
Jakub Mareček and Georgios Korpas and
Johannes Aspman

Quantum Computing

via Randomized Algorithms

February 20, 2025

Springer

Preface

Synergies between physics and computer science have been some of the most dom-
inant scientific and technological disciplines in recent times that aided in significant
technological advances. Quantum computing is a growing field at the intersection of
physics and computer science that is projected to lead to the next computational rev-
olution based on the theoretical and computational discovery that computers based
on quantum mechanical architecture are exponentially powerful. Combining the ex-
isting expertise in both fields proves to be a nontrivial but very exciting interdisci-
plinary adventure that will benefit students in diverse ways.

This course aims to make this cutting-edge discipline broadly accessible to under-
graduate students with a background in computer science as well as mathematics
and physics. The course will introduce the students to some of the most fundamen-
tal concepts in the field, both from a theoretical point of view, so the students obtain
a deep physical understanding of the underlying principles, as well as a practical one
such as to be able to apply their newly acquired skills with quantum simulators or by
accessing actual quantum devices on the cloud. This course provides an interdisci-
plinary first introduction to the emerging field of quantum computation building up
from the basics of quantum mechanics to quantum computational complexity and
quantum algorithms. During the course, special care is given to stress the potential
quantum speedups of quantum computers against their classical counterparts.

Jakub Mareček

v

Acknowledgements

Use the template acknow.tex together with the Springer document class SVMono
(monograph-type books) or SVMult (edited books) if you prefer to set your ac-
knowledgement section as a separate chapter instead of including it as last part of
your preface.

vii

Contents

Part I The Fundamentals

1 Quantum Mechanics 101 . 3

1.1 Quantum states . 4

1.1.1 States, probability and measurements in a classical world . . . 4

1.1.2 Quantum states . 5

1.1.3 The dual space and inner product . 7

1.1.4 Composite systems . 9

1.2 Measurements and probability . 10

1.2.1 Linear operators . 10

1.2.2 The wave function . 13

1.2.3 Measurements . 13

1.3 Evolution . 18

1.3.1 Unitary operators . 18

1.3.2 The Schrödinger equation . 19

1.3.3 A note on (in)determinism. 20

1.4 What actually is the quantum state? . 21

2 Quantum Engineering . 25

2.1 The qubit . 25

2.1.1 The Bloch sphere . 27

ix

x Contents

2.1.2 Several qubits . 28

2.1.3 Physical implementations . 28

2.2 The harmonic oscillator . 30

2.2.1 The classical harmonic oscillator . 30

2.2.2 The quantum harmonic oscillator . 32

2.2.3 The transmon qubit . 34

3 Quantum Information Theory . 39

3.1 Entanglement . 39

3.1.1 Product states . 39

3.1.2 Non-locality . 40

3.1.3 Bell inequalities and CHSH . 42

3.1.4 The GHZ paradox . 43

3.1.5 Bell basis and measurements . 44

3.2 Teleportation . 45

3.3 The density operator . 48

4 Quantum Engineering 102 . 51

4.1 General-Purpose Analog Computing . 51

4.2 Analog Computing via Classical Oscillators . 53

4.3 The Power of Analog Computing . 54

4.4 Optimal Control (*) . 54

4.5 Digital to Analog Conversion via Quantum Optimal Control 54

4.6 Analog to Digital via Quantum State Tomography 55

4.7 The Key Takeways . 56

4.7.1 Loading the Input is Impossible, Exactly 56

4.7.2 Loading the Input is as Hard as Executing any Algorithm . . . 56

4.7.3 Reading the Output is Impossible, Exactly 57

4.7.4 Reading the Output is Very Hard, in terms of Sample
Complexity . 57

Contents xi

5 Theoretical Computer Science 101 . 59

5.1 Traditional Computer Science . 59

5.1.1 Turing Machines . 60

5.1.2 Computability . 61

5.1.3 Analog computing and computability (*) 62

5.2 Complexity theory . 62

5.2.1 Computational Complexity of Discrete Algorithms 63

5.2.2 The Bachmann–Landau Notation . 63

5.2.3 P and NP . 67

5.3 Analog Computing and P (*) . 67

5.4 Randomized Algorithms . 68

5.4.1 Definitions . 70

5.5 Quantum Algorithms . 73

6 Quantum Computing 101 . 75

6.1 What we have seen so far? . 75

6.1.1 Qubits . 75

6.1.2 Superposition . 76

6.1.3 Entanglement . 77

6.1.4 BQP . 78

6.2 An Alternative Model of Fortnow . 79

6.3 Quantum Turing Machines . 80

6.4 Quantum Circuits . 81

6.4.1 Building our first quantum circuits . 82

6.5 Looking beyond the Basics (*) . 83

7 Foundamental Quantum Algorithms I . 87

7.1 What we have seen so far? . 87

7.2 Introduction . 87

7.3 A View from Theoretical Computer Science . 88

7.3.1 Definitions . 88

xii Contents

7.3.2 Results . 89

7.4 Our first Quantum Algorithm: Deutsch–Jozsa 90

7.5 First Few Tricks . 90

7.5.1 Artihmetics modulo 2 . 91

7.5.2 The Oracle . 91

7.5.3 Amplitude Amplification . 92

7.5.4 The Hadamard Transform . 92

7.5.5 Phase Kickback . 93

7.6 The Proof (Sketch) of our first Oracle Separation 94

7.7 Going beyond our first Oracle Separation . 95

8 Harmonic Analysis 101 . 97

8.1 Discrete Fourier Transform . 98

8.1.1 The Hadamard Transform . 100

8.1.2 The z-Transform . 100

8.1.3 Examples of Discrete Fourier Transform 100

8.2 Fast Fourier Transform . 102

8.2.1 The Many Fast Fourier Transforms . 102

8.2.2 Fast Fourier Transform as a Factorization 103

8.3 Quantum Fourier Transform . 104

8.3.1 Even Faster QFT. 106

Part II Beyond the Basics

9 Grover Search and Dynamic Programming . 109

9.1 Grover Algorithm . 109

9.2 Dynamic Programming . 114

Contents xiii

10 Quantum Walks and Quantum Replacements of Monte Carlo
Sampling . 117

10.1 Quantum Walks . 117

10.1.1 Basics of Quantum Walks . 117

10.1.2 Coin Space . 118

10.1.3 Quantum walk on a subset of Z . 120

10.1.4 Quantum Walk on a Complete Graph . 122

10.1.5 Szegedy Walks . 126

10.1.6 Continuous-time Quantum Walks . 128

10.1.7 Exponential speedups using Quantum Walks 131

10.1.8 Universality of Quantum Walks . 134

10.2 Quantum Amplitude Estimation and Monte Carlo Sampling 140

11 Adiabatic Quantum Computing and Practical Implementations 143

11.1 Adiabatic Quantum Computing . 143

11.2 The Adiabatic Theorem . 145

11.3 Adiabatic Quantum Computation is Universal 146

11.4 Stoquastic Hamiltonians and Quantum Annealing 148

11.5 Counterdiabatic Driving . 148

11.6 Universality and Controllability . 150

12 Variational Quantum Algorithms . 151

12.1 Randomized Algorithms . 151

12.2 Variational Quantum Algorithms . 152

12.3 Quantum Approximate Optimization Algorithm 156

12.4 VQAs are NP-hard to train . 157

12.5 Research Topics in Variational Quantum Algorithms 158

Part III Applications

xiv Contents

13 Applications in Financial Services . 161

13.1 Practical aspects of quantum annealers . 161

13.1.1 Focus: D-Wave . 162

13.2 More on QUBO . 162

13.2.1 Graph Partitioning . 163

13.2.2 Binary Integer Linear Programming . 163

13.2.3 Portfolio optimization . 164

13.3 Quantum Boost . 166

13.4 Warm-starting QAOA . 169

13.5 Asset Management and Monte Carlo Simulations 173

14 Applications in Security . 175

14.1 Generating random strings . 175

14.2 Quantum key distribution . 176

14.3 Factoring integers . 176

14.3.1 Shor factoring . 177

14.3.2 Quantum error correction . 179

14.3.3 Grover-based factoring . 181

14.3.4 Variational factoring . 181

14.3.5 A Rejoinder . 181

References . 183

Part I

The Fundamentals

Chapter 1

Quantum Mechanics 101

Quantum mechanics was developed in the beginning of the last century as a means
to explain certain mystical new phenomena that had been observed in experiments
involving atoms, electrons and light which could not be explained by the physics that
was known at the time. For example, computations of the electromagnetic energy in-
side a hollow cavity using classical electrodynamics told us that this energy would
be infinite. To solve this puzzle, in the year 1900, Max Planck introduced a dis-
cretization of the allowed energy levels of a photon, the energy was only allowed to
come in discrete packets which he named quanta. A few years later, 1905, Einstein
used Planck’s conjectural quanta to solve another problem, namely the photoelec-
tric effect. Here, classical physics would predict that the energy of emitted electrons
from a metal plate when you shine light on it would be proportional to the intensity
of the light, while experiments showed that it is proportional to the frequency of the
light. Einstein explained the experimental result by using the discretized energy of
light. The following thirty years saw an incredible development of more ideas re-
garding these quanta, explaining things like the structure of atoms and much more.
Culminating perhaps in the first full constructions of the theory of quantum mechan-
ics at the end of the 1920’s by people like Bohr, Heisenberg, Schrödinger and Dirac.
This led to nothing short of a revolution in physics and, more broadly, in how we
look upon the nature of reality.

Nowadays, even though quantum physics still might sound mysterious and abstract,
it is very much a vital part of our daily lives through its many applications in modern
technologies.

Classical physics1 is completely deterministic. It is in theory possible to know ev-
erything about a classical system, and furthermore, once we know enough about
the system, we can determine everything about its future through the basic laws

1 In this course, when we talk about classical physics we simply mean not quantum physics, so
things like Newtonian mechanics, Maxwell’s theory of electromagnetism and Einstein’s theories
of special and general relativity.

3

4 1 Quantum Mechanics 101

of classical physics such as Newtonian mechanics and the theory of relativity. On
the contrary, one of the mysterious, or some would even say disturbing, facts about
quantum mechanics is that this is no longer true. Quantum mechanics is inherently
a non-deterministic, or probabilistic, theory.

In this Chapter we will give a lightning introduction to the wonderful world of quan-
tum mechanics, with of course a special eye towards the applications in computer
science. The mathematical language of quantum mechanics is mainly that of linear
algebra, and much of the material will therefore hopefully be familiar, but perhaps
presented in a way that is different from how you learned it in preschool.

We will also discuss the probabilistic nature of quantum mechanics and how this
affects results of measurements; how quantum systems evolve with time; the quan-
tum harmonic oscillator; and finally, we will discuss the quantum analogue of the
classical bit of computer science, the so called qubit.

1.1 Quantum states

1.1.1 States, probability and measurements in a classical world

Let us start with a simple thought experiment. Imagine throwing an ordinary
die, or flipping a coin. The resulting outcomes will be either {1,2,3,4,5,6} or
{Heads, Tails}, respectively. We refer to this as saying that the state of the die or
coin is in the value of the outcome, say 5 or Heads. Obviously, it does not make
sense to say that for example the coin is in a mixture of heads and tails. It simply is
in either the state heads or the state tails. We can summarize this by saying that, in
classical physics, a state takes values in a set.

Furthermore, it is obvious to us that making a measurement, i.e., looking at the
die or coin after it has landed, will not affect the system. If we throw the die and
immediately cover it with our hand before seeing the outcome, it will still be in the
state it lands on, say 5, before we remove the hand, and continue to be in the state 5
if we cover it again. We could even imagine doing something more complicated, for
example, we could first look only at the number on top of the die (5) then cover it,
and instead look only at the number on the side facing us, say 4, then cover it again.
If we now look at the number on the top we of course still assume, and correctly
so, that this will still be 5. This can be phrased as saying that in classical physics,
measurements does not affect the system.

Later on, we will discuss the probabilistic nature of quantum mechanics, but the
notion of probability is of course something we occasionally use when describing
systems in the classical world as well. After all, playing board games would perhaps

1.1 Quantum states 5

be a bit less fun if we always knew exactly how the dice would land. However, this
notion of probability is simply a measure of how little information we have about
the system. If we had some super computer that could completely characterize the
initial state of the dice in the throwers hand, the force and angles of the hand that
throw the dice, the atmospheric pressure and wind speed in the room when the dice
are thrown, and so on, it could determine exactly how the dice would land. In clas-
sical physics, knowing everything about a system really means knowing everything.
Using the laws of classical physics (and given a powerful enough computer) we can
completely determine the future of any system once we know enough data. Or in
other words, classical physics is deterministic.

