain outcome result(a)

▶ Probability of outcome s ′ given e is

P(result(a) = s ′|a, e)

▶ Utility function U(s) corresponds to agent preferences.

▶ Expected utility of an action a given e:

EU(a|e) =
∑
s′

P(result(a) = s ′|a, e)U(s ′)

Amatrice, Italy, 2016. 22 / 33

Uncertain, partially observable environment

▶ Current state s may be unknown, observations e

▶ Take action a

▶ Uncertain outcome result(a)

▶ Probability of outcome s ′ given e is

P(result(a) = s ′|a,

e

)

▶ Utility function U(s) corresponds to agent preferences.

▶ Expected utility of an action a given e:

EU(a|e) =
∑
s′

P(result(a) = s ′|a, e)U(s ′)

Amatrice, Italy, 2016. 22 / 33

Uncertain, partially observable environment

▶ Current state s may be unknown, observations e

▶ Take action a

▶ Uncertain outcome result(a)

▶ Probability of outcome s ′ given e is

P(result(a) = s ′|

a, e

)

▶ Utility function U(s) corresponds to agent preferences.

▶ Expected utility of an action a given e:

EU(a|e) =
∑
s′

P(result(a) = s ′|a, e)U(s ′)

Amatrice, Italy, 2016. 22 / 33

Uncertain, partially observable environment

▶ Current state s may be unknown, observations e

▶ Take action a

▶ Uncertain outcome result(a)

▶ Probability of outcome s ′ given e is

P(

result(a)

= s ′|

a, e

)

▶ Utility function U(s) corresponds to agent preferences.

▶ Expected utility of an action a given e:

EU(a|e) =
∑
s′

P(result(a) = s ′|a, e)U(s ′)

Amatrice, Italy, 2016. 22 / 33

Uncertain, partially observable environment

▶ Current state s may be unknown, observations e

▶ Take action a

▶ Uncertain outcome result(a)

▶ Probability of outcome s ′ given e is

P(result(a) = s ′|a, e)

▶ Utility function U(s) corresponds to agent preferences.

▶ Expected utility of an action a given e:

EU(a|e) =
∑
s′

P(result(a) = s ′|a, e)U(s ′)

Amatrice, Italy, 2016. 22 / 33

Uncertain, partially observable environment

▶ Current state s may be unknown, observations e

▶ Take action a

▶ Uncertain outcome result(a)

▶ Probability of outcome s ′ given e is

P(result(a) = s ′|a, e)

▶ Utility function U(s) corresponds to agent preferences.

▶ Expected utility of an action a given e:

EU(a|e) =
∑
s′

P(result(a) = s ′|a, e)U(s ′)

Amatrice, Italy, 2016. 22 / 33

Uncertain, partially observable environment

▶ Current state s may be unknown, observations e

▶ Take action a

▶ Uncertain outcome result(a)

▶ Probability of outcome s ′ given e is

P(result(a) = s ′|a, e)

▶ Utility function U(s) corresponds to agent preferences.

▶ Expected utility of an action a given e:

EU(a|e) =
∑
s′

P(result(a) = s ′|a, e)U(s ′)

Amatrice, Italy, 2016. 22 / 33

Rational agent

Agent’s expected utility of an action a given e:

EU(a|e) =
∑
s′

P(result(a) = s ′|a, e)U(s ′)

What should a rational agent do?
Is it then all solved? Do we know all what we need?

▶ P(result(a) = s ′|a, e)
▶ U(s ′)

23 / 33

Rational agent

Agent’s expected utility of an action a given e:

EU(a|e) =
∑
s′

P(result(a) = s ′|a, e)U(s ′)

What should a rational agent do?
Is it then all solved? Do we know all what we need?

▶ P(result(a) = s ′|a, e)
▶ U(s ′)

23 / 33

Rational agent

Agent’s expected utility of an action a given e:

EU(a|e) =
∑
s′

P(result(a) = s ′|a, e)U(s ′)

What should a rational agent do?
Is it then all solved? Do we know all what we need?

