Adversarial Search

Tom3as Svoboda, Petr Posik, Mat&j Hoffmann

Vision for Robots and Autonomous Systems, Center for Machine Perception
Department of Cybernetics
Faculty of Electrical Engineering, Czech Technical University in Prague

March 6, 2025

1/27

http://cyber.felk.cvut.cz/vras
http://cmp.felk.cvut.cz
http://cyber.felk.cvut.cz
http://fel.cvut.cz
http://cvut.cz

https://en.wikipedia.org/wiki/Deep_Blue_(chess_computer)
https://en.wikipedia.org/wiki/AlphaGo
https://arxiv.org/pdf/1701.01724.pdf
https://en.wikipedia.org/wiki/Mechanical_Turk

Games, man vs. algorithm

» Deep Blue

> Alpha Go

» Deep Stack

» Why Games, actually?

Game nteresting for Al because they
are hard (to solve).

https://en.wikipedia.org/wiki/Deep_Blue_(chess_computer)
https://en.wikipedia.org/wiki/AlphaGo
https://arxiv.org/pdf/1701.01724.pdf
https://en.wikipedia.org/wiki/Mechanical_Turk

Video: Adversing visual segmentation
Vision for Robotics and Autonomous Systems, http://cyber.felk.cvut.cz/vras, video at YT: https://youtu.be/KvdZmtVguOo

file:///Users/svoboda/svoboda-git-clones/kui-felgit/kui-lectures/04_adversarial/figures/advers-pedestrians.avi
http://cyber.felk.cvut.cz/vras
https://youtu.be/KvdZmtVguOo

Elements of the game

> sp: The initial state O O

4/27

https://commons.wikimedia.org/wiki/File:Tic-tac-toe_5.png
https://commons.wikimedia.org/wiki/File:Tic-tac-toe_5.png

Elements of the game

» sp: The initial state O 9. OO
» TO-PLAY(s). Which player has to move in s. O 0 |
0000
OXO)
O
O
O

4)27

https://commons.wikimedia.org/wiki/File:Tic-tac-toe_5.png
https://commons.wikimedia.org/wiki/File:Tic-tac-toe_5.png

Elements of the game

» sy: The initial state O 9. oo
» TO-PLAY(s). Which player has to move in s. O 0 |
» ACTIONS(s). What are the legal moves? 0O 8000
O
a O

4)21

https://commons.wikimedia.org/wiki/File:Tic-tac-toe_5.png
https://commons.wikimedia.org/wiki/File:Tic-tac-toe_5.png

Elements of the game

O O
» sy: The initial state O O
» TO-PLAY(s). Which player has to move in s. O 0 |
» ACTIONS(s). What are the legal moves? 0O 8ooo
» RESULT(S, a). Transition, result of an action a in state s. O
O
O

4)27

https://commons.wikimedia.org/wiki/File:Tic-tac-toe_5.png
https://commons.wikimedia.org/wiki/File:Tic-tac-toe_5.png

Elements of the game

VVYyVvYYVvyy

sp: The initial state
TO-PLAY(s). Which player has to move in s.
ACTIONS(s). What are the legal moves?

RESULT(s, a). Transition, result of an action a in state s.

IS-TERMINAL(s). Game over?

@,
O
QX
OO0
O
O
O
O

4)27

https://commons.wikimedia.org/wiki/File:Tic-tac-toe_5.png
https://commons.wikimedia.org/wiki/File:Tic-tac-toe_5.png

Elements of the game

sp: The initial state O O

TO-PLAY(s). Which player has to move in s. O 8

OO

ACTIONS(s). What are the legal moves? ®

RESULT(s, a). Transition, result of an action a in state s.

IS-TERMINAL(S). Game over? O

O

VVYyVYVYVY

UTILITY(S, p). What is the prize? Examples for some games

https://commons.wikimedia.org/wiki/File:

Tic-tac-toe 5.png
Think about what do the functions return?