Let us summarize what we have learned about classical physics so far:

• Classical states are elements of a set.

• Measurements does not affect the classical system.

• Classical physics is deterministic.

All of this hopefully seems rather obvious and intuitive to you and you might wonder
why we are discussing such basic facts. Well, as we will see, when we step in to the
quantum world, these basic things will no longer hold true and our daily life intuition
about the world around us can more or less be thrown out the window.

1.1.2 Quantum states

One of the main differences between classical and quantum physics is the fact that
quantum states are not just elements of a set, they are vectors in a complex-valued
vector space. The strange thing is that we can give some meaning to the statement
that a quantum state is in a mixture of states. If we had a quantum coin it could be
either in the state heads or in the state tails, but it could also be in a mixture of the
two. This is called superposition and is one of the most fundamental concepts in
quantum mechanics.

To see how this works, we first introduce some notation. We imagine that we have
a system that is in some state, which we simply label by the letter ψ . This could in
principle be anything we want, it is just a label for us to distinguish the state from
another. For example, it could be a number corresponding to one of the classical
states {1,2,3,4,5,6} of a die, but it could also be something else, such as ↑ or ↓.
The quantum state is then represented by a vector, which we denote by

|ψ〉.

6 1 Quantum Mechanics 101

This is called a ket vector, or simply a ket.2 The ψ is just a label that we pick for
our state while the encasing |·〉 is there to remind us that this is a vector. Now, su-
perposition tells us that it could happen that the physical system is in a combination
of two (or more) states, e.g., we could have something like

|ψ〉= α|ψ1〉+β |ψ2〉,

for some states |ψ1〉, |ψ2〉, and some (complex) numbers α and β . The numbers
α and β are usually called the probability amplitude of the states |ψ1〉 and |ψ2〉,
respectively.3 The notion of superposition is one of the key tools in quantum com-
puting, and it is perhaps easy to see that this will grant us many more possibilities
compared to the classical system.

The ket vectors satisfy the ordinary axioms of a vector space. There are two oper-
ations, vector addition and scalar multiplication. Under vector addition, the vector
space is closed, associative and commutative. This means that for three vectors in
the space |a〉, |b〉, |c〉, we have

|a〉+ |b〉= |c〉, (closed),

(|a〉+ |b〉)+ |c〉= |a〉+(|b〉+ |c〉), (associative),

|a〉+ |b〉= |b〉+ |a〉, (commutative).

There is a unique identity element of vector addition, which we denote simply by 0,
such that

|ψ〉+0 = |ψ〉.
The reason why we do not use |0〉 here is because we want to reserve that notation
for something completely different, as we will see later on. There is also a unique
vector (−|ψ〉) such that

|ψ〉+(−|ψ〉) = 0.

The vector space is linear and distributive under scalar multiplication. This means
that for some complex numbers z,z1,z2 ∈ C,

|(z1 + z2)ψ〉= z1|ψ〉+ z2|ψ〉, z(|ψ〉+ |ϕ〉) = z|ψ〉+ z|ϕ〉.

Finally, there also exists an identity element with respect to scalar multiplication,
i.e., we can multiply with the number 1 and get back the same state, 1|ψ〉= |ψ〉.
A basis for a vector space, {|a1〉, . . . , |ad〉}, is a minimal set of vectors that spans
the space, the number of basis vectors needed, here d, gives the dimension of the
vector space. A generic state |ψ〉 in this vector space can then be expressed as a

2 The notation here (together with the bra vector that we will introduce shortly, is usually called
either the bra-ket notation or the Dirac notation, after the physicist Paul Dirac who invented it.
3 This will be discussed in more detail later on, but it is important to note that the probability
amplitude is not the same as a probability. For one thing, it is a complex number.

1.1 Quantum states 7

superposition of such basis vectors,

|ψ〉=
d

∑
j=1

ψ j|a j〉.

1.1.3 The dual space and inner product

There is also a corresponding dual vector space. The elements of this space are
denoted

〈ϕ|,
and are called bra vectors. The notation and their names becomes slightly more
sensical when we introduce the inner product between the bra and the ket, or a
bra(c)ket,4

〈ϕ|ψ〉.
This is simply a complex number. When we have a finite-dimensional vector space
together with an inner product this defines what is called a Hilbert space.5 Two
vectors are said to be orthogonal if their inner product is zero. Furthermore, it is
customary to normalize quantum states such that the inner product with itself is
equal to one, such vectors are called unit vectors. We will do this automatically, or
in other words, we will always set

〈ψ|ψ〉= 1.

Vectors that are both normalized and orthogonal are then called orthonormal. This
is, for example, a very good property to demand of a set of basis vectors. The nor-
malization of quantum states will also play a vital role when we later discuss prob-
abilities in quantum mechanics.

Note that, if

|ψ〉=
d

∑
j=1

ψ j|a j〉,

for some complete set of orthonormal basis vectors |a j〉, then

4 Remember that quantum physics was invented long before the invention of the meme, so this was
perhaps at the time considered funny. Dirac was also a famously strange man, The strangest man.
5 When the vector space is infinite-dimensional, some extra subtleties arise. In this Chapter, and
throughout most of the course, we will only deal with finite-dimensional vector spaces, and we
therefore ignore these subtleties.

https://en.wikipedia.org/wiki/The_Strangest_Man

8 1 Quantum Mechanics 101

〈ψ|=
d

∑
j=1

ψ
∗
j 〈a j|.

This means that

〈ψ|ψ〉=
d

∑
j=1

d

∑
k=1

ψ
∗
j ψk〈a j|ak〉=

d

∑
j=1

d

∑
k=1

ψ
∗
j ψkδ jk =

d

∑
j=1
|ψ j|2,

since the |a j〉 are orthonormal. Here, δ jk is the Kronecker symbol.6 Then

1 = 〈ψ|ψ〉= |ψ1|+ · · ·+ |ψd |2.

It is often useful to represent the kets as column vectors and the bras as row vectors.
We then have the relation

|ψ〉=




ψ1
...

ψd


←→ 〈ψ|= (ψ∗1 , . . . , ψ

∗
d),

and the inner-product (or the bracket) then simply becomes the ordinary multipli-
cation of vectors. We further see that the elements of the corresponding vectors are
related by complex conjugation as before. In other words, the relation between the
bra and the ket is given by complex conjugation combined with taking the transpose,
this combination typically goes under the name of taking the Hermitian adjoint, and
is denoted by a small dagger, †. We thus have

(|ψ〉)† = 〈ψ|.

Since the inner product between two states is just a complex number, we can ask
what its complex conjugate is. This is given by

(〈ϕ|ψ〉)∗ = 〈ψ|ϕ〉,

and thus
|〈ϕ|ψ〉|2 = 〈ϕ|ψ〉〈ψ|ϕ〉.

6 δ jk = 1 if j = k and 0 if j 6= k.

1.1 Quantum states 9

1.1.4 Composite systems

If we imagine that we have several quantum systems, each in some state represented
by some state vector, we can combine the separate system into a larger system using
the tensor product of vector spaces,⊗. If we imagine that we have one system where
the state is given by |ψ〉 and another where the state is given by |ϕ〉, the state of the
composite system is given by

|ψ〉⊗ |ϕ〉.
States that can be written in this simple way are called product states. We will dis-
cuss this name in more detail later on when we introduce the concept of entangle-
ment. Using the tensor product we can thus build complicated systems by combin-
ing several smaller systems. We will see this in action when we discuss quantum
circuits. Note that the tensor product does not commute in general.

Sometimes, to save space, we denote a tensor product of states simply by writing

|ψ〉|ϕ〉 := |ψ〉⊗ |ϕ〉.

Exercise 1.1. Consider an orthonormal set of basis vectors, {|u〉, |d〉}, for C2.

a) Normalize the states:

|ψ1〉= (1− i)|u〉+2i|d〉,
|ψ2〉= |u〉⊗ |d〉− |d〉⊗ |u〉,
|ψ3〉= |u〉⊗ |u〉⊗ |u〉+ |d〉⊗ |d〉⊗ |d〉.

.

b) Represent the basis states as |u〉 =
(

1
0

)
, |d〉 =

(
0
1

)
and calculate the above

(normalized) states in this representation.

10 1 Quantum Mechanics 101

Summary quantum states

• Quantum states are vectors in a complex vector space.
• A state is represented by the ket |ψ〉.
• The elements of the dual space are called bras and denoted 〈ϕ|.
• The inner product, or bracket, 〈ϕ|ψ〉, is a complex number, and its com-

plex conjugate is given by (〈ϕ|ψ〉)∗ = 〈ψ|ϕ〉.
• We normalize the states such that 〈ψ|ψ〉= 1.
• Quantum states can be in a superposition of states, |ψ〉= α|ψ1〉+β |ψ2〉,

for some complex numbers α,β .
• More generally, we can express any quantum state in a vector space as a

superposition of the basis vectors of that vector space, |ψ〉=∑
d
j=1 ψ j|a j〉,

for some complex numbers ψ j and basis vectors |a j〉.

1.2 Measurements and probability

1.2.1 Linear operators

We have discussed how a quantum state is described by a state vector in a vector
space. The quantum state is however not something that we can measure directly.
In fact, it only tells us something about the probability of finding some result upon
performing a measurement. Note that this is in stark contrast to the classical case
where the state and the outcome of a measurement is for all intents and purposes
equal to each other.

We refer to the properties of a state that we can measure as observables. If we con-
sider a system representing a particle in some particular state, the observables would
correspond to specific properties of this particle, such as its position, its velocity or
its angular momentum. Observables are described in quantum mechanics by linear
operators acting on the vector space of states.

In the next section we will also see that linear operators on our vector space plays
an important role in encoding how a quantum state evolves over time.

It thus seems like a good idea to start by discussing some general properties of linear
operators. We say that a linear operator A acts on the state |ψ〉, and denote it by

A|ψ〉.

The corresponding action on the bra is given by the Hermitian adjoint of A,

1.2 Measurements and probability 11

A|ψ〉 ←→ 〈ψ|A†.

Note that the operator acts on the bra from the right and on the ket from the left.

When we represent the bras and kets as vectors the operators are naturally repre-
sented by matrices. The action of the dagger is then, as before, given by complex
conjugation of the elements together with transposition of the matrix. For example,

(
a b
c d

)†

=

(
a∗ c∗

b∗ d∗

)
.

We can construct linear operators through the outer product

A = |ϕ1〉〈ϕ2|.

Acting with such an operator on a state |ψ〉 gives

A|ψ〉= (|ϕ1〉〈ϕ2|)|ψ〉= 〈ϕ2|ψ〉|ϕ1〉.

In words, we say that A transforms |ψ〉 into the state |ϕ1〉multiplied by the complex
number 〈ϕ2|ψ〉.
Note that, the Hermitian adjoint of the outer product is

(|ϕ1〉〈ϕ2|)† = |ϕ2〉〈ϕ1|.

A very important and useful identity can be derived by considering a complete or-
thonormal basis {|v j〉} and expressing |ψ〉= ∑ j ψ j|v j〉, then introduce the operator
A = ∑ j |v j〉〈v j|. Here both sums are over the complete set of basis states. We notice
that

A|ψ〉=
(

∑
j
|v j〉〈v j|

)
|ψ〉=∑

j
|v j〉〈v j|ψ〉=∑

j
∑
k

ψk|v j〉〈v j|vk〉=∑
j

ψ j|v j〉= |ψ〉,

which implies that ∑ j |v j〉〈v j| = 1, the identity operator on the vector space. This
relation is called a completeness relation, or sometimes a resolution of identity, and
can be a very useful trick in many computations and proofs in quantum mechanics.

For any operator, say A, there exists a particular set of non-zero vectors, |a j〉, called
the eigenvectors of A. They are defined through the relation

A|a j〉= a j|a j〉,

where a j is a complex number called the eigenvalue corresponding to the eigenvec-
tor |a j〉 of A. We will typically use the above notation where the eigenvalues and
eigenvectors have the same symbol, i.e., the eigenvalue of the eigenvector |a j〉 is
given by a j. This is standard, and hopefully does not introduce too much confu-

12 1 Quantum Mechanics 101

sion. As we will discuss more later on, when we make a measurement of a given
observable, the outcome of the measurement is exactly one of the eigenvalues of the
corresponding operators.