▶ P(result(a) = s ′|a, e)
▶ U(s ′)

23 / 33

Utilities

▶ Where do utilities come from?

▶ Does averaging make sense?

▶ Do they exist?

▶ What if our preferences can’t be described by utilities?

24 / 33

Agent/Robot Preferences

▶ Prizes A,B

▶ Lottery: uncertain prizes L = [p,A; (1− p),B]

Preference, indifference, . . .

▶ Robot prefers A over B: A ≻ B

▶ Robot has no preferences: A ∼ B

▶ in between: A ≿ B

25 / 33

Agent/Robot Preferences

▶ Prizes A,B

▶ Lottery: uncertain prizes L = [p,A; (1− p),B]

Preference, indifference, . . .

▶ Robot prefers A over B: A ≻ B

▶ Robot has no preferences: A ∼ B

▶ in between: A ≿ B

25 / 33

Rational preferences

▶ Transitivity: (A ≻ B) ∧ (B ≻ C)⇒ (A ≻ C)

▶ Completeness: (A ≻ B) ∨ (B ≻ A) ∨ (A ∼ B)

▶ Continuity: (A ≻ B ≻ C)⇒ ∃p [p,A; 1− p,C] ∼ B

▶ Substituability: A ∼ B ⇒ [p,A; 1− p,C] ∼ [p,B; 1− pC]. The same for ≻ and ∼.
▶ Monotonocity: A ≻ B ⇒ (p > q)⇔ [p,A; 1− p,B] ≻ [q,A; 1− q,B]. Agent must prefer

a lottery with higher chance to win.

▶ Decomposability, compressing compound lotteries into one:
[p,A; 1− p, [q,B; 1− q,C]] ∼ [p,A; (1− p)q,B; (1− p)(1− q),C]

Axioms of utility theory.
Motivation: if agent/robot violates an axiom ⇒ irrational agent/robot.

26 / 33

Rational preferences

▶ Transitivity: (A ≻ B) ∧ (B ≻ C)⇒ (A ≻ C)

▶ Completeness: (A ≻ B) ∨ (B ≻ A) ∨ (A ∼ B)

▶ Continuity: (A ≻ B ≻ C)⇒ ∃p [p,A; 1− p,C] ∼ B

▶ Substituability: A ∼ B ⇒ [p,A; 1− p,C] ∼ [p,B; 1− pC]. The same for ≻ and ∼.
▶ Monotonocity: A ≻ B ⇒ (p > q)⇔ [p,A; 1− p,B] ≻ [q,A; 1− q,B]. Agent must prefer

a lottery with higher chance to win.

▶ Decomposability, compressing compound lotteries into one:
[p,A; 1− p, [q,B; 1− q,C]] ∼ [p,A; (1− p)q,B; (1− p)(1− q),C]

Axioms of utility theory.
Motivation: if agent/robot violates an axiom ⇒ irrational agent/robot.

26 / 33

Transitivity and decomposability
Goods A,B,C and (nontransitive) preferences of an (irrational) agent A ≻ B ≻ C ≻ A.

1¢

1¢

1¢
A

B C

p

q

A

B

C

p

(1–p)

(1–p)(1–q)

(1–q)

A

B

C

is equivalent to

(a) (b)

(1–p)q

27 / 33

Maximum expected utility principle

Given the rational preferences (constraints), there exists a real valued function u such that:

u(A) > u(B) ⇔ A ≻ B

u(A) = u(B) ⇔ A ∼ B

Expected utility of a Lotery L (outcomes si with probabilities pi):

L([p1,S1; · · · ; pn, Sn]) =
∑
i

piu(Si)

Proof in [5].
Is a utility u function unique?

28 / 33

Maximum expected utility principle

Given the rational preferences (constraints), there exists a real valued function u such that:

u(A) > u(B) ⇔ A ≻ B

u(A) = u(B) ⇔ A ∼ B

Expected utility of a Lotery L (outcomes si with probabilities pi):

L([p1,S1; · · · ; pn, Sn]) =
∑
i

piu(Si)

Proof in [5].
Is a utility u function unique?

