For the sake of clarity, we reproduce here the algebraic manipulations done in class.

We consider state |y), consisting on n qubits, that is |y) = |y1...yn) = |y1) @ - - @ |y ), which gives us 2" = N basis
states.

The Quantum Fourier Transform is the change of basis:
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We now plug in y written in the binary representation y = ZZ:O yR2"k
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A summation on the exponent turns into a product:
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Now the key idea is that we can split the summation into n summations, one for each qubit with possible values

{0,1} :
Z Z H Py ) 2)

yl =0 Yn=0 k=0

Let us work out in detail using for the case of two qubits (n=2):
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The final expression we get can be easily recast as a tensor product:
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With a bit of work, we get an idea of the structure of the transform for the general case (n qubits) by performing
the summation for some qubits:

First:
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Second:
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and so on. We see we get 2" states in this fashion, whose coefficients we know how to write down. For example,
some of them are:
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Finally, convince yourself that you can write those terms as n tensor products:
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