4)27

https://commons.wikimedia.org/wiki/File:Tic-tac-toe_5.png
https://commons.wikimedia.org/wiki/File:Tic-tac-toe_5.png

Terminal utilitity: Zero-Sum and General games

> Zero-sum: players have opposite utilities (values)

» Zero-sum: playing against opponent

5/27

Terminal utilitity: Zero-Sum and General games

> Zero-sum: players have opposite utilities (values)
» Zero-sum: playing against opponent
» General game: independent utilities

> General game: cooperations, competition, ...

5/27

Game Tree(s)

Me (x)
thinking
Me playing
Opp (o) X X X . .
thinking X X <
Opp playing F\
X|0 X| |o] [X .
Me (x) o)
thinking
Me playing
Opp (0) X[o[X| [x|o x|o
thinking X X
Opp playing
terminal X[O[X]| |X|O|X| [X|O]|X
states O|X| |O[0|X X
o x[x]o] [x]olo
-1 0 +1

TERMINAL-UTILITY(s, X) 6/27

How to play (search)? State Value V/(s)

V(s) — value V of a state s : The best utility achievable from state s, assuming optimal
actions from s’:

V(s) = V(s
(S) s’Gchmilgr);n(s) (S)

7/27

How to play (search)? State Value V/(s)

V(s) — value V of a state s : The best utility achievable from state s, assuming optimal
actions from s’

V(s) = V(s
(S) s’Gchmilgr);n(s) (S)

For games, it (notion of the best) also depends on player p (assuming both players play
optimally from s'):

4 = V(s
(5, P) s’Echmilgén(s) (S ’ P)

7/27

What is the Value of the root V(A)?

%

b1 bz b3
8
V(s) - value V of a state s : The best ut|I|ty achlevable from this state.

A, B, C,D - states of the game. | start, values represent values

A: V(A)=6 of terminal states, more is better for me - think about the (my)
B: V(A)=2 money prize. Assume (strictly) rational players.

C: VA =7

D: V(A) =16

8/27

Two-ply game: max for me, min for the opponent. What is the best
action a?

/AN

9/27

Two-ply game: max for me, min for the opponent. What is the best
action a?

9/27

Two-ply game: max for me, min for the opponent. What is the best
action a?

<
b1 by b3
VAN

9/27

Two-ply game: max for me, min for the opponent. What is the best
action a?

WY W
b1 by b3
/1N

9/27

Two-ply game: max for me, min for the opponent. What is the best
action a?

9/27

Two-ply game: max for me, min for the opponent. What is the best
action a?

9/27

Two-ply game: max for me, min for the opponent. What is the best

action a?

16 14 5 2

9/27

Two-ply game: max for me, min for the opponent. What is the best

action a?

9/27

Two-ply game: max for me, min for the opponent. What is the best

action a?

9/27

Two-ply game: max for me, min for the opponent. What is the best
action a?

A
WS

27
] /\\
b 2b3
/ \
4

\27
/] /1N

14

9/27

Two-ply game: max for me, min for the opponent. What is the best
action a?

at = arg max V(REsuULT(state = A, a))
a€ACTIONS(state=A)

9/27

Zero-Sum game: max for me, min for the opponent.

MAX (X)
MIN (0) [
X X
o X
X|O[X X|0[X (o]
TERMINAL o[x] [0]o[X X
o] X|X[O o]
Utility -1 0+l

10/27

Zero-Sum game: max for me, min for the opponent.

MAX (x)
MIN (0) [X 2l % X
I‘\ X X X
o[| (X[Jo] [x
MAX (x) o | | | ‘
x[o[x] [X[o[x] [X[o[x
TERMINAL 0o[Xx] [0o]o[X X
o x[xJo] [x[olo
Utility -1 0+

MINIMAX(S) =

10/27

Zero-Sum game: max for me, min for the opponent.