28 / 33

Maximum expected utility principle

Given the rational preferences (constraints), there exists a real valued function u such that:

u(A) > u(B) ⇔ A ≻ B

u(A) = u(B) ⇔ A ∼ B

Expected utility of a Lotery L (outcomes si with probabilities pi):

L([p1,S1; · · · ; pn, Sn]) =
∑
i

piu(Si)

Proof in [5].
Is a utility u function unique?

28 / 33

Human utilities

29 / 33

Utility of money

You triumphed in a TV show!

a) Take $1, 000, 000 . . . or

b) Flip a coin and loose all or win $2, 500, 000

30 / 33

Utility of money: human psychology vs. hard data

Slope	is	decreasing
=>	risk-averse	action

Slope	is	increasing
=>	risk-seeking

Empirical	data	over	limited	range
Full	range

debts

h
u
m
a
n
	p
e
rc
e
iv
e
d
	u
ti
lit
y

monetary	value

31 / 33

Utility of money: human psychology vs. hard data

Slope	is	decreasing
=>	risk-averse	action

Slope	is	increasing
=>	risk-seeking

Empirical	data	over	limited	range
Full	range

debts

h
u
m
a
n
	p
e
rc
e
iv
e
d
	u
ti
lit
y

monetary	value

Slope	is	decreasing
=>	risk-averse	action

Slope	is	increasing
=>	risk-seeking

Empirical	data	over	limited	range
Full	range

debts

h
u
m
a
n
	p
e
rc
e
iv
e
d
	u
ti
lit
y

monetary	value

31 / 33

References I

Some figures from [3], Chapters 5, 16. Human utilities are discussed in [2]. This lecture has
been also greatly inspired by the 7th lecture of CS 188 at http://ai.berkeley.edu as it
convenietly bridges the world of deterministic search and sequential decisions in uncertain
worlds.

[1] Christopher M. Bishop.
Pattern Recognition and Machine Learning.
Springer Science+Bussiness Media, New York, NY, 2006.
https://www.microsoft.com/en-us/research/uploads/prod/2006/01/
Bishop-Pattern-Recognition-and-Machine-Learning-2006.pdf.

[2] Daniel Kahneman.
Thinking, Fast and Slow.
Farrar, Straus and Giroux, 2011.

32 / 33

http://ai.berkeley.edu
https://www.microsoft.com/en-us/research/uploads/prod/2006/01/Bishop-Pattern-Recognition-and-Machine-Learning-2006.pdf
https://www.microsoft.com/en-us/research/uploads/prod/2006/01/Bishop-Pattern-Recognition-and-Machine-Learning-2006.pdf

References II

[3] Stuart Russell and Peter Norvig.
Artificial Intelligence: A Modern Approach.
Prentice Hall, 3rd edition, 2010.
http://aima.cs.berkeley.edu/.

[4] Richard S. Sutton and Andrew G. Barto.
Reinforcement Learning; an Introduction.
MIT Press, 2nd edition, 2018.
http://www.incompleteideas.net/book/the-book-2nd.html.

[5] John von Neumann and Oskar Morgenstern.
Theory of Games and Economic Behavior.
Princeton, 1944.
https://en.wikipedia.org/wiki/Theory of Games and Economic Behavior, Utility theorem.

33 / 33

http://aima.cs.berkeley.edu/
http://www.incompleteideas.net/book/the-book-2nd.html
https://en.wikipedia.org/wiki/Theory_of_Games_and_Economic_Behavior
https://en.wikipedia.org/wiki/Von_Neumann–Morgenstern_utility_theorem

	Introduction
	Chance nodes
	Expectimax algorithm

	Probabilities
	Games mixing chances and strategy
	Mixing layer types

	Decisions under uncertainty
	Utilities

	References

