
Quantum Computing

Exercises 1: Intro to Quantum Physics

1. a) Show that the ’in’ and ’out’ states defined as:

|i⟩ = 1√
2
(|u⟩+ i|d⟩)

|o⟩ = 1√
2
(|u⟩ − i|d⟩)

are orthogonal.
b) Calculate the expectation values of σy in the states |u⟩ and |i⟩, and of σz in the state |o⟩.

a) We take their product, which in the braket notation reads as ⟨o|i⟩, and verify that it is 0:

⟨o|i⟩ = 1√
2
(⟨u|+ i⟨d|) · 1√

2
(|u⟩+ i|d⟩) = 1

2

(
⟨u|u⟩+ i⟨u|d⟩+ i⟨d|u⟩ − ⟨d|d⟩

)
Now, recalling |u⟩ =

(
1
0

)
, |d⟩ =

(
0
1

)
, we have:

⟨u|u⟩ =
(
1 0

)
·
(
1
0

)
= 1 , ⟨u|d⟩ =

(
1 0

)
·
(
0
1

)
= 0

⟨d|u⟩ =
(
0 1

)
·
(
1
0

)
= 0 , ⟨d|d⟩ =

(
0 1

)
·
(
0
1

)
= 1

b) We insert the Pauli matrices into the expression for the expectation value of a general operator: ⟨ψ|A|ψ⟩

⟨u|σy|u⟩ =
(
1 0

)(0 −i
i 0

)(
1
0

)
=

(
1 0

)(0
i

)
= 0

⟨l|σy|l⟩ =
1

2

(
1 −i

)(0 −i
i 0

)(
1
i

)
=

1

2

(
1 −i

)(1
i

)
= 1

Alternatively, rather than working with matrix multiplication you can decompose the state into the eigenstates of
the desired operator. For example

⟨o|σz|o⟩ =
1

2
(⟨u|+ i⟨d|)σz(|u⟩ − i|d⟩)

Since we know that σz|u⟩ = |u⟩ and σz|d⟩ = −|d⟩ we have

⟨o|σz|o⟩ =
1

2
(⟨u|+ i⟨d|)(|u⟩+ i|d⟩) = 1

2
(1− 1) = 0

2. a) Normalise the state
|ψ⟩ = 3i|u⟩+ (1− 2i)|d⟩.

b) For this (normalised) state, calculate the probability of getting both positive (+1) and negative (−1) spin eigenvalues
by measuring σz.

a) Normalization means that taking the norm of the state ,|ψ⟩, is unity i.e.
√
⟨ψ|ψ⟩ = 1.

In this case however, we have:

⟨ψ|ψ⟩ = (−3i)(3i) + (1 + 2i)(1− 2i) = 9 + 5 = 14 ̸= 1.

We should then rescale our state by a constant N, |ψ⟩ ⇒ N · |ψ⟩ such that the result is 1:

⟨Nψ|Nψ⟩ = N2

=14︷ ︸︸ ︷
⟨ψ|ψ⟩ = 1 ⇒ N =

1√
14

So our new normalised state is

|ψ⟩ = 3i√
14

|u⟩+ (1− 2i)√
14

|d⟩.

b) Pψ(+) = |⟨u|ψ⟩|2 = | 3i√
14
|2 = 9

14 . For Pψ(−), we know that this is the only other possible outcome so Pψ(−) =

1− 9
14 = 5

14 .
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3. (Nielsen & Chuang Ex. 2.11 [Eigendecomposition of a Pauli matrix])
Find the eigenvectors, eigenvalues and diagonal representations of σx.

σx =

(
0 1
1 0

)
; det(σx − λI) =

∣∣∣∣−λ 1
1 −λ

∣∣∣∣ = λ2 − 1 = 0 ⇒ λ = ±1

For the eigenvalue −1 we have: (
1 1
1 1

)
·
(
a
b

)
=

(
0
0

)
⇒

{
a+ b = 0
a+ b = 0

The eigenvector is therefore v− =

(
a
−a

)
. Choosing a = 1, we have v− =

(
1
−1

)
.