MAX (x)
X X X
MIN (o) X X X
I‘\ X X X
x[o x| Jo] [x
MAX (x) o | | | ‘
X[O|X| [X|O|X]| [X[O|X s
TERMINAL o[x| [o[o]x X
ol | [xIxlo] [x[olo
Utility -1 0 +1
UTILITY(S, MAX) if IS-TERMINAL(S)
MINIMAX(S) =

10/27

Zero-Sum game: max for me, min for the opponent.
MAX (x)

MIN (o) P X sl X X
I‘\ : . §
x]o x| [o] [x
MAX (x) o | | | ‘
X[O[X| |X[O|X]| |X|O|X
TERMINAL o[x]| [o]o]X X
o X[X[O| [X[O|O
Utility -1 0+l

UTILITY(S, MAX)

f IS-TERMINAL(S)

max MINIMAX(RESULT(s,a)) if TO-PLAY(S) = MAX
MINIMAX(S) = { acacTions(s)

10/27

Zero-Sum game: max for me, min for the opponent.
MAX (x)

MIN (o) P X sl X X
F\ : . §
x]o x| [o] [x
MAX (x) o | | | ‘
X[O[X| |X[O|X]| |X|O|X
TERMINAL o[x]| [o]o]X X
o X[X[O| [X[O|O
Utility -1 0+l

UTILITY(S, MAX)

max MINIMAX(RESULT(s, a))
MINIMAX(S) = { acacTions(s)

min MINIMAX(RESULT(s, a))
aEACTIONS(S)

f IS-TERMINAL(S)
f TO-PLAY(S) = MAX

f TO-PLAY(S) = MIN

10/27

Minimax algorithm

function MINIMAX-SEARCH(state) returns an action

function MIN-VALUE(state) returns a utility value v

function MAX-VALUE(state) returns a utility value v

11/27

Minimax algorithm

function MINIMAX-SEARCH(state) returns an action

return argmax MIN-VALUE(RESULT(state, a))
a€EActions(s)

function MIN-VALUE(state) returns a utility value v

function MAX-VALUE(state) returns a utility value v

11/27

Minimax algorithm

function MINIMAX-SEARCH(state) returns an action

return argmax MIN-VALUE(RESULT(state, a))
a€EActions(s)

function MIN-VALUE(state) returns a utility value v
if TERMINAL-TEST(state) then return UTILITY (state)
V < 00
for all a € ACTIONS(state) do
v < min(v, MAX-VALUE(RESULT(state,a)))

function MAX-VALUE(state) returns a utility value v

11/27

Minimax algorithm

function MINIMAX-SEARCH(state) returns an action

return argmax MIN-VALUE(RESULT(state, a))
a€EActions(s)

function MIN-VALUE(state) returns a utility value v
if TERMINAL-TEST(state) then return UTILITY (state)
V < 00
for all a € ACTIONS(state) do
v < min(v, MAX-VALUE(RESULT(state,a)))

function MAX-VALUE(state) returns a utility value v
if TERMINAL-TEST(state) then return UTILITY (state)
V = —00
for all a € ACTIONS(state) do
v <— max(v, MIN-VALUE(RESULT(state,a)))

11/27

A two ply game, down to terminal and back again ...

function MINIMAX-SEARCH(s) returns a

MAX
argmax MINVAL(RES(s, a))
acActions(s)
function MINVAL(s) returns v
if TERMINAL(S) then UTIL(s) MIN

V < 00
for all a € ACTIONS(s) do
v + min(v, MAXVAL(RES(s, a)))

function MAXVAL(s) returns v
if TERMINAL(s) then UTIL(s)

Vv —00
for all a € AcTIONS(S) do
v < max(v, MINVAL(RES(s, a)))