An especially important class of operators is the class of Hermitian operators. They
are defined by having the property A† =A. From this definition, one can easily prove
the important property that the eigenvalues of Hermitian operators are always real
numbers. For this reason, physical observables in quantum mechanics are always
given by Hermitian operators. Since the result of a measurement is given by the
eigenvalues of the observable we are measuring, and the results of any physical
measurement should of course be a real number. Another important property of
Hermitian operators is that their eigenvectors form a complete set, i.e., any state can
be expressed in the eigenvectors. Note however, that if the eigenvalues are the same
the eigenvectors need not be orthogonal.

An operator A is called normal if it satisfies A†A = AA†. Such operators satisfy
an important theorem called the spectral decomposition theorem. It states that an
operator is normal if and only if it is diagonalizable with respect to some basis. This
means that we can always express a normal operator, A, as A = ∑ j a j| j〉〈 j|, where
a j are the eigenvalues of A and | j〉 an orthonormal basis where each vector is also
an eigenvector of A (with eigenvalue a j). Obviously, Hermitian operators are always
normal.

A third class of operators that will play a very important role in this course is the
class of unitary operators. They are defined by the property A−1 = A†, or in words,
that the Hermitian conjugate is equal to the inverse operator. This means that A†A =

AA† = 1.

Suppose now that we have two different observables A and B and we want to know
if we can express them both in terms of the same basis. Or in other words, if we
can write A = ∑ j a j| j〉〈 j| and B = ∑b j| j〉〈 j|. If this is possible we say that A and B
are simultaneously diagonalizable. It turns out that this can only be done if A and B
commute with each other, that is, if and only if

[A,B] := AB−BA = 0.

The notation [A,B] is called the commutator of A and B and is a very frequently used
operation in quantum mechanics.

We can again use the tensor product to build larger systems. If we have a system
that is a composite system of say two different vector spaces

|ψ〉= |ψ1〉⊗ |ψ2〉,

we can build composite operators acting on this tensor product as

A = A1⊗A2, A|ψ〉= A1|ψ1〉⊗A2|ψ2〉.

1.2 Measurements and probability 13

1.2.2 The wave function

Consider now a complete set of commuting observables, A, B,C, . . . together with
an orthonormal basis |a,b,c, . . .〉, where a, b, c, . . . are the corresponding eigenval-
ues of the observables. An arbitrary state |ψ〉 can then be expanded in this basis
as

|ψ〉= ∑
a,b,c,...

ψ(a,b,c, . . .)|a,b,c, . . .〉.

The set of coefficients,

{ψ(a,b,c, . . .) = 〈a,b,c, . . . |ψ〉},

is called the wave function of the system in the a,b,c, . . . basis. As we have men-
tioned before, the individual coefficients ψ(a,b,c, . . .) are also called the probability
amplitude for finding the system in the state |a,b,c, . . .〉. It is important to note that
this is not the same as the probability for finding the system in this state, as we will
see next. For one thing, the probability amplitude is in general a complex number.
The actual probability of finding the eigenvalues corresponding to |a,b,c, . . .〉, is
instead given by the absolute value squared of ψ(a,b,c, . . .).

1.2.3 Measurements

The idea of a measurement in quantum mechanics is that we measure some observ-
able A and the outcome will be an eigenvalue of A, where the corresponding proba-
bility of getting this result is captured by the coefficient of the state when expanded
in the eigenvectors of the measured observable.

In other words, we start with an observable A that we want to measure for some
system |ψ〉. We express it in its complete basis of eigenvectors A = ∑ j a j|a j〉〈a j|.
We further expand our system in this basis as |ψ〉 = ∑ j ψ j|a j〉. The measurement
will then return an eigenvalue of A, let us say a j, and the probability of finding this
specific result is given by |ψ j|2. Remember that we always normalize the states such
that

1 = 〈ψ|ψ〉= ∑
j
|ψ j|2,

so this interpretation as a probability makes sense.

14 1 Quantum Mechanics 101

After the measurement, the system has “collapsed” to the state |a j〉 and we can
measure A again to find the same result, a j.78

At this point you might be wondering what all the fuss is about. We said in the
beginning of this chapter that quantum mechanics is supposed to undermine our
classical intuition that measurements does not affect the system. But, now we are
saying that if we measure an observable A and find that the system is in, say, the
state |a1〉, then making another measurement asking if the system is in state |a1〉
will give a positive answer with probability one. Is this not exactly what we said
about the experiment with throwing a die and covering it? Can we not just say that
the system was in state |a1〉 all along?

Well, the tricky thing with quantum mechanics is that if we now measure another
observable that is not commuting with A, say B, and find the result |b1〉, and then
afterwards return to measure A again, it is no longer true that we are certain to find
the result a1. We are basically back at square one and the only thing we can say is
that there is a probability |〈b1|a1〉|2 to find the result a1. This would be like throwing
the die, looking at the number on top, then looking at one of the numbers on the side
and then finally looking at the number on top again to find that it is no longer the
same.

With the above interpretations we can define the expectation value of an observable
A in the state |ψ〉 in the ordinary way. This is denoted 〈A〉ψ and defined by

〈A〉ψ := 〈ψ|A|ψ〉= ∑
j

a j|〈ψ|a j〉|2,

where |a j〉 is the complete set of eigenvectors of A.

Let us consider a simple example, namely that of a two-level system. This means
that we have a two-dimensional vector space.9 We introduce an orthonormal basis

{|u〉, |d〉},

such that we can express any state as

|ψ〉= α|u〉+β |d〉, |α|2 + |β |2 = 1.

7 The word “collapsed” here is a standard one used in a majority of the literature, but is definitely
the subject of much debate. What exactly happens in the moment of measurement is at the core of
the debate among various interpretations of quantum mechanics that have appeared over the years.
We will give a very brief account of various such interpretation later in this Chapter.
8 Note that a measurement is obviously not the same thing as acting on the state with the operator
corresponding to the observable being measured, since this would not collapse the state. There
are a few different ways of mathematically describing quantum measurements in terms of special
operators called projection operators. However, in this course we will not need this level of detail.
9 This kind of system will of course be the main protagonist of this course, since the qubit is a
two-level system. But for now we simply think of it in slightly more abstract terms.

1.2 Measurements and probability 15

Next, we introduce an observable σz defined by

σz|u〉= |u〉, σz|d〉=−|d〉.

I.e., the basis vectors are eigenvectors of σz with eigenvalues ±1, respectively. We
now measure σz and get some result. Let us assume that this is +1, and the state
collapses to |u〉. As said before, we can now measure σz again and again and every
time we will get the result +1.

But, there is of course nothing special with the basis defined by |u〉 and |d〉, we
could as easily pick another basis. For example,

|l〉 :=
1√
2
(|u〉+ |d〉), |r〉 :=

1√
2
(|u〉− |d〉).

Related to this basis we can introduce a new observable, σx, that has these vectors
as eigenvectors,

σx|l〉= |l〉, σx|r〉=−|r〉,
and which does not commute with σz.10 If we now measure σx in our system, which
has collapsed to |u〉 after the first measurement, we will get the results ±1 with
probabilities

|〈u|l〉|2 = 1
2
|〈u|(|u〉+ |d〉)|2 = 1

2
,

|〈u|r〉|2 = 1
2
|〈u|(|u〉− |d〉)|2 = 1

2
.

Let us again assume that the result is +1 such that the state collapses to |l〉. Now
you might start to see the problem. If we return to measure σz, we will no longer
find +1 with probability one but instead we have

|〈l|u〉|2 = 1
2
,

|〈l|d〉|2 = 1
2
.

The two outcomes are now equally probable. This is part of the mysterious and
indeterministic nature of quantum mechanics. It is, perhaps, easy to see that, if the
observables do commute we can measure them simultaneously. Since we can then
diagonalize them in the same basis.

The uncertainty in measuring non-commuting observables is captured by the famous
Heisenberg’s uncertainty principle. This principle is one of the fundamental results
of quantum mechanics and has so many big implications for the physical world. It
therefore makes sense to take a few moments to derive it.

10 This follows from the definitions.

16 1 Quantum Mechanics 101

When we talk about uncertainty in this setting we typically mean with respect to
the standard deviation, ∆A, for some observable A. This is defined by the following
equation,

(∆A)2
ψ

:= ∑
j
(a j−〈A〉ψ)2|〈ψ|a j〉|2.

We may simplify things and assume that the expectation value of A is zero, which
implies that we have the simpler form

(∆A)2
ψ = 〈ψ|A2|ψ〉.

Let us now consider two observables A and B. The Cauchy-Schwartz inequality,

2|X ||Y | ≥ |〈X |Y 〉+ 〈Y |X〉|,

applied to the combinations |X〉= A|ψ〉 and |Y 〉= iB|ψ〉 gives us 11

∆A∆B≥ 1
2
|〈ψ|[A,B]|ψ〉|.

This is the uncertainty principle in its general form. In words it simply says that
the product of the uncertainties in the two observables A and B, can not be smaller
than the expectation value of the commutator of A and B. This is exactly what we
mentioned earlier, namely that if two observables does not commute, then we can
not measure them with certainty at the same time.

This is an enormously important consequence of the laws of quantum mechanics,
and it has many important consequences of its own. It is for example believed to be
the reason why there are galaxies and planets in the universe as well as part of the
leading explanation to why the universe is expanding with an accelerating speed.

Let us finally note two important facts about quantum states. Firstly, if we have
two states that only differ by an overall phase, say, |ψ〉 and |ϕ〉 = eiγ |ψ〉, then the
statistical properties of these states are the same. This is easily seen from the fact
that we have

|ϕ〉= eiγ |ψ〉 =⇒ 〈ϕ|= 〈ψ|e−iγ ,

and we thus have

〈ϕ|ϕ〉= 〈ψ|e−iγ eiγ |ψ〉= 〈ψ|ψ〉= ∑
j
|ψ j|2.

For this reason, in quantum mechanics, we do not distinguish between states that
differ only by an overall phase.

Secondly, we can notice that it is only possible to distinguish two quantum states
with complete certainty if they are orthogonal. Otherwise they will have some com-

11 here we are assuming that the expectation values of both A and B are zero,

1.2 Measurements and probability 17

ponent along the same direction and the result of the measurement has some proba-
bility of being the same for the two states.

Exercise 1.2. Consider the matrices

X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
.

a) Show that these matrices are Hermitian and unitary.

b) Calculate all commutators between them.

c) Calculate their eigenvectors and eigenvalues.

Exercise 1.3. Show that the eigenvalues of a Hermitian matrix are all real.

Exercise 1.4. For the (normalized) state |ψ1〉 in Exercise 1.1, calculate the proba-
bilities of getting the results±1 when measuring the observable given by the matrix
Z defined in the previous exercise.

Exercise 1.5. Calculate the expectation value of the observable Z⊗Z in the (nor-
malized) state |ψ2〉 defined in Exercise 1.1.

Exercise 1.6. Show that the set of vectors {|l〉, |r〉}, as defined above, gives an
orthonormal set of basis vectors for C 2. Show also that the observables σz and σx

defined in the same example can not commute.

Exercise 1.7. Fill in the missing steps of the derivation of the uncertainty principle.

Exercise 1.8. Alice and Bob are studying a 3-dimensional quantum system |ψ〉 ∈
C3. Alice measures an observable that can take values red, green and blue, while
Bob measures an observable that gives values sweet, tangy or umami. If Alice finds
the result red, then Bob finds that he gets the results sweet, tangy or umami with
probabilities 0, p and 1− p, respectively. If on the other hand, Alice finds green,
Bob’s probabilities becomes q, 0 and 1−q, for the respective values.

a) Which combinations of values are allowed for p and q?

b) What are Bob’s probabilities if Alice finds the result blue?

18 1 Quantum Mechanics 101

Summary observables and measurements

• Observables in quantum mechanics are represented as linear operators
acting on the state space. They act on a ket from the left, A|ψ〉, and on a
bra from the right 〈ψ|A†, where † denotes the Hermitian conjugate.

• Normal operators are defined by having A†A = AA†, and such operators
satisfy the spectral decomposition theorem.

• Unitary operators are defined by having A† = A−1.
• Hermitian operators are defined by having A† = A. They are normal op-

erators and their eigenvalues are all real.
• Physical observables are described by Hermitian operators.
• The commutator between two operators A and B is denoted [A,B] = AB−

BA. Two observables can only be simultaneously diagonalizable if they
commute, i.e. if [A,B] = 0.