And in an analogous way for the positive eigenvalue +1:

v+ =

(
1
1

)
.

The diagonal representation is given by: ∑
i

λi |vi⟩ ⟨vi|

In this case we have:

σx = |l⟩ ⟨l| − |r⟩ ⟨r|

That is, the matrix representation of the operator in the basis v± is the diagonal matrix, D =

(
1 0
0 −1

)
. The

change of basis matrix, P, that gets us from one matrix representation to the other has as columns the eigenvectors,

P =

(
1 1
1 −1

)
. This is achived in the following way:

P−1σxP = D.

4. (Hermitian operators)
For a hermitian matrix A, that is, a matrix that satisfies A = A†, show that:
a) Different eigenvalues have orthogonal eigenvectors.
b) All its eigenvalues are real. Does the converse also hold, that is, if the spectrum (the set of all eigenvalues) of a
matrix is in R, is it then a hermitian matrix?

a) [Done in Susskind chapter 3]
Consider two eigenvectors of A

A|ψ⟩ = λψ|ψ⟩, A|ψ⟩ = λϕ|ϕ⟩

Now consider:

⟨ψ|A|ϕ⟩ = λϕ⟨ψ|ϕ⟩

But also since A = A† this can be written as:

⟨ψ|A†|ϕ⟩ = λ∗ψ⟨ψ|ϕ⟩ = λψ⟨ψ|ϕ⟩

Since eigenvlaues of Hermitian matrices are real as we will show below. These two expressions are equivalent so
subtracting one from the other leads to:

(λϕ − λψ)⟨ψ|ϕ⟩ = 0

λψ ̸= λϕ so there difference is ̸= 0. Therefore the eigenvectors must be orthogonal for the above to be true.

b) Consider the matrix element of the adjoint of the operator: ⟨ϕ|A†|ψ⟩
The operator can either act on the ket (that is, from the left) or on the bra, in which case it is ’daggered’:

⟨ϕ|A†|ψ⟩ = ⟨Aϕ|ψ⟩

Now, we know that for any bra(c)ket we have: ⟨ϕ|ψ⟩ = ⟨ψ|ϕ⟩∗
Taking this remark into account:

⟨ϕ|A†|ψ⟩ = ⟨Aϕ|ψ⟩ = ⟨ψ|Aϕ⟩∗ = ⟨ψ|A|ϕ⟩∗
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Particularising for the case where ϕ = ψ and taking into account the eigenvalue equation, A|ψ⟩ = a|ψ⟩, we retrieve
the eigenvalues of the operator:

⟨ψ|A|ψ⟩ = ⟨ψ|a|ψ⟩ = a · ⟨ψ|ψ⟩ = a

Last, by assumption, we have A† = A, so:

⟨ψ|A†|ψ⟩ = ⟨ψ|A|ψ⟩ = ⟨ψ|A|ψ⟩∗ ⇒ a = a∗

The converse is not true in general, e.g.

(
2 1
0 1

)
5. (Unitary operators)
Now, consider a unitary matrix, one for which

UU† = I ⇐⇒ U†U = I ⇐⇒ U−1 = U†

holds. Prove that its eigenvalues are of the form eiθ and that eigenvectors of different eigenvalues must be orthogonal
as well.

We start by writing the eigenvalue equation for the unitatry operator U :

U |x⟩ = λx |x⟩ ↔ ⟨x|U† = ⟨x|λ∗x
We have normalised our eigenvector, so:

⟨x|x⟩ = 1 = ⟨x|U†U |x⟩ = ⟨x|λ∗xλx|x⟩ = |λx|2 ⟨x|x⟩ = |λx|2 ⇒ |λx|2 = 1 ⇒ λx = eiθ

Now, as in the previous example, consider two eigenvector of U :

U |x⟩ = λx |x⟩ , U |y⟩ = λy |y⟩

If λx ̸= λy, then:

⟨x|y⟩ = ⟨x|U†U |y⟩ = λ∗xλy ⟨x|y⟩ ⇒ ⟨x|y⟩ (1− λ∗xλy) = 0
·λx⇒ ⟨x|y⟩ (λx − λy) = 0
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