
Quantum Computing

Exercises: Quantum walks

1. At each time step, a quantum walk corresponds to a unitary map U ∈ U(N) such
that

U : HG → HG

|x⟩ 7→ a|x− 1⟩+ b |x⟩+ c |x+ 1⟩

Show that U is unitary if and only if one of the following three conditions is true:

(a) |a| = 1, b = c = 0,

(b) |b| = 1, a = c = 0,

(c) |c| = 1, a = b = 0.

Using the unitarity of the operator we know that:

⟨x|U †U︸︷︷︸
111

|y⟩ = δxy (1)

So, for instance, for the following states, we have:

⟨x− 1|U †U |x+ 1⟩ =
(
a ⟨x− 2|+ b ⟨x− 1|+ c ⟨x|

)(
a |x⟩+ b |x+ 1⟩+ c |x+ 2⟩

)
= 0

The only term surviving being c ⟨x| a |x⟩ = ac = 0

⟨x|U †U |x+ 1⟩ =
(
a ⟨x− 1|+ b ⟨x|+ c ⟨x+ 1|

)(
a |x⟩+ b |x+ 1⟩+ c |x+ 2⟩

)
= 0

The non-vanishing terms now are{
b ⟨x| a |x⟩ ⇒ ab
c ⟨x+ 1| b |x+ 1⟩ ⇒ bc

⇒ ab+ bc = 0

⟨x|U †U |x⟩ =
(
a ⟨x− 1|+ b ⟨x|+ c ⟨x+ 1|

)(
a |x− 1⟩+ b |x⟩+ c |x+ 1⟩

)
= 0

Lastly, the system to be solved is:


ac = 0

ab+ bc = 0

a2 + b2 + c2 = 1

(2)
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2. Demonstrate that the shift operator S, as defined in

S =

(
|0⟩ ⟨0| ⊗

∞∑
x=−∞

|x+ 1⟩ ⟨x|

)
+

(
|1⟩ ⟨1| ⊗

∞∑
x=−∞

|x− 1⟩ ⟨x|

)

is equivalent to

S |i, x⟩ =

{
|0, x+ 1⟩ if i = 0,

|1, x− 1⟩ if i = 1.

Applying directly the first definition of the operator to the state |i, x⟩, we get the
second one:

S |i, x⟩ =

|0⟩
δ0i︷ ︸︸ ︷

⟨0| |i⟩⊗
∞∑

k=−∞

|k + 1⟩
δkx︷ ︸︸ ︷

⟨k| |x⟩︸ ︷︷ ︸
|x+1⟩

+

|1⟩
δ1i︷ ︸︸ ︷

⟨1| |i⟩⊗
∞∑

k=−∞

|k − 1⟩
δkx︷ ︸︸ ︷

⟨k| |x⟩︸ ︷︷ ︸
|x−1⟩


=

{
|0⟩ ⊗ |x+ 1⟩ if i = 0,

|1⟩ ⊗ |x− 1⟩ if i = 1.
=

{
|0, x+ 1⟩ if i = 0,

|1, x− 1⟩ if i = 1.

3. In the lecture notes, starting at the state |ψ0⟩ = |0⟩ |0⟩ , we have seen how to obtain
the succesive states up to |ψ3⟩ by using the unitary operator U = S(H⊗ I). Derive
|ψ4⟩ for the walker on the finite subset of Z.
The previous states |ψ1..3⟩ can be found also in R. Portugal, Quantum walks and
search algorithms (3.19).

|ψ4⟩ = U |ψ3⟩ =
1

2
√
2
[2U |01⟩+ U |11⟩+ . . . ]

U |01⟩ = S(H ⊗ I) |01⟩ = S | |0⟩+|1⟩√
2

1⟩ = 1√
2
[S |01⟩+ S |11⟩] = 1√

2
[|02⟩+ |10⟩]

U |11⟩ = S(H ⊗ I) |11⟩ = S | |0⟩−|1⟩√
2

1⟩ = 1√
2
[S |01⟩ − S |11⟩] = 1√

2
[|02⟩ − |10⟩]

U |03⟩ = 1√
2
[|02⟩ − |10⟩]

U |1− 3⟩ = 1√
2
[|0− 2⟩ − |1− 4⟩]

U |0− 1⟩ = 1√
2
[|00⟩ − |0− 2⟩]

|ψ4⟩ =
1

4
[|10⟩+ 3 |02⟩+ |12⟩ − |00⟩ − |1− 4⟩+ |04⟩]
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4. Show that the formula from the lecture notes, H |k⟩ = 2 cos(k) |k⟩ holds, by per-
forming the discrete Fourier transform in the computational basis states.

For the walker on the line, every state |x⟩ is only connected to its adjacent states
|x± 1⟩, that is, its adjacency matrix, A, is defined by:

{
⟨x|A |x± 1⟩ = 1

⟨x|A |y⟩ = 0 , y ̸= x± 1
(3)

A =



0 1 0 0 0 . . . 0
1 0 1 0 0 . . . 0
0 1 0 1 0 . . . 0
...

...
...

...
...

. . .
...

0 0 0 0 1 0 1
0 0 0 0 0 1 0


Changing from the computational basis to the Fourier basis, we have:

|k⟩ = 1√
N

N−1∑
x=0

eikx |x⟩ , ⟨k| = 1√
N

N−1∑
x=0

e−ikx ⟨x| , where k =
2πκ

N

Now, taking the matrix element of the adjacency matrix and identifying it with the
hamiltonian:

⟨k| A︸︷︷︸
=H

|k′⟩ = 1

N

N−1∑
x=0

e−ikx ⟨x|H
N−1∑
x=0

eik
′x |x⟩ = 1

N

N−1∑
x=0

e−ikxeik
′(x+1)+e−ikxeik

′(x−1) =

=
1

N

N−1∑
x=0

e−ix(k−k′)eik
′
+ e−ix(k−k′)e−ik′ = (eik

′
+ e−ik′)︸ ︷︷ ︸
2 cos k

1

N

N−1∑
x=0

e−ix(k−k′)

︸ ︷︷ ︸
δκκ′

Where in the last equation, we have made use of the partial sum, sn, of a geometric
series:

sn = ar0 + ar1 + · · ·+ arn−1 (4)

=
n−1∑
k=0

ark =
n∑

k=1

ark−1 (5)

=

{
a
(
1−rn

1−r

)
, for r ̸= 1

an, for r = 1
(6)

1

N

N−1∑
x=0

e−ix(k−k′) =
1

N

N−1∑
x=0

(
e−i(k−k′)

)x
=

1−e
2πi

�N
(κ−κ′)�N

1−e
2πi
N

(κ−κ′) = 0

N
N

= 1
= δκκ′
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