• Measurements “collapses” the quantum state into an eigenstate of the
measured observable.

• Heisenberg’s uncertainty principle states that we can not know two prop-
erties of a quantum system simultaneously, unless their respective oper-
ators commute.

1.3 Evolution

1.3.1 Unitary operators

An interesting question to ask at this point might be how a quantum system evolves
in time? To answer this, we first consider a system that at some time t is in the state
|ψ(t)〉. We then ask how this is related to the state at some other time, say t = 0?
We encode this change in an operator that we call U(t), the time evolution operator,
such that we have

|ψ(t)〉=U(t)|ψ(0)〉.

Now, to be able to say something more about this mysterious operator U(t) we want
to introduce some restrictions. First of all, we want to demand that it is linear. This
is natural from what we have discussed before. Quantum operators are typically
linear. Less trivial is the statement that we want to enforce the operator to preserve
distinguishability. This means that, if we have two orthogonal states, such that they
are distinguishable by a measurement, we want them to still be orthogonal after
the time evolution. Furthermore, we want the probabilities to be preserved, i.e., the
normalization should remain intact.

1.3 Evolution 19

Let us see what consequences this has. If we pick two elements |a j〉 and |ak〉 of an
orthonormal basis to represent two states at t = 0, we have the condition

〈a j|ak〉= δ jk,

where δ jk is the Kronecker symbol. But if we now let them evolve in time using
U(t) we want to have

〈a j|U†(t)U(t)|ak〉= δ jk,

and we see that U†(t)U(t) acts as the unit operator. From this you can prove that the
same is true for the action on any states. We thus need the time evolution operator to
satisfy U†(t)U(t) = 1. This is exactly what we mentioned earlier as the definition
of a unitary operator. So, time evolution in quantum mechanics is described by a
unitary operator.

1.3.2 The Schrödinger equation

In physics, as in life, we prefer it when changes happen in very very small steps, or in
other words, we want to describe dynamics in terms of infinitesimals and differential
equations. By expanding the time evolution operator for a very small time step, δ t,
we have

U(δ t) = 1− i
h̄

Hδ t,

where we simply introduced an operator H to capture the expansion together with
some convenient scaling by i and the famous Planck’s constant h̄ ∼ 1.0546×
10−34kgm2/s.12 As you see, h̄ is a very small constant when measured in units of
our ordinary life, and this is basically the reason why our daily life does not prepare
us with a good intuition for quantum physics.

Now, since we know that U is unitary, we must have

1 =U(δ t)†U(δ t) = 1+
i
h̄
(H†−H).

To make this consistent, we need the second term on the right hand side to vanish,
i.e. H† = H, and thus H must be Hermitian. It further turns out that this operator,
H, is a very important operator in quantum mechanics, namely the Hamilton opera-

12 The h̄ is pronounced h-bar. The German physicist Max Planck was the person who, sort of by
mistake, started the whole field of quantum physics. He introduced a constant which he called h,
which was later divided by 2π to give the constant h̄ := h

2π
, which we now call Planck’s constant.

20 1 Quantum Mechanics 101

tor, or sometimes just the Hamiltonian. This is the observable corresponding to the
energy of the system.13

To derive a differential equation for the evolution of quantum states, we apply the
above to a state |ψ〉,

|ψ(δ t)〉=U(δ t)|ψ(0)〉= |ψ(0)〉− i
h̄

H|ψ(0)〉.

We can of course study this for a small perturbation around any time, and then by
rearranging and taking the limit δ t→ 0, we find

ih̄
d|ψ(t)〉

dt
= H|ψ(t)〉. (1.1)

This is the celebrated Schrödinger equation14 More specifically, this is called the
time-dependent Schrödinger equation.

We can expand the Hamiltonian in its complete set of eigenvectors,

H = ∑
j

E j|E j〉〈E j|.

These eigenstates are called the energy eigenstates and the corresponding eigenval-
ues are the results of a measurement of the energy of the system. Since the |E j〉 are
eigenstates of the Hamiltonian we have

H|E j〉= E j|E j〉,

which is sometimes called the time-independent Schrödinger equation.

1.3.3 A note on (in)determinism

As we have mentioned already in the introduction, and seen in the discussion of
measurements, quantum mechanics is inherently non-deterministic. But the discus-
sion of time evolution of the quantum state looks very deterministic, right? This is
true. The time evolution of the quantum state is a deterministic process, but this does
not necessarily mean that quantum mechanics is deterministic.

In classical physics, making measurements does not affect the system and the result
of a measurement is equivalent to the state of the system, both before and after the

13 The Hamiltonian, named after William Rowan Hamilton, as a quantity describing the energy of
a system is of course also important in classical physics. In classical mechanics it is however not
an operator but an ordinary function.
14 Of course named after its inventor, the cat-friendly Austrian Erwin Schrödinger.

1.4 What actually is the quantum state? 21

measurement. This is the basis of the determinism in classical physics. By knowing
the state and knowing the equations of motion, we can determine where the state
came from and where it is going. As we have seen, this is no longer true in quantum
physics. Time evolution of the quantum state is deterministic, but knowing the state
does not tell you with certainty the result of a general measurement.

Summary: Quantum postulates

Let us summarize what we have learned so far into four postulates of quan-
tum mechanics.

1. States are described by unit vectors in a complex vector space (in fact a
Hilbert space), and observables are described by linear Hermitian oper-
ators.

2. The possible outcomes of a measurement are given by the eigenvalues
of the operator corresponding to the observable being measured.

3. If the system is in a state |ψ〉, and we measure an observable A
with eigenvectors |a j〉 and eigenvalues a j, the probability of measuring
eigenvalue a j is given by

P(a j) = |〈a j|ψ〉|2 = 〈ψ|a j〉〈a j|ψ〉.

4. The evolution of a quantum system is described by unitary operators.

1.4 What actually is the quantum state?

At this point, you might be asking yourself what the meaning of the quantum state
is. After all, measurements tells us that eventually the state will not be in a super-
position, the thing we observe is a definitive classical state, so how do we know
that the state was ever in a superposition of other states? Well, if you are pondering
such questions, you are in good company. These questions have given rise to a large
number of philosophical debates on the interpretation of quantum mechanics and
is very much still open. 15 We will try and summarize the underlying ideas behind
some of the major interpretations. Since there exists no consensus as what consti-
tutes the true nature of the quantum world you are encouraged to read about the
various available interpretations and pick one that falls to your liking.

One of the earliest interpretations of quantum mechanics is the so called Copen-
hagen interpretation, due in most part to Bohr and Heisenberg. A key idea behind

15 See for example Wikipedia

https://en.wikipedia.org/wiki/Interpretations_of_quantum_mechanics

22 1 Quantum Mechanics 101

the Copenhagen interpretation is a dividing line between the classical and quantum
world. We, as people, are classical objects and can only interpret the world in terms
of classical concepts such as particles or waves. Quantum mechanics is then inter-
preted as a tool for predicting probabilities for the classical measurement results
based on configurations of classical apparatus. In principle, this is then not an inter-
pretation of the actual quantum world, but rather an interpretation of our perception
of the quantum world through classical measurements. One of the major drawbacks
of the Copenhagen view, is that it does not give a clear prescription as to where we
draw the line between the classical and quantum world. After all, classical machines
are built from quantum objects.

Many early interpretations of quantum mechanics involved hidden variables, i.e.,
that there exist some hidden variables that we do not know about which determines
the measurements in a deterministic fashion. These have been essentially refuted by
a number of results, in particular the celebrated Bell’s theorem. In principle, Bell’s
theorem rule out almost all hidden variables theories. The experimental verification
of these results was the subject of the Nobel prize in physics 2022.16

There are variants of the hidden variables theories that bypass Bell’s theorem. Two
main assumptions of the theorem are locality (no instantaneous interaction between
particles) and independence (the properties of the particles are independent of the
measurement to be done). A famous interpretation that loosens the first assumption
of locality is that due to Bohm. According to Bohm there exist, together with the
wave function, extra particles whose dynamics are governed by a new mechanical
law. The wave moves the particles around and the position of the particles are given
by the hidden variables. The motion of each particle is however determined partly
by the position of all other particles at a given instant. This is how the theory breaks
locality. Locality is the foundation of Einstein’s theory of special relativity, and em-
bracing non-locality means that the connection to this theory, and as a consequence
quantum field theory, is complicated. How to best align the non-locality of Bohm’s
theory with the locality of special relativity is still an open question.

On the other hand, there also exists interpretations that try to loosen the latter of
Bell’s assumptions, the independence. This would then entail that the properties
of the particle somehow depend on the measurement that one wishes to do. The
problem is of course that we can pick which measurement to perform randomly. To
make these interpretations consistent typically entails giving up on the traditional
view of causality. One way of dealing with this is to think about signals being able
to move in both directions of time. Since at the point of measurement there will be
a correlation between the measurement and the properties of the particle, then the
signals moving back in time correlates this with the choice of measurement. These
interpretations are typically called retrocausal.

16 Awarded to the three experimentalists Alain Aspect, John Clauser and Anton Zeilinger.

1.4 What actually is the quantum state? 23

Another famous interpretation is the many-worlds interpretation due to Hugh Ev-
erett. Here, all the possible results of a measurement will happen on some branch of
reality, and quantum mechanics is thus deterministic, as the universal wave function
never collapses to one particular state. This leads to a view of time as branching
the world into a many-world where each measurement introduces a branching into
separate worlds. One upshot of this interpretation is that it takes the mathematics
of quantum physics seriously. On the other hand, a major drawback is that it is not
obvious how to interpret the differing probabilities for the different outcomes. The
many-worlds branching naively seem to say that all of them happen with probability
one.

Many more interpretations exist, e.g., spontaneous collapse, consistent histories,
quantum Bayesianism, just to mention a few.

Chapter 2

Quantum Engineering

In this Chapter, we will start looking at some actual quantum mechanical systems
that will play important roles throughout this course. Namely, we will introduce the
main protagonist of the entire course, the qubit. After that we discuss the harmonic
oscillator and its quantum analogue. This is one of the most important systems in
physics, and is the foundation of one of the most popular physical realisations of a
qubit, the superconducting transmon qubit.

2.1 The qubit

Let us now introduce the main protagonist of the course, the qubit. In a classi-
cal computer we use classical bits that are systems whose states take values in the
set {0,1}, i.e., a two-level system. The corresponding quantum system is called a
qubit (sometimes QBit, q-bit or quantum bit). This system is described by a two-
dimensional complex vector space. To make the connection to classical bits even
stronger we denote a set of basis vectors in this state space as

{|0〉, |1〉}.

Note that, as was mentioned before, we use the notation |0〉 to denote a basis vector,
not the zero vector. This basis is typically referred to as the computational basis.
Another frequently appearing basis is given by the states

|±〉= 1√
2
(|0〉± |1〉).

You may recognize these bases as the u,d and l,r basis we studied earlier. The |±〉
basis is sometimes called the Hadamard basis. Any qubit can be expanded in either
of these bases,

25

26 2 Quantum Engineering

|ψ〉= α0|0〉+α1|1〉= α+|+〉+α−|−〉,
for some complex numbers α j, j = 0,1,+,−, with the extra conditions |α0|2 +
|α1|2 = |α+|2 + |α−|2 = 1.

We will often represent the computational basis by the vectors

|0〉=
(

1
0

)
, |1〉=

(
0
1

)
.

Note that, in this representation, we then have

|+〉= 1√
2

(
1
1

)
, |−〉= 1√

2

(
1
−1

)
. (2.1)

Linear operators acting on a qubit will now be described by 2× 2 complex matri-
ces. Of special importance are the so called Pauli operators.1 These are a set of
three matrices that together with the identity matrix spans the vector space of 2×2
Hermitian matrices. In the computational basis, they read

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
.

As an easy, but informative and extremely useful, exercise, we can study how the
Pauli operators act on our basis states. The Pauli matrices are some of the most used
operation in quantum circuits, and these kinds of actions on the basis states will be
used many many times throughout the course. We find2

σx





|0〉
|1〉
|+〉
|−〉





=





|1〉
|0〉
|+〉
−|−〉




, σy





|0〉
|1〉
|+〉
|−〉





=





i|1〉
−i|0〉
−i|−〉
i|+〉




, σz





|0〉
|1〉
|+〉
|−〉





=





|0〉
−|1〉
|−〉
|+〉




.