12/27

A two ply game, recursive run

13/27

A two ply game, recursive run

ai

13/27

A two ply game, recursive run

13/27

A two ply game, recursive run

ai

by by

/o
3

12

13/27

A two ply game, recursive run

by by b3

SN
3 8

12

ai

13/27

A two ply game, recursive run

ai

a7
/1N

by by b3

SN
3 8

12

13/27

A two ply game, recursive run

VAR 7
VX

by by b3

SN
3 8

12

13/27

A two ply game, recursive run

a7
/1N

by by b3

SN
3 8

12

ap

13/27

A two ply game, recursive run

a7
/1N

by by b3

SN
3 8

12

ap

13/27

A two ply game, recursive run

a7
/1N

by by b3

/N
3

12 8 2 4 6

ap

13/27

A two ply game, recursive run

A

31 an

Kzs

27
VI \\
b1 by b3
/|
3 4

12

13/27

A two ply game, recursive run
31 Ag as

Kzs

27
VI \\
b1 by b3
/|
3 4

12

13/27

A two ply game, recursive run

AR

31 an as

K3

27
VI \\
b1 by b3
/|
3 4

12

13/27

A two ply game, recursive run

AR

31 an as

K3

27
VI \\
b1 by b3
/|
3 4

12 14 5

13/27

A two ply game, recursive run

AR

31 an as

K3

27
VI \\
b1 by b3
/|
3 4

12 14 5 2

13/27

A two ply game, recursive run

A
\

G W 27
0 \\ \\
b1 by b3

AN

3 12 8 2 4 6 5

14

13/27

A two ply game, recursive run

A
\

G W 27
0 \\ \\
b1 by b3

AN

3 12 8 2 4 6 5

14

13/27

A two ply game, recursive run

AR,
/

VAR \27
0 \ /\\
b1 by b3

/1A
3 12 8 4 14 5 2

13/27

VA

7 Ne7
= N /N
b1 by b3
VAR N
3 12 8 2 4 5
Is it like DFS or BFS?

13/27

A two ply game, recursive run

N

7T N7 Ner
0 \\ /\\
b1 by b3

AN
3 12 8 2 4 6 14 5 2

Is it like DFS or BFS?

What is the complexity? How many nodes to visit?

13/27

A two ply game, recursive run

AN

G U7 Yoy
0 \\ /\\
b1 by b3

AN
3 12 8 2 4 6 14 5 2

Is it like DFS or BFS?

What is the complexity? How many nodes to visit?

Can we do better? How?

13/27

Nodes (sub-trees) worth visiting; tracking possible state values

/AN

14/27

Nodes (sub-trees) worth visiting; tracking possible state values

14/27

Nodes (sub-trees) worth visiting; tracking possible state values

14/27

Nodes (sub-trees) worth visiting; tracking possible state values

14/27

Nodes (sub-trees) worth visiting; tracking possible state values

14/27

Nodes (sub-trees) worth visiting; tracking possible state values

14/27

Nodes (sub-trees) worth visiting; tracking possible state values

14/27

Nodes (sub-trees) worth visiting; tracking possible state values

14/27

Nodes (sub-trees) worth visiting; tracking possible state values

I\

< 3,00 >

f

<3,3>

/1N

3 12 8

14/27

Nodes (sub-trees) worth visiting; tracking possible state values

14/27

Nodes (sub-trees) worth visiting; tracking possible state values

I\

< 3,00 >
<3,3> C

14/27

Nodes (sub-trees) worth visiting; tracking possible state values

< 3,00 >

—

__—
<3,3> < —00,2>7

14/27

Nodes (sub-trees) worth visiting; tracking possible state values

< 3,00 >

—

L
<3,3> < —00,2 >

14/27

Nodes (sub-trees) worth visiting; tracking possible state values

< 3,00 >
<3,3> < —00,2 >

14/27

Nodes (sub-trees) worth visiting; tracking possible state values

<3oo>
<3,3> < oo,2>

/N

14

14/27

Nodes (sub-trees) worth visiting; tracking possible state values

<3oo>
<3,3> <—oo,2> < —00,14 >

14/27

Nodes (sub-trees) worth visiting; tracking possible state values

J*

<3,3> < —00,2 > < —00,14 >

NS

14/27

Nodes (sub-trees) worth visiting; tracking possible state values

J*

<3,3> < —00,2 > < —00,14 >

NS

14/27

Nodes (sub-trees) worth visiting; tracking possible state values

J*

<3,3> < —00,2 > < —00,2 >

NS

14/27

Nodes (sub-trees) worth visiting; tracking possible state values

J*

<3,3> < —00,2 > < —00,2 >

AN

14/27

a-f pruning
a: highest (best) value choice found so far for any choice along MAX (think "at least”)
B: lowest (best) value choice found so far for any choice along MIN (think "at most”)

v value of the state

15/27

a-f pruning
a: highest (best) value choice found so far for any choice along MAX (think "at least”)
B: lowest (best) value choice found so far for any choice along MIN (think "at most”)

v value of the state

15/27

a-f pruning
a: highest (best) value choice found so far for any choice along MAX (think "at least”)
B: lowest (best) value choice found so far for any choice along MIN (think "at most”)

