Quantum Computing

Exercises 3: Qubits

1. Let us consider the set $\{|0\rangle, |1\rangle\}$, that forms a basis in \mathbb{C}^2 (the computational basis). Calculate the vectors in \mathbb{C}^4 :

$$|0\rangle \otimes |0\rangle$$
, $|0\rangle \otimes |1\rangle$, $|1\rangle \otimes |0\rangle$, $|1\rangle \otimes |1\rangle$

and interpret the result.

b) Consider the Pauli matrices σ_x and σ_z . Find $\sigma_x \otimes \sigma_z$ and $\sigma_z \otimes \sigma_x$ and discuss. Both σ_x and σ_z are hermitian. Are $\sigma_x \otimes \sigma_z$ and $\sigma_z \otimes \sigma_x$ hermitian? Both σ_x and σ_z are unitary. Is $\sigma_x \otimes \sigma_z$ and $\sigma_z \otimes \sigma_x$ unitary?

a)

$$|0\rangle \otimes |0\rangle = \begin{pmatrix} 1\\0 \end{pmatrix} \otimes \begin{pmatrix} 1\\0 \end{pmatrix} = \begin{pmatrix} 1\begin{pmatrix}0\\0\\0\\0 \end{pmatrix} = |00\rangle$$

$$|0\rangle \otimes |1\rangle = \begin{pmatrix} 1\\0 \end{pmatrix} \otimes \begin{pmatrix} 0\\1 \end{pmatrix} = \begin{pmatrix} 1\begin{pmatrix}0\\1\\0\\0 \end{pmatrix} = |01\rangle$$

$$|1\rangle \otimes |0\rangle = \begin{pmatrix} 0\\1 \end{pmatrix} \otimes \begin{pmatrix} 1\\0 \end{pmatrix} = \begin{pmatrix} 0\begin{pmatrix}1\\0\\1\\0 \end{pmatrix} = |10\rangle$$

$$|1\rangle \otimes |1\rangle = \begin{pmatrix} 0\\1 \end{pmatrix} \otimes \begin{pmatrix} 0\\1 \end{pmatrix} = \begin{pmatrix} 0\begin{pmatrix}1\\0\\1\\0 \end{pmatrix} = |10\rangle$$

$$|1\rangle \otimes |1\rangle = \begin{pmatrix} 0\\1 \end{pmatrix} \otimes \begin{pmatrix} 0\\1 \end{pmatrix} = \begin{pmatrix} 0\begin{pmatrix}0\\1\\1\\0 \end{pmatrix} = |11\rangle$$

These represent the two qubit computational basis states.

 $\sigma_{x} \otimes \sigma_{z} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \otimes \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = \begin{pmatrix} 0 \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} & 1 \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} & 2 \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} & 2 \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix} \\ 1 \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} & 0 \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} & 2 \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} & 2 \begin{pmatrix} 0$

Simply checking by Hermicity, by taking the conjugate transpose, and unitarity, by multiplying with its inverse we can clearly see the above matrices are Hermitian and unitary.

In general, for $C = A \otimes B$, and if we know that both A, B are unitary $(AA^{-1} = BB^{-1} = I)$, and Hermitian $(A = A^{\dagger}, B = B^{\dagger})$ then we can show C is always unitary and hermitian respectively

$$CC^{-1} = (A \otimes B)(A^{-1} \otimes B) = (AA^{-1}) \otimes (BB^{-1}) = I \otimes I = I$$

$$C^{\dagger} = (A \otimes B)^{\dagger} = A^{\dagger} \otimes B^{\dagger} = A \otimes B = C$$

2. Consider again the computational basis for, $\{|0\rangle, |1\rangle\}$. The Walsh-Hadamard transform is a 1-qubit operation, denoted by H, and performs the linear transform

$$|0\rangle \rightarrow \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle) , |1\rangle \rightarrow \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle).$$

- a) Find the unitary operator U_H which implements H with respect to the basis $\{|0\rangle, |1\rangle\}$.
- b) Find the inverse of this operator.
- c) Find its matrix representation in the computational (standard) basis:

$$|0\rangle = \begin{pmatrix} 1\\0 \end{pmatrix} , |1\rangle = \begin{pmatrix} 0\\1 \end{pmatrix},$$

and in the Hadamard basis:

$$|0\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\1 \end{pmatrix} , |1\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\-1 \end{pmatrix}.$$

a) For an operator, X, that performs the mapping on an orthonormal basis $\{|x_1,\rangle|x_2\rangle\}$:

$$|x_1\rangle \to |y_1\rangle, \quad |x_2\rangle \to |y_2\rangle$$

we may simply write it as

$$X = |y_1\rangle\langle x_1| + |y_2\rangle\langle x_2|$$

hence

$$U_H = \frac{1}{\sqrt{2}} \left(|0\rangle + |1\rangle \right) \left\langle 0| + \frac{1}{\sqrt{2}} \left(|0\rangle - |1\rangle \right) \left\langle 1| = \frac{1}{\sqrt{2}} \left(|0\rangle\langle 0 + |1\rangle\langle 0| + |0\rangle\langle 1| - |1\rangle\langle 1| \right) \right\rangle$$

b) The inverse reverse the mapping i.e:

$$\frac{1}{\sqrt{2}}\left(|0\rangle+|1\rangle\right)\rightarrow|0\rangle,\quad\frac{1}{\sqrt{2}}\left(|0\rangle-|1\rangle\right)\rightarrow|1\rangle.$$

Performing the same procedure as above, we have the result

$$U_{H}^{-1} = \frac{1}{\sqrt{2}} |0\rangle \left(\langle 0| + \langle 1| \right) + \frac{1}{\sqrt{2}} |1\rangle \left(\langle 0| - \langle 1| \right) = \frac{1}{\sqrt{2}} \left(|0\rangle \langle 0 + |1\rangle \langle 0| + |0\rangle \langle 1| - |1\rangle \langle 1| \right) = U_{H}$$

The Hadamard gate is its own inverse!

c) i) in the computational basis:

$$U_H = \begin{pmatrix} \langle 0|U_H|0\rangle & \langle 0|U_H|1\rangle \\ \langle 1|U_H|0\rangle & \langle 1|U_H|1\rangle \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$

ii) in the Hadarmard basis (also denoted as $\{|+\rangle, |-\rangle\}$):

$$U_H = \begin{pmatrix} \langle +|U_H|+\rangle & \langle +|U_H|-\rangle \\ \langle -|U_H|+\rangle & \langle -|U_H|-\rangle \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$

3. [Nielsen & Chuang Ex. 4.1] Find the points on the Bloch sphere which correspond to the normalized eigenvectors of the different Pauli matrices. For the eigenvectors of σ_z we have $\{|0\rangle, |1\rangle\}$ by comparing with the general formula for a wavefuction written in spherical coordinates $(\theta, \phi) |\psi\rangle = \cos(\theta/2)|0\rangle + e^{i\phi}\sin(\theta/2)|1\rangle$

we see that for $|0\rangle$:

$$cos(\theta/2) = 1 \rightarrow \theta/2 = 0 \rightarrow \theta = 0$$

and ϕ is arbitrary.

Contintuing in the same way we see

$$|1\rangle \rightarrow \theta = \pi, \phi \text{ is arbitrary}$$

$$|+\rangle \rightarrow \theta = \pi/2, \phi = 0$$

$$|-\rangle \to \theta = \pi/2, \phi = \pi$$

$$|+i\rangle \rightarrow \theta = \pi/2, \phi = \pi/2$$

$$|-i\rangle \rightarrow \theta = \pi/2, \phi = -\pi/2$$