When discussing quantum gates, the σx operator is sometimes referred to as the
NOT gate, since it interchanges the states |0〉 and |1〉, similar to the NOT gate of
classical computers.

1 Named after the Austrian physicist Wolfgang Pauli, who is counted as one of the main inventors
of quantum mechanics.
2 perhaps you recognize some of these properties from when we studied the up/down/left/right
system earlier,

2.1 The qubit 27

2.1.1 The Bloch sphere

We know that we can express any qubit as a superposition of the two basis vectors
|0〉, |1〉, and that the corresponding coefficients must satisfy |α0|2 + |α1|2 = 1. We
can then use a little trigonometry to express any qubit as

|ψ〉= eiγ (cos θ

2 |0〉+ eiφ sin θ

2 |1〉
)
.

Where γ , φ and θ are some real numbers. However, we also saw earlier that we can
not distinguish states that only differ by an overall phase, so we can disregard the
overall phase factor eiγ . We can thus describe any qubit in terms of two real numbers
φ and θ through the identification

|ψ〉= cos θ

2 |0〉+ eiφ sin θ

2 |1〉.

This is simply the spherical coordinates of the unit sphere, and we have thus found
that any qubit can be represented by a point on the unit sphere. This representation
of the state space of a qubit as a sphere goes under the name of the Bloch sphere.
See Figure 6.1 for an example of how we can visualize the state |+〉 on the Bloch
sphere. Here we clearly see the difference between a classical bit and a qubit. A
classical bit can only take the values 1 or 2 while the qubit can in principle be in any
state that correspond to a point on the Bloch sphere, i.e., we have a continuum of
possible states.

x

y

|0

|1

Fig. 2.1: The Bloch sphere. The vector denotes the qubit state |ψ〉= |+〉= 1√
2
(|0〉+

|1〉). The labels x and y represent the Euclidean x and y directions.

From the previous calculations, we can see that the Pauli matrices act as rotations
along the different axes of the Bloch sphere. For example, acting with σx on |0〉
rotates the state 180◦, or π radians, around the x-axis to give the state |1〉, and so on.
All the standard one qubit gates can be visualized in a similar manner as their action
on the Bloch sphere.

28 2 Quantum Engineering

2.1.2 Several qubits

Just as before, we can combine simple systems into larger ones by using the tensor
product of vector spaces. This will be vital when constructing quantum circuits,
since, obviously, having just one qubit would perhaps not be all that exciting.

So, using the tensor product we can build larger systems of several qubits, for ex-
ample

|0〉⊗ |0〉⊗ |+〉⊗ |1〉⊗ · · ·⊗ |1〉.
We will often be lazy and use the notation

|ψn−1 . . .ψ0〉 := |ψn−1〉⊗ |ψn−2〉⊗ · · ·⊗ |ψ0〉.

For example, for the two-qubit system, given by a four-dimensional vector space,
we then have the basis vectors

|00〉= |0〉⊗ |0〉, |01〉= |0〉⊗ |1〉, |10〉= |1〉⊗ |0〉, |11〉= |1〉⊗ |1〉.

It is easy to show that these span the vector space of states. Sometimes a further
simplification of notation is used for these types of combined systems where we
imagine the product to indicate a binary representation of an integer, so that we write
for example |01〉= |1〉2 and |11〉= |3〉2 and so on, where the subscript indicates how
many qubits there are in the system. The subscript is of course needed because 001
and 1 are both binary representations of the number 1, while here the former would
be a three qubit system and the latter a one qubit system.

2.1.3 Physical implementations

There are several physical implementations of a qubit, including:

• Superconducting qubits: These qubits are made from tiny loops of superconduct-
ing wire, which can carry electrical current without resistance. The state of a
superconducting qubit can be controlled by applying electromagnetic pulses to
the loop.

• Trapped-ion qubits: These qubits are made by trapping a single ion (an electri-
cally charged atom) in a magnetic or electric field. The state of a trapped-ion
qubit can be controlled by shining laser light on the ion.

2.1 The qubit 29

• Topological qubits: These qubits are based on the properties of certain materials,
such as topological insulators, that can carry electrical current on their surface
while insulating inside.

• Quantum dots: These qubits are made by confining a single electron or hole (an
absence of an electron) in a tiny semiconductor structure called a quantum dot.

• Nuclear Magnetic Resonance (NMR) qubits: These qubits are based on the spin
of the nuclei of certain atoms.

• Photonic qubits: These qubits are based on the properties of individual photons
(particles of light). For example, the polarization state of a photon can be used as
a qubit, with the two possible states being horizontal and vertical polarization.

• Single-molecule spin qubits: These qubits are based on the spin of individual
electrons or nuclei in a single molecule. The state of the qubit can be controlled
by applying magnetic fields to the molecule. These qubits are still in the research
stage and not yet commercialized.

Exercise 2.1. Calculate σx⊗σz and σz⊗σx in the computational basis representa-
tion. Are these matrices Hermitian? Unitary? What is the commutator between the
two? How do they act on the state |01〉?
Exercise 2.2. The Hadamard transform is a 1-qubit operation, typically denoted H,
and acts on the computational basis in the following way:

|0〉 → |+〉, |1〉 → |−〉.

a) Find the unitary operator UH which implements H with respect to the basis
{|0〉, |1〉}.

b) Find the inverse of this operator.

c) Find the matrix representation of UH in the computational basis:

|0〉=
(

1
0

)
, |1〉=

(
0
1

)
,

and in the Hadamard basis

|0〉= 1√
2

(
1
1

)
, |1〉= 1√

2

(
1
−1

)
.

30 2 Quantum Engineering

Summary: Qubit

• A qubit is a quantum mechanical two-level system.
• We typically use the computational basis {|0〉 = (1,0)T , |1〉 = (0,1)T}

or the Hadamard basis {|±〉= 1√
2
(|0〉± |1〉)} when building circuits.

• The Pauli operators {σx, σy, σz} are complex matrices that, together with
the identity, spans the space of Hermitian and unitary 2×2 matrices.

• We can represent a qubit state graphically by using the Bloch sphere.
• Several shorthand notations for composite systems of several qubits are

used. For example |110〉 := |1〉⊗ |1〉⊗ |0〉, and similar.
• There exists many different physical implementations of qubits used for

modern quantum computers.

2.2 The harmonic oscillator

Many of the modern physical implementations of qubits rely on various variations
of the quantum harmonic oscillator. There are even qubits made out of mechani-
cal harmonic oscillators [1], although the “quantum acoustics” of this mechanical
oscillator are about as removed from the springs of the high-school treatment of
mechanical oscillators as other qubit technologies.

To give some intuition behind the physical qubits, as well as to illustrate the many
concepts we have introduced so far, we will show how to extend the classical har-
monic oscillator to the quantum harmonic oscillator, highlighting the differences.3

2.2.1 The classical harmonic oscillator

Classical systems follow Newton’s three laws of mechanics. In particular, the second
law states that the force is equal to the mass times the acceleration,

F = ma.

A harmonic oscillator is a particle that undergoes harmonic motion around an equi-
librium point. Think for example of a spring with a mass attached to its end such
that it bounces back and forth around an equilibrium.

3 The harmonic oscillator could very well be the single most important system in all of physics, so
a basic knowledge of this system is probably a good thing to have in life.

2.2 The harmonic oscillator 31

Let us focus on the one-dimensional case and set the equilibrium point to be x = 0.
The system is described by a mass m and a restoring force that pushes the mass
towards the equilibrium point,

F =−mω
2x,

where ω is called the angular frequency. The minus sign tells us that the force is
driving the spring back towards its equilibrium point. Combining this with Newton’s
second law we get

ma = mẍ =−mω
2x.

The solution of this second order differential equation is

x(t) = Acos(ωt +φ),

where A is the amplitude of the oscillations (giving the turning points of the motion)
and φ the initial phase.

The potential energy of the system is given by

V =
1
2

mω
2x2.

This gives a parabola as shown in Figure 2.2. The reason why the harmonic oscilla-
tor is so important as a physical system is that almost any smooth function can be
approximated by a parabola near its minimum points.

-A 0 A

En
er

gy

-A 0 A

Pr
ob

.d
en

s.

Fig. 2.2: The potential energy (top) and probability density (bottom) of the classical
harmonic oscillator, with amplitude A.

Remember that the total energy of the system is given by the sum of the potential
energy, V , and the kinetic energy 1

2 mv2. At the turning points x = ±A, the veloc-
ity, and therefore the kinetic energy, is zero, and the potential energy reaches its
maximum. The total energy of the system thus simply says something about how
far away from the equilibrium it can move. For example, the zero-energy harmonic
oscillator simply sits still at its equilibrium. At the equilibrium point, on the other

32 2 Quantum Engineering

hand, the kinetic energy reaches its maximum and the potential energy is zero, this
means that the particle attains the greatest velocity here. This further implies that
for a classical harmonic oscillator, the probability is highest to find it close to the
turning points x = ±A, since this is where it moves at its slowest, and thus spends
the most time. This is shown in the bottom picture of Fig. 2.2.

2.2.2 The quantum harmonic oscillator

The quantum harmonic oscillator is, as the name suggests, the quantum analogue
of the classical system. As we discussed earlier, in quantum mechanics (and also in
classical mechanics) an important role is played by the Hamiltonian of the system.
This is simply constructed as the sum of the kinetic and potential energy. So to
construct the Hamiltonian we simply take the expression for the classical kinetic
and potential energy and sum them,

H =
1
2

mv2 +
1
2

mω
2x2 =

p2

2m
+

1
2

mω
2x2, (2.2)

where we introduced the momentum, p=mv, in the second equality. But in quantum
mechanics, as we have seen, observables should be operators, so we also promote
the position and momentum variables to operators.4 This results in the expression

Ĥ =
p̂2

2m
+

1
2

mω
2x̂2,

where we, in this section only, adopted the very common practice of putting hats
on quantum operators, to distinguish them from their classical variable analogues.
Note that, in contrast to most of the rest of this course, we are here considering
an infinite-dimensional Hilbert space of states, since both x̂ and p̂ take continuous
values. This does introduce some extra subtleties that we however simply gloss over
at the moment.

In quantum mechanics, the energy of the system is described by the time-independent
Schrödinger equation

Ĥ|ψE〉= E|ψE〉,
where the subscript E on ψE is there to remind us that these are the eigenvectors of
Ĥ corresponding to the energy eigenvalues E. To solve this, we express the wave
function ψE(x) = 〈x|ψE〉 in the coordinate basis. In this basis we can represent the
momentum operator p̂ as a derivative p̂ =−ih̄ ∂

∂x , and the equation takes the form

4 There are many reasons why we use momentum instead of velocity as the go-to operator in
quantum mechanics, the most important one being that momentum is a conserved quantity, while
velocity is not.

2.2 The harmonic oscillator 33

− h̄2

2m
∂ 2ψE(x)

∂ x2 +
1
2

mω
2x2

ψE(x) = EψE(x).

This does not look like something we want to explicitly solve in this course, we
leave that for a full course on quantum mechanics or perhaps a course on differen-
tial equations.5 Instead, we simply state that under the assumptions that the wave
function is normalizable and symmetric around the equilibrium x = 0, we have an
infinite family of solutions labeled by a level (or quantum number) n

ψn(x) =
1√
2nn!

(mω

πh̄

)1/4
e−

mωx2
2h̄ Hn

(√
mω

h̄
x
)
, n = 0,1,2,

Here, Hn(y) are the so called (physicist’s) Hermite polynomials, with the first few
being

H0(y) =1,

H1(y) =2y,

H2(y) =4y2−2,

H3(y) =8y3−12y,
...

The corresponding energy eigenvalues are

En =h̄ω(n+ 1
2).

These are the values that would be returned upon a measurement of the Hamiltonian
of the quantum harmonic oscillator. Two important things to note are, first that the
energies are quantized, i.e., they come in discrete steps; and secondly the lowest
value is not equal to zero, but rather E0 =

h̄ω

2 . This second point is a consequence of
the uncertainty principle.

To connect with the classical system we can calculate the amplitudes, An, of a clas-
sical harmonic oscillator with the corresponding energies of the quantum one. We
find

En =
1
2

mω
2A2

n =⇒ An =

√
(2n+1)

h̄
mω

.

Note that these increase with the quantum number n.