< 7
a=—00,0 =00
V=00
N

v value of the state

15/27

a-f pruning
a: highest (best) value choice found so far for any choice along MAX (think "at least”)
B: lowest (best) value choice found so far for any choice along MIN (think "at most”)

< 7
a=—00,0 =00
V=00

v value of the state .

15/27

a-f pruning
a: highest (best) value choice found so far for any choice along MAX (think "at least”)
B: lowest (best) value choice found so far for any choice along MIN (think "at most”)

< 7
a=-00,0=3
v=3

v value of the state .

15/27

a-f pruning
a: highest (best) value choice found so far for any choice along MAX (think "at least”)
B: lowest (best) value choice found so far for any choice along MIN (think "at most”)

< 7
a=-00,0=3
v=3

v value of the state . -

15/27

a-f pruning
a: highest (best) value choice found so far for any choice along MAX (think "at least”)
B: lowest (best) value choice found so far for any choice along MIN (think "at most”)

v value of the state

15/27

a-f pruning
a: highest (best) value choice found so far for any choice along MAX (think "at least”)
B: lowest (best) value choice found so far for any choice along MIN (think "at most”)

 S——
Ol=-00,,3=3
v=3

v value of the state . - .

15/27

a-f pruning
a: highest (best) value choice found so far for any choice along MAX (think "at least”)
B: lowest (best) value choice found so far for any choice along MIN (think "at most”)

 S——
Ol=-00,,3=3
v=3

v value of the state . - .

15/27

a-f pruning
a: highest (best) value choice found so far for any choice along MAX (think "at least”)
B: lowest (best) value choice found so far for any choice along MIN (think "at most”)

v value of the state . - .

15/27

a-f pruning
a: highest (best) value choice found so far for any choice along MAX (think "at least”)
B: lowest (best) value choice found so far for any choice along MIN (think "at most”)

v value of the state . - . .

15/27

a-f pruning
a: highest (best) value choice found so far for any choice along MAX (think "at least”)
B: lowest (best) value choice found so far for any choice along MIN (think "at most”)

v value of the state . - . .

In MIN-VAL: v < 2

15/27

a-f pruning
a: highest (best) value choice found so far for any choice along MAX (think "at least”)
B: lowest (best) value choice found so far for any choice along MIN (think "at most”)

v value of the state . - . .

In MIN-VAL: v < 2
v < « then: return v!

15/27

a-f pruning
a: highest (best) value choice found so far for any choice along MAX (think "at least”)
B: lowest (best) value choice found so far for any choice along MIN (think "at most”)

a=-00,0=3 a=3,... a=3,0=x
v=3 v=2 vV =00

v value of the state . - . .

In MIN-VAL: v < 2
v < « then: return v!

15/27

a-f pruning
a: highest (best) value choice found so far for any choice along MAX (think "at least”)
B: lowest (best) value choice found so far for any choice along MIN (think "at most”)

v value of the state . - . .

15/27

a-f pruning
a: highest (best) value choice found so far for any choice along MAX (think "at least”)
B: lowest (best) value choice found so far for any choice along MIN (think "at most”)

a=-00,0=3 a=3,... a=3,=14
v=3 v=2 v=14

v value of the state . - . . -

15/27

a-f pruning
a: highest (best) value choice found so far for any choice along MAX (think "at least”)
B: lowest (best) value choice found so far for any choice along MIN (think "at most”)

v value of the state . - . . - .

