Quantum Computing

Exercises 1: Intro to Quantum Physics

1. a) Show that the ’in’ and ’out’ states defined as:

are orthogonal.

i) = () +ila)

Sl 8l

l0) = —=(|u) —ild))
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b) Calculate the expectation values of oy in the states |u) and |i), and of o in the state |o).

a) We take their product, which

V2

Now, recalling |u) = <(1]) , |d)

{oli) =

((uf +i(d]) -

in the braket notation reads as (o|i), and verify that it is 0:

V2

<(1)) , we have:

((ulu) + i(uld) + i(d|u) — (d|d))

(|uy + i|dY) %

=@ o) (g) =1 . w0 0-(]) =0
(duy = (0 1) (é) —0 . (ddy=(0 1)- G) _1

b) We insert the Pauli matrices into the expression for the expectation value of a general operator: (¢|A|y)

o = 0) (T ) (5) =0 0 (7) =0
(o, |1y = % (1 —i) (? _OZ> C) ! (1 —i) <}> =1
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Alternatively, rather than working with matrix multiplication you can decompose the state into the eigenstates of
the desired operator. For example

0

1 . .
{olozlo) = 5 ((u] +i{d])o=(Ju) — ild))
Since we know that o,|u) = |u) and 0,|d) = —|d) we have
1 . ) 1
(olozlo) = 5 ({ul +ild|)(Ju) +1ld)) = 5(1 1) =0
2. a) Normalise the state

|¥) = 3i|u)y + (1 — 27)|d).

b) For this (normalised) state, calculate the probability of getting both positive (+1) and negative (—1) spin eigenvalues
by measuring o,.

a) Normalization means that taking the norm of the state ,|¢), is unity i.e. \/(¥|¢) = 1.
In this case however, we have:

(lY)y = (=30)(31) + (1 +2i)(1 —2)) =9+5 =14 # 1.
We should then rescale our state by a constant N, [¢)) = N - [¢)) such that the result is 1:

=14

(NY|NY) = N2 (|yp)) =1 = N =

%‘}_‘
I

So our new normalised state is

(1— 2i)
V14

|¥) )+ |d).

3’L|
= —|u
V14

b) Py(+) = [(uly)* = \/1174|z = 2. For Py(—), we know that this is the only other possible outcome so Py(—) =
9 _ 5
T 14 T 14



3. (Nielsen & Chuang Ex. 2.11 [Eigendecomposition of a Pauli matriz])
Find the eigenvectors, eigenvalues and diagonal representations of o.

1 0 1 =X

(1) (G)=(0)= {0

. . . . 1
The eigenvector is therefore v_ = ( “ > . Choosing a = 1, we have v_ = ( ) .

JI(O 1);det(am)\1)’_)\ 1‘/\210$/\:|:1

For the eigenvalue —1 we have:

- -1
And in an analogous way for the positive eigenvalue +1:

1

1

The diagonal representation is given by:

Vg =

Z/\z‘ i) (vil

In this case we have:
o = 1) (| = |r) {r|
0 -1

change of basis matrix, P, that gets us from one matrix representation to the other has as columns the eigenvectors,

P = (1 11> . This is achived in the following way:

. . . . . . . . 1 0
That is, the matrix representation of the operator in the basis vL is the diagonal matrix, D = ) . The

P~ lo,P=D.

4. (Hermitian operators)

For a hermitian matriz A, that is, a matric that satisfies A = AT, show that:

a) Different eigenvalues have orthogonal eigenvectors.

b) All its eigenvalues are real. Does the converse also hold, that is, if the spectrum (the set of all eigenvalues) of a
matriz is in R, is it then a hermitian matriz?

a) [Done in Susskind chapter 3]
Consider two eigenvectors of A

Al) = Ay |Y), AlY) = Agld)

Now consider:

(]Al@) = Ap(b|d)
But also since A = AT this can be written as:
(¥|AT|6) = Ay, (V]e) = Ay (¥|9)

Since eigenvlaues of Hermitian matrices are real as we will show below. These two expressions are equivalent so
subtracting one from the other leads to:

(Ap = Ap)(¥lg) =0

Ay 7# Ag so there difference is # 0. Therefore the eigenvectors must be orthogonal for the above to be true.

b) Consider the matrix element of the adjoint of the operator: (¢|Af|1))
The operator can either act on the ket (that is, from the left) or on the bra, in which case it is 'daggered’:

(8| AT|yp) = (Aglp)

Now, we know that for any bra(c)ket we have: (¢[1)) = (¥|¢)*
Taking this remark into account:

(Bl AT|) = (Aglyp) = (Y| Ag)* = (| Al¢)*
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Particularising for the case where ¢ = ¢ and taking into account the eigenvalue equation, Aly) = ali), we retrieve
the eigenvalues of the operator:

(Y|AlY) = (blaly) = a- (YY) =a

Last, by assumption, we have AT = A, so:
(YlATY) = (Y]Al) = (Y|Al) = a=a

. . 2 1
The converse is not true in general, e.g. (O 1)

5. (Unitary operators)
Now, consider a unitary matriz, one for which

VUt =1 = Ut =1 < v'=Ut

holds. Prove that its eigenvalues are of the form e and that eigenvectors of different eigenvalues must be orthogonal
as well.

We start by writing the eigenvalue equation for the unitatry operator U :

Ulz) =\ |z) < (2| UT = (x| \*
We have normalised our eigenvector, so:
(zlz) =1= <$|UTU‘$> = (z[A\;Az]2) = ‘)‘x|2 (z|z) = |/\x‘2 = ‘)‘a:|2 1= =€
Now, as in the previous example, consider two eigenvector of U :

Ulz) = Azlz) , Uly) = Ay ly)
If Az # Ay, then:

(wly) = (@[UTU]y) = Xoxy (2ly) = (2ly) (1= AAy) =0 3 (aly) (A — ) =0