Figure 2.3 shows the probability amplitudes, ψn(x), and probability densities,
|ψn(x)|2 of finding the system at the location x, for the first few energy levels in
the positional basis. We note two big differences with the classical oscillator. First,

5 Of course you are welcome to solve it yourselves. A nice trick one can use is to first guess or
argue for the expression of the lowest energy state, and then use the fact that [x̂, p̂] = ih̄ together
with the algebra given by introducing the creation and annihilation operators a± ∝ p̂± iω x̂ to
construct the higher energy states.

34 2 Quantum Engineering

there is a non-zero probability of finding the particle outside the values x = ±An,
this is not possible in the classical system. This is due to something called quantum
tunneling. Secondly, the probability density distribution for the lowest-energy state
ψ0(x), is highest at the origin x = 0, while for the higher values of n we see that
the system starts looking more like the classical one, i.e., that it is most likely to
find the system near the turning points. This is an illustration of something called
the Bohr correspondence principle. Namely that quantum physics should become
classical physics in the limit of large quantum numbers (or when h̄ becomes small
in comparison to the energy).

-A0 0 A0

n=0

-A0 0 A0

-A1 0 A1

n=1

-A1 0 A1

-A2 0 A2

n=2

-A2 0 A2

-A3 0 A3

n=3

-A3 0 A3

-A6 0 A6

n=6

-A6 0 A6

-A10 0 A10

n=10

-A10 0 A10

Fig. 2.3: The probability amplitudes (left) and probability densities (right) for some
levels of the quantum harmonic oscillator. The classical amplitudes An are indicated.

2.2.3 The transmon qubit

One of the most popular physical realizations of a superconducting qubit is the so
called transmon qubit. The very rough idea behind this is to utilize the discreteness
of the energy levels of the quantum harmonic oscillator to encode the basis states
{|0〉, |1〉} as the zeroth and first energy level states. The problem with the exact
quantum oscillator is, as we saw above, that the energy levels are evenly spaced,

2.2 The harmonic oscillator 35

i.e., given by En ∝ n+ 1
2 . This will mean that we typically end up in a superposition

of all the higher energy states, i.e. with n > 1, when trying to transition from |0〉 to
|1〉. To solve this, we introduce a deformed harmonic oscillator, or what is called
an anharmonic oscillator, where the energy levels are not evenly spaced anymore.
This is the foundation of the transmon qubit, and several other qubits based on
the harmonic oscillator. We will give a very quick review of how this construction
works. For more details we recommend looking at

C L

Fig. 2.4: A parallel LC resonator with inductor L and capacitor C. This is the starting
model for building the transmon qubit.

The first step is to consider a parallel LC resonator. This is an electrical circuit
consisting of an inductor, L, and a capacitor, C, connected in parallel, as in Fig. 2.4.
This circuit is characterized by its resonance frequency, ω0 = 1/

√
LC. The energy

of an electrical circuit like this is best described in terms of the flux, Φ(t), i.e., the
total amount of voltage across the circuit at some time t. We can then express the
Hamiltonian of the system as

H =
Q2

2C
+

1
2

Cω
2
0 Φ

2,

where Q = CV = CΦ̇ is the charge. We can directly recognize this as the Hamil-
tonian of a Harmonic oscillator, compare with Eq. (2.2). Typically, when dealing
with superconducting circuits, this is rewritten using the variables n := Q

2e , with e
the charge of an electron, and φ := 2eΦ

h̄ . This gives

H = 4ECn2 +
1
2

ELφ
2,

where we further introduced the charge energy EC := e2

2C and the inductive energy

EL := h̄2

(2e)2L .

To transition between the |0〉 and |1〉 states, which corresponds to the two lowest
energy eigenstates, we can introduce a drive in the circuit. This would correspond to
applying a signal of frequency ω0 through the circuit. The problem is that this will
end up pushing the state to a superposition including all the higher energy levels as
well. Since they are all related by the same step size. To solve this, we introduce a
non-linearity, or anharmonicity, in the circuit.

36 2 Quantum Engineering

To get the anharmonicity of the transmon, we exchange the original inductor of the
circuit with a so called Josephson junction. This is a type of superconducting com-
ponent that behaves as a non-linear inductor with inductance LJ =

LJ0√
1−I2

J /I2
c

, where

IJ is the current through the junction, Ic the critical current, or the maximal possi-
ble current through the junction, and LJ0 =

h̄
2eIc

is called the Josephson inductance.
Using this, together with the relation

IJ = Ic sin(φ),

we can derive the Hamiltonian

HJ = 4ECn2−EJ cos(φ),

where EJ = h̄Ic
2e .6 From this, we can now solve the time-independent Schrödinger

equation approximately in the regime EJ � EC, to find the energy levels of the
circuit,

En ≈h̄ω0(n+ 1
2)−

EC

12
(6n2 +6n+3). (2.3)

We see that the non-linearity of the inductor has introduced an anharmonicity in the
energy levels. See also Fig. 2.5.

-A 0 A

En
er

gy

Quantum harmonic oscillator
Transmon

Fig. 2.5: The energy levels of the ordinary quantum harmonic oscillator (orange)
compared with the energy levels of the transmon, as given by Eq. (2.3) (green).

6 In fact, recent results have shown that this relation is not enough for characterizing transmon
qubits, and one need to consider higher harmonics, ∑

∞
m=2 sin(mφ).

2.2 The harmonic oscillator 37

If we now try to drive the transitions between the various energy states, we no longer
find that the same frequency pushes you between the different energy states, since it
is different for each level. This thus makes for a much better candidate for a qubit.

Exercise 2.3. Consider the quantum harmonic oscillator in two dimensions. The
Hamiltonian is now given by

H =
1

2m
(p2

x + p2
y)+

1
2

mω
2(x2 + y2).

This can be written as the sum of the Hamiltonian of two one-dimensional oscillators

H = Hx +Hy, H j =
1

2m
p2

j +
1
2

mω
2 j2,

for j = x,y. The momentum and position operators satisfy the commutation rela-
tions: [x, px] = [y, py] = ih̄, while the rest are zero, i.e. [x,y] = [x, py] = [y, px] =

[px, py] = 0.

a) Does Hx and Hy commute?

b) Can you construct a non-trivial operator (i.e. not the zero operator, identity op-
erator or some power of H itself), using only x, y, px and py (or powers thereof),
that commutes with the full Hamiltonian H? If possible, what does this tell you
about this quantity?

Summary: Harmonic oscillators

• The harmonic oscillator is one of the most important physical systems
out there.

• The energy of the quantum harmonic oscillator comes in evenly spaced,
discrete steps, En =h̄ω(n+ 1

2).
• Some important ways that the quantum harmonic oscillator differ from

the classical one are that, the lowest energy of the quantum oscillator
is non-zero; due to quantum tunneling, there is a non-zero probability
to find the oscillator outside the turning points; and, for low quantum
numbers, the probability is highest to locate the oscillator at the origin.

• The Bohr correspondence principle states that in the limit of large quan-
tum numbers, or whenh̄ becomes small compared to the energy, the quan-
tum system should start looking like the classical counterpart.

• The transmon qubit is a popular physical implementation of a qubit
which resembles the quantum harmonic oscillator. To get non-evenly
spaced energy levels, an anharmonic oscillator model is used.

Chapter 3

Quantum Information Theory

ADD INTRO...DIVIDE INTO MORE SECTIONS...FINALISE SECTION ON DEN-
SITY OPERATOR

3.1 Entanglement

Let us now discuss one of the most mysterious concepts in quantum mechanics,
namely that of entanglement. We will also elaborate on some of its important con-
sequences for quantum computers.

3.1.1 Product states

We have seen that if we have two physical systems |ψA〉 and |ψB〉, we can combine
them into a composite system

|ψAB〉= |ψA〉⊗ |ψB〉.

Let us study this concept in more detail. For simplicity, let us consider a two-qubit
system. We then have that both systems |ψA〉 and |ψB〉 can be expressed as a linear
combination of the basis states |0〉 and |1〉,

|ψA〉= α0|0〉+α1|1〉, |ψB〉= β0|0〉+β1|1〉,

with the ordinary normalization conditions |α0|2 + |α1|2 = |β0|2 + |β1|2 = 1. The
combined system looks like

39

40 3 Quantum Information Theory

|ψAB〉=(α0|0〉+α1|1〉)⊗(β0|0〉+β1|1〉)=α0β0|00〉+α0β1|01〉+α1β0|10〉+α1β1|11〉.
(3.1)

Furthermore, we have seen that we do not need to consider overall phases for the two
individual systems. All in all this means that we have four real degrees of freedom in
the combined system. Two coming from each qubit. But, let us now instead consider
the most general two-qubit system

γ00|00〉+ γ01|01〉+ γ10|10〉+ γ11|11〉,

with the normalization condition now being

|γ00|2 + |γ01|2 + |γ10|2 + |γ11|2 = 1.

Here, we only have one overall phase to disregard. The generic two-qubit system
thus have six real degrees of freedom. Which of course is larger than the four we
had before. It is easy to see that the first case is a special case of the more general
second case. The extra degrees of freedom between the two cases are exactly what
give rise to the mysterious concept of entanglement.

A state that can be written on the form (3.1), or more generally as a product

|ψ〉= |ψA〉⊗ |ψB〉⊗ . . . ,

is, somewhat naturally, called a product state, while those that can not be written on
this form are called entangled. A simple example would be the state

|ψ−〉 :=
1√
2
(|01〉− |10〉).

This is called a maximally entangled state for reasons that will become clear later.

We see that, if we only consider product states, we loose a lot of the power of
quantum mechanics. In fact, the product states are very similar to ordinary classical
states, and the true key to quantum computing lies in entanglement.

3.1.2 Non-locality

In 1935, Einstein, Podolsky and Rosen (EPR) published a paper called “Can
quantum-mechanical description of physical reality be considered complete?” [2].
In this paper, they considered a simple thought experiment that pinpointed some of
the mysteries of entanglement. EPR were interested in the question of completeness
of a physical theory. They defined a complete theory as one where each element

3.1 Entanglement 41

of physical reality1 must have a counterpart in the physical theory. They proposed
one simple requirement for an element of physical reality such that “if, without in
any way disturbing a system, we can predict with certainty (i.e., a probability equal
to unity) the value of a physical quantity, then there exists an element of physi-
cal reality corresponding to this physical quantity.” [2]. They would thus say that
two physical quantities corresponding to two non-commuting observables could not
have a simultaneous reality, since they can not be measured simultaneously.

We will now give a simple example highlighting how quantum mechanics, or more
specifically entanglement, challenges this simple idea.

Let us start with stating a simple fact. A quick calculation shows that for a generic
qubit state, |ψ〉= α|0〉+β |1〉, we have the result

〈σx〉2ψ + 〈σy〉2ψ + 〈σz〉2ψ = 1.

This can be interpreted as saying that there is always some direction that has eigen-
value +1 for the qubit. It is furthermore easy to check that this continues to hold
for the product states (3.1) when we consider the operators σx,y,z⊗1 and 1⊗σx,y,z.2

Let us now instead look at the entangled state |ψ−〉 which we defined above. To this
end, we calculate the expectation values of the operators σx,y,z⊗1 and 1⊗σx,y,z. The
result turns out to be zero for all choices. Having a zero expectation value of course
simply means that both outcomes are equally likely. We thus see that, even though
we know the exact state the system is in, namely |ψ−〉, we can not say anything
about the individual pieces, i.e., the states of the two individual qubits.

Next, we can note that an operator such as σz⊗σz will have |ψ−〉 as an eigenstate,
more specifically, we have

(σz⊗σz)|ψ−〉=−|ψ−〉.

Which of course tells us that 〈σz⊗σz〉ψ− =−1.3 This is peculiar for the following
reason: We can imagine having the two-qubit system |ψ−〉 and distributing each
qubit to two people, say Alice and Bob. We then imagine that Alice flies off to Mars
with her qubit and Bob stays behind here on Earth. If at Mars, Alice suddenly (and
randomly) decides to measure the spin along the z-axis of her qubit (i.e. measure σz),
she will find one of the results ±1, but since the combined eigenvalue of hers and
Bob’s measurement of σz must be equal to−1, she will immediately know what the
result of Bob’s measurement would be. For example, if Alice finds the result +1 she
immediately knows that Bob must find −1 and vice versa. Similarly, if she instead
measures σx or σy. This is what Einstein famously called spooky action at a dis-
tance. According to the EPR paper, this would mean that Bob’s system should have

1 whatever that is,
2 By the notation σx,y,z we simply mean that we can take any of the three indices.
3 Note that the same result holds for σx⊗σx and σy⊗σy.