15/27

a-f pruning
a: highest (best) value choice found so far for any choice along MAX (think "at least”)
B: lowest (best) value choice found so far for any choice along MIN (think "at most”)

v value of the state . - . . - .

15/27

a-f pruning
a: highest (best) value choice found so far for any choice along MAX (think "at least”)
B: lowest (best) value choice found so far for any choice along MIN (think "at most”)

v value of the state . - . . - .

15/27

a-f pruning — How much can we save?

original: Time: O(b™)
> how to consider next actions/moves (in what order)?

> perfect ordering?

16/27

function ALPHA-BETA-SEARCH(state) returns an action
Vv < MAX-VALUE(state, & = —00, f§ = c0)
return action corresponding to v

17/27

function ALPHA-BETA-SEARCH(state) returns an action
Vv < MAX-VALUE(state, & = —00, f§ = c0)
return action corresponding to v

function MAX-VALUE(state,a, 8) returns a utility value v
if TERMINAL-TEST(state) return UTILITY (state)
V4 —00
for all a € ACTIONS(state) do
v < max(v, MIN-VALUE(RESULT(state,a),«, 3))
if v > (3 return v
a <+ max(a, v)

17/27

function ALPHA-BETA-SEARCH(state) returns an action
Vv < MAX-VALUE(state, & = —00, f§ = c0)
return action corresponding to v

function MAX-VALUE(state,a, 8) returns a utility value v
if TERMINAL-TEST(state) return UTILITY (state)
V4 —00
for all a € ACTIONS(state) do
v < max(v, MIN-VALUE(RESULT(state,a),«, 3))
if v > (3 return v
a <+ max(a, v)

function MIN-VALUE(state, «, 3) returns a utility value v
if TERMINAL-TEST(state) return UTILITY (state)
V < 00
for all a € ACTIONS(state) do
v < min(v, MAX-VALUE(RESULT(state,a),a, (3))
if v <areturn v

B« min(8,v)

17/27

Recall: lterative deepening DFS (ID-DFS)

» Start with maxdepth = 1

» Perform DFS with limited depth. Report success or failure.

> If failure, forget everything, increase maxdepth and repeat DFS.
The “wasting” of resources is not too bad. Recall:

> Most nodes are at the deepest levels.

> Asymptotic complexity unchanged.

Bonus for a-8 pruning: previous “shallower” iterations can be reused for node ordering.

18/27

Imperfect but real-time decisions: iterative deepening

H-MINIMAX(s, d) =

1927

Imperfect but real-time decisions: iterative deepening

EVAL(S, MAX) if Is-CUTOFF(s,d)

H-MINIMAX(s, d) =

19/27

Imperfect but real-time decisions: iterative deepening

EVAL(S, MAX) if Is-CUTOFF(s,d)

max H-MINIMAX(RESULT(s,a),d +1) if TO-PLAY(s) = MAX
H-MINIMAX(S, d) = ¢ Leacmions(s) ((s,a),) (s)

19/27

Imperfect but real-time decisions: iterative deepening

EVAL(S, MAX) if Is-CUTOFF(s,d)
max H-MINIMAX(RESULT(s,a),d + 1) if TO-PLAY(S) = MAX
H-MINIMAX(s, d) = a€ACTIONS(S) ((s.2)) (s)

min H-MINIMAX(RESULT(s,a),d + 1) if TO-PLAY(S) = MIN
aEACTIONS(S)

19/27

Imperfect but real-time decisions: iterative deepening

EVAL(S, MAX) if Is-CUTOFF(s,d)
max H-MINIMAX(RESULT(s,a),d + 1) if TO-PLAY(s) = MAX
H-MINIMAX(s, d) = aEACTIONS(s) ((s:2).) (s)
min H-MINIMAX(RESULT(s,a),d + 1) if TO-PLAY(S) = MIN
aEACTIONS(S)

What do we want from the EVAL(s, p)?:

