
Quantum Computing

Exercises 3: Qubits

1. Let us consider the set {|0〉, |1〉}, that forms a basis in C2 (the computational basis). Calculate the vectors in C4:

|0〉 ⊗ |0〉 , |0〉 ⊗ |1〉 , |1〉 ⊗ |0〉 , |1〉 ⊗ |1〉

and interpret the result.
b) Consider the Pauli matrices σx and σz . Find σx ⊗ σz and σz ⊗ σx and discuss. Both σx and σz are hermitian.
Are σx ⊗ σz and σz ⊗ σx hermitian? Both σx and σz are unitary. Is σx ⊗ σz and σz ⊗ σx unitary?
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These represent the two qubit computational basis states.
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
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Simply checking by Hermicity, by taking the conjugate transpose, and unitarity, by multiplying with its inverse we
can clearly see the above matrices are Hermitian and unitary.

In general, for C = A ⊗ B, and if we know that both A,B are unitary (AA−1 = BB−1 = I), and Hermitian
(A = A†, B = B†) then we can show C is always unitary and hermitian respectively

CC−1 = (A⊗B)(A−1 ⊗B) = (AA−1)⊗ (BB−1) = I ⊗ I = I

C† = (A⊗B)† = A† ⊗B† = A⊗B = C

2. Consider again the computational basis for, {|0〉, |1〉}. The Walsh-Hadamard transform is a 1-qubit operation,
denoted by H, and performs the linear transform

|0〉 → 1√
2
(|0〉+ |1〉) , |1〉 → 1√

2
(|0〉 − |1〉).

a) Find the unitary operator UH which implements H with respect to the basis {|0〉, |1〉}.
b) Find the inverse of this operator.
c) Find its matrix representation in the computational (standard) basis:
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|0〉 =
(
1
0

)
, |1〉 =

(
0
1

)
,

and in the Hadamard basis:

|0〉 = 1√
2

(
1
1

)
, |1〉 = 1√

2

(
1
−1

)
.

a) For an operator, X, that performs the mapping on an orthonormal basis {|x1, 〉|x2〉}:

|x1〉 → |y1〉, |x2〉 → |y2〉
we may simply write it as

X = |y1〉〈x1|+ |y2〉〈x2|
hence

UH =
1√
2
(|0〉+ |1〉) 〈0|+ 1√

2
(|0〉 − |1〉) 〈1| = 1√

2
(|0〉〈0 + |1〉〈0|+ |0〉〈1| − |1〉〈1|)

.
b) The inverse reverse the mapping i.e:

1√
2
(|0〉+ |1〉)→ |0〉, 1√

2
(|0〉 − |1〉)→ |1〉.

Performing the same procedure as above, we have the result

U−1H =
1√
2
|0〉 (〈0|+ 〈1|) + 1√

2
|1〉 (〈0| − 〈1|) = 1√

2
(|0〉〈0 + |1〉〈0|+ |0〉〈1| − |1〉〈1|) = UH

The Hadamard gate is its own inverse!

c) i) in the computational basis:

UH =

(
〈0|UH |0〉 〈0|UH |1〉
〈1|UH |0〉 〈1|UH |1〉

)
=

1√
2

(
1 1
1 −1

)
ii) in the Hadarmard basis (also denoted as {|+〉, |−〉}):

UH =

(
〈+|UH |+〉 〈+|UH |−〉
〈−|UH |+〉 〈−|UH |−〉

)
=

1√
2

(
1 1
1 −1

)
3. [Nielsen & Chuang Ex. 4.1] Find the points on the Bloch sphere which correspond to the normalized eigenvectors
of the different Pauli matrices. For the eigenvectors of σz we have {|0〉, |1〉} by comparing with the general formula
for a wavefuction written in spherical coordinates (θ, φ) |ψ〉 = cos(θ/2)|0〉+ eiφ sin(θ/2)|1〉

we see that for |0〉:
cos(θ/2) = 1→ θ/2 = 0→ θ = 0

and φ is arbitrary.
Contintuing in the same way we see

|1〉 → θ = π, φ is arbitrary

|+〉 → θ = π/2, φ = 0

|−〉 → θ = π/2, φ = π

|+ i〉 → θ = π/2, φ = π/2

| − i〉 → θ = π/2, φ = −π/2
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