42 3 Quantum Information Theory

definitive and simultaneous values for the measurements σz and σx, but quantum
mechanics does not agree with this.

3.1.3 Bell inequalities and CHSH

The EPR paper did not receive a lot of attention after its publication. By many it
was mostly considered to be a philosophical detail that one need not care about
when doing physics. But, in 1964, almost 30 years after the original paper, John
Bell published an idea for an experiment that could make use of the entanglement
introduced by EPR to make predictions about the nature of quantum mechanics [3].
Since then, this has been verified in real experiments, and today entanglement plays
an essential role in quantum information theory and quantum computing. Bell’s idea
is also what we referred to as Bell’s theorem when we discussed hidden variable
theories earlier.

We will discuss a variant of Bell’s proposed experiment due to Clauser, Horne,
Shimony and Holt (CHSH) [4].

We consider the following game. We have two players, Alice (A) and Bob (B) and
one game host, Charlie (C). Charlie chooses two questions xy ∈ {00,01,10,11}
uniformly. He then asks x to Alice and y to Bob, who will answer with a single bit
a and b, respectively. Alice and Bob will win if a⊕ b = x∧ y.4 In other words, we
need

a(0)⊕b(0) = 0,

a(0)⊕b(1) = 0,

a(1)⊕b(0) = 0,

a(1)⊕b(1) = 1.

(3.2)

If we consider classical (and deterministic) strategies, we can easily see that there
are 16 possible ones. For example, one strategy would be for both Alice and Bob to
always answer every question with zero. By comparing the different strategies with
the winning ones of (3.2) we can see that there is no classical strategy that can win
every time. The best we can do is to choose a strategy that wins 3/4 of the times.
One such example is the strategy of always answering zero to every question.5

The big question is now if we can do better by considering quantum strategies. For
simplicity we consider the answers to be either±1 instead of 0 and 1. This of course
makes no real difference, we can for example consider the map a 7→ (−1)a to take
us from one convention to the other.
4 Here, ⊕ means addition modulo 2.
5 As an exercise you can assure yourself that we can not do better by considering probabilistic
strategies.

3.1 Entanglement 43

In the quantum version we consider Alice and Bob to share an entangled state, say

|ϕ+〉 :=
1√
2
(|00〉+ |11〉),

such that they have one qubit each of this state. Before answering the question they
both make a measurement on their corresponding qubit, such that a(0) corresponds
to the measurement of σz, a(1) of σx, b(0) of H = 1√

2
(σz+σx) and b(1) of 1√

2
(σz−

σx). We thus have the expectation values

〈a(0)⊗b(0)〉ϕ+ = 〈a(0)⊗b(1)〉ϕ+ = 〈a(1)⊗b(0)〉ϕ+ =
1√
2
, 〈a(1)⊗b(1)〉ϕ+ =− 1√

2
.

These expectation values measures the expectation that Alice and Bob win minus
the expectation that they loose on each of the questions {00,01,10} and minus this
on the question xy = 11. Therefore, we find that the total probability of winning
minus the probability of loosing is

1
4
〈ϕ+|(a(0)⊗b(0)+a(0)⊗b(1)+a(1)⊗b(0)−a(1)⊗b(1))|ϕ+〉= 1√

2
,

and the probability of winning is therefore

1
2

(
1+

1√
2

)
∼ 0.85.

This is of course better than the 3/4 probability in the classical setting.

In physics literature, this is more often stated as the fact that the inequality, known
as a Bell inequality, 6

a(0)b(0)+a(0)b(1)+a(1)b(0)−a(1)b(1)≤ 2,

which clearly holds for classical variables a(j),b(j) ∈ [−1,1], j = 0,1, can be vio-
lated by considering the above quantum situation, which gives

〈a(0)⊗b(0)〉ϕ+ + 〈a(0)⊗b(1)〉ϕ+ + 〈a(1)⊗b(0)〉ϕ+ −〈a(1)⊗b(1)〉ϕ+ = 2
√

2.

3.1.4 The GHZ paradox

Greenberger, Horn and Zeilinger (GHZ) [5] came up with a stronger version of the
Bell inequality game with a perhaps even more striking result. Namely, it gives a

6 more specifically here the CHSH inequality,

44 3 Quantum Information Theory

problem where the quantum strategy can win with certainty every time, while the
classical can not.

For the GHZ setup, we consider a three-party game where Alice, Bob and Charlie
each are asked one out of two questions (0 or 1), xyz∈ {000, 011, 101, 110}, chosen
uniformly, with possible answers again given by a bit, a, b and c. They now win if
a⊕b⊕ c = x∨ y∨ z. The winning strategies should thus satisfy

a(0)⊕b(0)⊕ c(0) = 0,

a(0)⊕b(1)⊕ c(1) = 1,

a(1)⊕b(0)⊕ c(1) = 1,

a(1)⊕b(1)⊕ c(0) = 1.

It is straightforward to once again assure us that no classical strategy can do better
than win 75% of the time.

For the quantum strategy, we consider the case that Alice, Bob and Charlie are each
given one qubit from the entangled state

|GHZ〉= 1√
2
(|000〉+ |111〉).

The measurements can then correspond to σx and σy, since we can easily check that

σx⊗σx⊗σx|GHZ〉=+|GHZ〉,
σx⊗σy⊗σy|GHZ〉=−|GHZ〉,
σy⊗σx⊗σy|GHZ〉=−|GHZ〉,
σy⊗σy⊗σx|GHZ〉=−|GHZ〉.

Where we again considered the answers ±1 instead of 0 and 1. By the same argu-
ment as in the CHSH game of before we can now see that the GHZ game has a
strategy that wins every time.

3.1.5 Bell basis and measurements

We have seen two examples of maximally entangled two-qubit states, |ψ−〉 and
|ϕ+〉. They are in fact two out of four basis states of maximally entangled states.
This basis is called the Bell basis,

|ϕ±〉 :=
1√
2
(|00〉± |11〉),

|ψ±〉 :=
1√
2
(|01〉± |10〉).

3.2 Teleportation 45

As we have seen, and will continue to see, they play an important role in various
thought experiments involving quantum entanglement.

Due to their importance in quantum theory, it is worthwhile to consider how we can
construct the Bell states out of two generic qubits. If we start from a state in the
computational basis we can create a Bell state by acting with an operator called the
Hadamard gate, H = 1√

2
(σx +σz) on the first qubit and then the so called controlled

NOT, or CNOT, gate, with the newly transformed first qubit as the control. The
CNOT gate acts by first controlling the state of the control qubit. If this is 0 it does
nothing to the other qubit, while if it is 1 it acts with σx on the other qubit, flipping
it between 0 and 1.7 For example, if we start from the state |00〉, we find first that

H⊗1|00〉= 1√
2
(|0〉+ |1〉)|0〉,

and the CNOT thus transforms this into

1√
2

CNOT(|0〉+ |1〉)|0〉= 1√
2
(|00〉+ |11〉) = |ϕ+〉.

Similarly, we find that the same circuit transforms |11〉 into |ϕ−〉, |01〉 into |ψ+〉
and |10〉 into |ψ−〉.
Equally important is the Bell measurement. Given two maximally entangled qubits
we can perform a Bell measurement to determine which of the Bell states the entan-
gled qubits are in, and thus entangle the information. Algorithmically, this measure-
ment is simply the Bell creation circuit, just presented, run in the opposite order. We
start by acting with the CNOT gate, followed by the Hadamard on the control qubit.
This is a key ingredient in the quantum teleportation protocol, which we discuss
next.

3.2 Teleportation

The notion of entanglement is a very powerful one. To show some of its conse-
quences, we will now discuss how quantum mechanics allows a form of teleporta-
tion of information.

We return again to our dear friends Alice and Bob. Alice was recently given a qubit

|ψ〉= α|0〉+β |1〉,

7 These gates will be more properly introduced later as they are, of course, very important for the
course.

46 3 Quantum Information Theory

that she wants to send to Bob. However, they are very far away from each other
and only have access to a measuring device and a telephone. So this seems hard.
But perhaps there is a way? In other words, Alice needs to share some classical
information over the phone such that Bob can recreate her state |ψ〉. There is a deep
result in quantum mechanics called the no-cloning theorem that states that Bob can
not simply copy Alice’s state exactly.8 Instead what we will see is that Alice will
make a certain measurement changing her state but allowing her to retrieve some
information that she can send to Bob such that he can rebuild the original state |ψ〉.
This procedure is then what is called quantum teleportation.

First of all, let us note that we have seen that quantum mechanics does not allow
for any direct measurement of Alice to simply get the numbers α and β such that
she can communicate them to Bob. Since the measurement would change the state
and she would not get the complete information of the original state. Instead we will
come up with another prescription.

For this to work we imagine that besides the original qubit |ψ〉, Alice and Bob both
have one qubit each from an entangled Bell pair |ϕAB〉. The procedure is simple, and
given by four short steps:

1. Alice makes a Bell measurement of her combined system of the two qubits |ψ〉
and her part of the Bell pair, |ϕA〉;

2. Alice makes a measurement to decide which states |00〉, |01〉, |10〉 or |11〉 her
combined system is in;

3. depending on the outcome she gives an instruction to Bob, as follows:

• if |00〉 do nothing;

• if |01〉 apply σx to |ϕB〉;
• if |10〉, apply σz to |ϕB〉;
• if |11〉, apply σzσx to |ϕB〉.

4. if Bob chooses to follow Alice’s instructions, he will now have the state |ψ〉.

So why does this work? Let us do the maths. For the Bell pair we take |ϕAB〉= |ϕ+〉.
The original system is then

|ψ〉⊗|ϕAB〉=
1√
2
(α|0〉+β |1〉)⊗(|00〉+|11〉)= 1√

2
(α|000〉+α|011〉+β |100〉+β |111〉) .

8 You could try and derive this theorem, everything you need has been discussed in the course
already.

3.2 Teleportation 47

Alice then makes a Bell measurement on the first two qubits of this system. Remem-
ber that this means CNOT followed by Hadamard on the first qubit:

(H⊗1⊗1)(CNOT⊗1)(|ψ〉⊗ |ϕAB〉) =(H⊗1⊗1) 1√
2
(α|000〉+α|011〉+β |110〉+β |101〉)

=
1
2
(α (|000〉+ |011〉+ |100〉+ |111〉)+β (|010〉− |110〉+ |001〉− |101〉)) .

This can be rearranged into

1
2
(|00〉(α|0〉+β |1〉)+ |01〉(α|1〉+β |0〉)+ |10〉(α|0〉−β |1〉)+ |11〉(α|1〉−β |0〉)) .

Next, Alice measures her two qubits. This will give one of the results |00〉, |01〉, |10〉
or |11〉, with equal probability, projecting Bob’s state to the corresponding parenthe-
sis in the above expression. We thus see that if Alice obtains the result correspond-
ing to |00〉 Bob’s state will be |ψ〉, which is what we wanted, so no further action
is needed. If Alice finds |01〉, Bob’s state is α|1〉+β |0〉, and acting on this with σx

gives |ψ〉. Similarly, if Alice finds |10〉 Bob should act with σz and |11〉 means that
he should act with σzσx to get |ψ〉.
As we stated in the beginning, we also see that Alice’s qubit is of course no longer
in the state |ψ〉, it has collapsed to an eigenstate of her measurement. We thus say
that she has teleported her state to Bob.

Exercise 3.1. Calculate

〈σx⊗1〉2ψ + 〈σy⊗1〉2ψ + 〈σz⊗1〉2ψ ,

for the product state |ψ〉= α0β0|00〉+α0β1|01〉+α1β0|10〉+α1β1|11〉.
Exercise 3.2. Calculate the expectation values of the operators σx,y,z⊗1 in the state
|ψ−〉= 1√

2
(|01〉− |10〉).

Exercise 3.3. Show that there are 16 classical deterministic strategies for the CHSH
game defined in Sec. 3.1.3 and that the best result we can get is to win 3/4 of the
times. Show also that we can not do better with a classical probabilistic strategy.

48 3 Quantum Information Theory

Summary: Entanglement

• When we start considering larger quantum systems consisting of several
subsystems, we can find a strange correlation between the subsystems,
called entanglement.