19/27

Imperfect but real-time decisions: iterative deepening

EVAL(S, MAX) if Is-CUTOFF(s,d)
max H-MINIMAX(RESULT(s,a),d + 1) if TO-PLAY(s) = MAX
H-MINIMAX(s, d) = aEACTIONS(s) ((s:2).) (s)
min H-MINIMAX(RESULT(s,a),d + 1) if TO-PLAY(S) = MIN
aEACTIONS(S)

What do we want from the EVAL(s, p)?:
» For terminal states: EVAL(s, p) = UTILITY(S, p)

19/27

Imperfect but real-time decisions: iterative deepening

EVAL(S, MAX) if Is-CUTOFF(s,d)
max H-MINIMAX(RESULT(s,a),d + 1) if TO-PLAY(S) = MAX
H-MINIMAX(s, d) = a€ACTIONS(S) ((s.2)) (s)

min H-MINIMAX(RESULT(s,a),d + 1) if TO-PLAY(S) = MIN
aEACTIONS(S)

What do we want from the EVAL(s, p)?:
» For terminal states: EVAL(s, p) = UTILITY(S, p)
» For non-terminal states: UTILITY(/oss, p) < EVAL(s, p) < UTILITY(win, p)

19/27

Imperfect but real-time decisions: iterative deepening

EVAL(S, MAX) if Is-CUuTOFF(s,d)
max H-MINIMAX(RESULT(s,a),d + 1) if TO-PLAY(S) = MAX
H-MINIMAX(s, d) = a€ACTIONS(S) ((s.2)) (s)

min H-MINIMAX(RESULT(s,a),d + 1) if TO-PLAY(S) = MIN
aEACTIONS(S)

What do we want from the EVAL(s, p)?:
» For terminal states: EVAL(s, p) = UTILITY(S, p)
» For non-terminal states: UTILITY(/oss, p) < EVAL(s, p) < UTILITY(win, p)
» Fast enough

19/27

Cutting off search into minimax and «, (3 search

Replace

if IS-TERMINAL(s) then return UTILITY(s,p)
with:

if 1S-CUTOFF(s,d) then return EVAL(s,p)

Historical note: cutting search off earlier and use of heuristic evaluation functions proposed by
Claude Shannon in Programming a Computer for Playing Chess (1950).

20 /27

EVAL(s) — Evaluation functions

(Estimate of) State value for non-terminal states.
We need an easy-to-compute function correlated with “chance of winning”. For chess:

» fi(s) Material value for pieces—1 for pawn, 3 for knight/bishop, 5 for rook, 10 for queen.
(minus opponent’s pieces)

» f(s) Finetuning: 2 bishops are worth 6.5; knights are worth more in closed positions...

» Other features worth evaluating: controlling the center of the board, good pawn structure
(no double pawns), king safety...

» fi(s) =--- We can create many. How to combine them?

21/27

EVAL(s) — Evaluation functions

(Estimate of) State value for non-terminal states.
We need an easy-to-compute function correlated with “chance of winning”. For chess:

» fi(s) Material value for pieces—1 for pawn, 3 for knight/bishop, 5 for rook, 10 for queen.
(minus opponent’s pieces)

» f(s) Finetuning: 2 bishops are worth 6.5; knights are worth more in closed positions...

» Other features worth evaluating: controlling the center of the board, good pawn structure
(no double pawns), king safety...

» fi(s) =--- We can create many. How to combine them?

EVAL(S) = wifi(s) + wafa(s) + - - - wufn(s)

21/27

EVAL(s) — Evaluation functions

(Estimate of) State value for non-terminal states.
We need an easy-to-compute function correlated with “chance of winning”. For chess:

» fi(s) Material value for pieces—1 for pawn, 3 for knight/bishop, 5 for rook, 10 for queen.
(minus opponent’s pieces)

» f(s) Finetuning: 2 bishops are worth 6.5; knights are worth more in closed positions...

» Other features worth evaluating: controlling the center of the board, good pawn structure
(no double pawns), king safety...

» fi(s) =--- We can create many. How to combine them?

EVAL(S) = wifi(s) + wafa(s) + - - - wufn(s)

How to find /compute proper weights?

21/27

EVAL(s) — Evaluation functions

(Estimate of) State value for non-terminal states.
We need an easy-to-compute function correlated with “chance of winning”. For chess:

» fi(s) Material value for pieces—1 for pawn, 3 for knight/bishop, 5 for rook, 10 for queen.
(minus opponent’s pieces)

» f(s) Finetuning: 2 bishops are worth 6.5; knights are worth more in closed positions...

» Other features worth evaluating: controlling the center of the board, good pawn structure
(no double pawns), king safety...

» fi(s) =--- We can create many. How to combine them?

EVAL(S) = wifi(s) + wafa(s) + - - - wufn(s)

How to find /compute proper weights?
How to find/create fi(s)?

21/27

EVAL(s) — Problems
What if something important happens just after the cut — in the next ply?

(a) White to move (b) White to move

Additional improvements:
> “Killer moves”—moves that prevent oponent to play a very good move.

» Quiescence search — EVAL function should be applied only once things calm down.

During capturing of pieces, depth should be locally increased.

22/27

Horizon effect

Pushing unavoidable loss deeper in tree by a
delaying tactics. We know it is useless but
does the machine?

See the situation on right. Black is on move,
her bishop is surely doomed. However, the in-
evitable loss can be postponed by moving her
pawns and checking the white king. Depend-
ing on the searchable depth this may put the
loss over the horizon and moving pawns may
look promising.

o N N Lt AW N =

Computer play vs. grandmaster play

» Computers are better since 1997 (Deep Blue defeating Garry Kasparov).
> The way they play is still very different: “dumb”, relying on “brute force”.

» Deep Blue examined 200M positions per second.
» In some cases, depth of search was 40 ply.

» Grandmasters do not excel in being able to compute very deep—many moves ahead.

P> They play based on experience: super-effective pruning and evaluation functions.
> They consider only 2 to 3 moves in most positions (branching factor).

24 /27

Monte Carlo Tree Search (MCTS)

» Simulate from state s.

» V/(s) average utility from the simulations

25 /27

Monte Carlo Tree Search (MCTS)

Simulate from state s.

V/(s) average utility from the simulations

>
>
» Pure randomness may be not enough.
> Selection policy.

>

Exploration vs. Exploitation (see RL in few weeks)

25 /27

Monte Carlo Tree Search (MCTS)

vVVYy VYVVVY VY

Simulate from state s.

V/(s) average utility from the simulations

Pure randomness may be not enough.

Selection policy.

Exploration vs. Exploitation (see RL in few weeks)
Combine MCTS with evaluation heurstics.

Learn from available game recordings.

25 /27

Adversarial search - Summary

» Recursive algorithm — repeating What—if

\4

Search tree too huge — cutting, sorting candidate branches

» Value of a state V(s,p) = max ()V(s’,p)
s’echildren(s

\4

V/(s, p) estimate for non-terminal states

v

UTILITY(loss, p) < EVAL(s, p) < UTILITY(win, p)

26 /27

References and further reading

Many images, including the chess plates are from Chapter 5, “Adversarial search” in [1].
Notation has been modified according to the new edition [2]; Chapter 6, “Adversarial search
and games”. Connection to Reinforcement Learning that comes in few weeks can be easily
seen in section 1.5 in [3].

[1] Stuart Russell and Peter Norvig.
Artificial Intelligence: A Modern Approach.
Prentice Hall, 3rd edition, 2010.
http://aima.cs.berkeley.edu/.

[2] Stuart Russell and Peter Norvig.
Artificial Intelligence: A Modern Approach.
Prentice Hall, 4th edition, 2021.

[3] Richard S. Sutton and Andrew G. Barto.
Reinforcement Learning; an Introduction.
MIT Press, 2nd edition, 2018.

http://www.incompleteideas.net/book/the-book-2nd.html. .

http://aima.cs.berkeley.edu/
http://www.incompleteideas.net/book/the-book-2nd.html

	Introduction
	Minimax strategy
	Minimax algorithm
	Two-ply example

	Alpha-beta pruning
	Cut-off search
	References