• Entangled states are those that can not be written as a direct product.
• Entanglement is key in many applications of quantum information and

quantum computing.
• Quantum teleportation is a protocol for “sending” a quantum state be-

tween places, and utilizes entanglement to work.

3.3 The density operator

As we have seen in the above discussion of entanglement, it is sometimes the case
that we might not have the full information of which state our quantum particle
actually is in. Remember that for the Bell pairs above, we saw that even though both
Alice and Bob had full knowledge about which state the combined qubit pair was
in, they did not know which state their individual qubits were in. This is of course
one particular situation of a much more general idea, namely that we perhaps only
know some partial information of our system. Perhaps we know that the system is
in one of a number of given states {|ψ j〉}, with different probabilities p j for each
one. We could then construct a very useful operator, called the density operator,

ρ := ∑
j

p j|ψ j〉〈ψ j|. (3.3)

Note that, this is not the same as saying that the state is in a superposition of the
states {ψ j〉}, but rather reflects our lack of knowledge. As a simple example, let us
see how this looks for one-qubit systems. In the computational basis, we have that
one-qubit in generic superposition is given by

|ψ〉= α|0〉+β |1〉 =⇒ ρ = |ψ〉〈ψ|=
(
|α|2 αβ ∗

α∗β |β |2
)
. (3.4)

While on the other hand, if we consider the situation where we know that the qubit
is either in the state |0〉 or |1〉, with probabilities p0 and p1, respectively, then the
density operator is

ρ =

(
p0 0
0 p1

)
.

Again, let us emphasis the difference. In the first case, we know exactly which state
the qubit is in, namely the superposition state |ψ〉, while in the second case we only

3.3 The density operator 49

know that the state is either in state |0〉 with probability p0 or in the state |1〉 with
probability p1. This is an important distinction.

In both cases, we see that the diagonal entries of the density operator correspond to
the probabilities of getting the results corresponding to the states |0〉 or |1〉 after a
measurement, and since |α|2 + |β |2 = p0 + p1 = 1, this is equivalent to saying that
Traceρ = 1. In fact, this property continues to hold for more complicated systems
as well, i.e., that the diagonal elements correspond to probabilities and we should
thus always require that Traceρ = 1, for any density operator. Similarly, we see that
ρ = ρ†, or in other words ρ is Hermitian. This is also true of any density operator.

The density operator is a very useful tool in quantum mechanics, and in fact one
could rephrase everything we have done so far in terms of the density operator in-
stead of the state vectors. As we will see shortly, the density operator view is handy
when we want to study the various subsystems of a combined quantum state.

Let us now introduce some more nomenclature. When we know exactly which state
our given system is in, say |ψ〉, the density operator is just ρ = |ψ〉〈ψ|. Such states
are called pure states. The superposition qubit system above would be an exam-
ple. Otherwise, we say that the system is in a mixed state, where the second qubit
example above is an example.

Now, one of the situations where the density operator is really advantageous over the
state vector description is when we want to discuss what is going on for a subsystem
of a larger system. Consider again the Bell state from the previous Sections,

|ψ−〉= 1√
2
(|01〉− |10〉).

Considered as a two-qubit system, this is of course a pure state, as we know exactly
what the state is. But, let us imagine, as before, that Alice has one of the entangled
qubits in this pair and she wants to find out some information about this, disregard-
ing any information about Bob’s qubit. For this situation, we introduce the reduced
density operator, ρA. We thus start from a system, the Bell state, that is a combi-
nation of two subsystems, A and B, described by the density operator ρAB. We then
define the reduced density operator for the subsystem A as

ρA = TraceB(ρAB), (3.5)

where TraceB(·) is the partial trace operator which traces over the subsystem B,
defined as

TraceB(|a1〉〈a2|⊗ |b1〉〈b2|) := |a1〉〈a2|Trace(|b1〉〈b2|). (3.6)

JA: TBC....

Exercise 3.4. Check the calculation in Eq. (3.4).

50 3 Quantum Information Theory

Exercise 3.5. Show that we must require ρ to be Hermitian and Traceρ = 1 for the
definitions to align with what we have said in the earlier Sections (for any quantum
system, mixed or pure, not just the simple qubit examples we looked at above).

Exercise 3.6. Show...

Chapter 4

Quantum Engineering 102

Before we consider the full machinery of quantum computing, it is worthwhile to
review an ancient computing paradigm, called analog computing, made popular by
Lord Kelvin in the 19th century.1 Although there are excellent textbooks [6, 7],
analog computing is all but forgotten. This is seems unfortunate, considering that a
e 450 open-hardware analog computer [8] could be one of the best tools for intro-
ducing quantum computing.

Inherently, quantum computing is analog and continuous-time, while our interac-
tions with quantum computers utilize digital computers, working in discrete time.
This requires a model for the digital to analog (DA) conversion for passing the data
to the quantum computer, analog to digital (AD) conversion for retrieving data from
the quantum computer, and a framework for applying operations to the quantum
state. As we will see, the application of operations to quantum states is equivalent
to the digital to analog conversion, in some sense.

4.1 General-Purpose Analog Computing

At its core, analog computer uses a number of basic operations to construct a model,
or analogue, of some dynamical system that satisfies the equations we want to solve.
Analog computers constructed from mechanical or electronic components are espe-
cially handy to use for modeling dynamical systems driven by systems of differen-
tial equations. The mechanical or electronic components perform some basic set of
operations [6].

The basic building blocks are:

1 Although variants of analog computers date back much further than this, the Antikythera mech-
anism from around year 100 BC being an early complex example.

51

52 4 Quantum Engineering 102

• Signal generator, which underlies digital to analog (DA) conversion in hybrid
systems.

• An integrator, which accumulates the input signal over a defined time to produce
the definite integral of the input signal as the output. This is a building block of
any analog to digital (AD) conversion in hybrid systems.

• An analog multiplier, whose output is at any time the product of the values re-
ceived on two inputs. When one of the inputs is a constant, a mechanical mul-
tiplier is a gearing mechanism. When both inputs vary, one often utilizes two
integrators and uv =

∫
uδv+

∫
vδu.

• An analog adder, whose output is at any time the sum of the values received on
two inputs.

It is important to stress some of the features of analog computing:

• All operations have limited precision. So-called double-ball mechanical integra-
tors developed by James Thompson, the brother of Lord Kelvin, had precision of
up to four significant digits [6].

• The readout has a limited precision. While the analog computer readout may
take a variety of forms, such as measuring magnitude of voltage in an electrical
analogue circuit or position of a pendulum, there is always a limited precision.
Again, the precision of readout of mechanical analog computers could up to four
significant digits.

• The error gets compounded. The more limited-precision building blocks we uti-
lize, the lower precision we obtain overall.

Here, we will concern ourselves with a model of analog computing introduced by
Claude Shannon [9], also known as General-Purpose Analog Computing (GPAC).The
basic building blocks are:

• Signal generator of the most simple kind, which produces signal of a given con-
stant value.

• An integrator.

• An analog multiplier.

• An analog adder.

By composition of the basic building blocks produces GPAC circuits. [9] showed
that signals (functions) computed by the GPAC are solutions of a special class of
polynomial differential equations. In the next chapter, we will see that the class of
problems solvable in polynomial time in digital computers (e.g. Turing Machines,
which we see in the next chapter) can be characterized in terms of initial values of
tthis particular class of non-linear ordinary differential equations (ODEs) [11, 12,
10, 13], which the analog computer of Shannon can solve.

4.2 Analog Computing via Classical Oscillators 53

k k

A constant unit

+ u+ v

An adder unit

u
v

× uv

A multiplier unit

u
v

∫
w =

∫
udv

An integrator unit

u
v

Fig. 4.1: Circuit presentation of the GPAC cited from [10]: a circuit built from basic
units

4.2 Analog Computing via Classical Oscillators

As a simple example, let us consider the harmonic oscillator from the previous chap-
ter. The dynamics are given by the equation

ẍ =−x,

where we simplified the notation by setting the angular frequency ω2 = 1. Obvi-
ously, here we already know the solution, but we can use this as a simple exam-
ple to develop the ideas. From calculus class, we know that ẏ =

∫
dtÿ + c0 and

y =
∫

dtẏ+ c1 for some constants c j. If we thus knew what ÿ was, we could solve
the equation this way.

−1 × ∫ ∫
sin(t)





y′(t)= z(t)
z′(t)=−y(t)
y(0)= 0
z(0)= 1

⇒
{

y(t)= sin(t)
z(t)= cos(t)

t

Fig. 4.2: Example of GPAC circuit cited from [10]: computing sine and cosine.

From the Figure 4.2 we know also the GPAC for the harmonic oscillator. Indeed, it is
the so-called double-integrator oscillator producing sin(t). Notice that the constant
-1 and mutliplication invert the sign of the outcome. What really makes this work,
and this was the insight of Lord Kelvin, is the feedback loop. Without it, we would
not get something interesting out of the analog computer. The idea is to start with

54 4 Quantum Engineering 102

some initial value, given by fixing the constants t above, run the program and feed
the outcome back into the machine. This will give us the correct answer.

Notice that the practical implementations of an oscillator in an analog circuit may
be very different. Indeed, Hewlett-Packard’s first product in January 1939 was the
HP200A, a precision Wien bridge oscillator.

Also, notice that we can make precise statements about the sample complexity of
readout. Let us consider a parallel with analog to digital conversion of audioengi-
neering. A sound, which we hear, can be sampled at some sampling frequency. From
the so-called Nyquist–Shannon sampling theorem, we know that if function x(t)
contains no frequencies higher than B hertz, then it can be completely determined
from its ordinates at a sequence of points spaced less than 1/(2B) seconds apart.

4.3 The Power of Analog Computing

Jakub to explain https://arxiv.org/abs/2412.13164

4.4 Optimal Control (*)

Brief intro to optimal control

4.5 Digital to Analog Conversion via Quantum Optimal Control

As we have seen in Chapter 2, one applies a linear operator U : C2N → C2N
, which

can be represented as a unitary matrix in C2N×2N
, to a quantum state |ψ〉 ∈ C2N

.
This can be seen as both the digital to analog conversion, in terms of initialising the
state to the input of an algorithm, or the algorithm itself.

One way of thinking about the digital to analog conversion, and perhaps the correct
one, involves quantum optimal control. Let us consider a finite-level quantum sys-
tem described by a Hilbert space H . A state |ψ〉 evolves in time according to the
Schrödinger equation

∂ |ψ〉
∂ t

=−iH |ψ〉 ,

where we for simplicity use units of h̄ = 1. From this, one can easily derive that the
time evolution operator U(t) should satisfy its own Schrödinger equation

https://arxiv.org/abs/2412.13164

4.6 Analog to Digital via Quantum State Tomography 55

U̇(t) =−iHU(t).

In quantum control theory, we generalise to the setting where the Hamiltonian de-
pends on time, and moreover takes the explicit form

H(t) = H0 +u(t)Hc,

where the constant part, H0, is typically called the drift Hamiltonian, and u(t)Hc

is called the control Hamiltonian. The idea is then to control the input, or control
pulses, u(t) such that the system evolves in a satisfactory way. For example, say that
we want to minimise the time it takes for some initial state |ψ0〉 to evolve into some
desired target state |ψ?〉 (or some approximation thereof). This time optimal control
problem is then an optimisation problem

min
u(t)∈C

T

s.t. |ψ(T)〉= |ψ?〉 ,
|ψ(0)〉= |ψ0〉 ,

∂ |ψ(t)〉
∂ t

=− i(H0 +u(t)Hc) |ψ(t)〉 ,

for some allowed set of control pulses C . Since |ψ(T)〉=U(T) |ψ(0)〉 we can also
express this in an equivalent way as

min
u(T)∈C

T,

s.t. U(T) =U?,

U(0) =1,

U̇(t) =− i(H0 +u(t)Hc)U(t).

In other words, we instead phrase the problem as finding a target operator U∗ that
minimises the time evolution. When we only optimise the time, the problem is called
time optimal control, while more generally we would consider minimising some
cost function.

We would like to find a control u(t), also known as a pulse, that generates as closely
as possible a “target” unitary, U?, at the end of a given evolution time T . Specifically,
where F is a function whose minimum is at U =U?.

4.6 Analog to Digital via Quantum State Tomography

Explain Haah

56 4 Quantum Engineering 102

4.7 The Key Takeways

Quantum computing is a form of analog computing. It is important to notice the its
analog aspects.

Summary: Analog Aspects of Quantum Computing

• Loading the input is impossible, exactly.
• Loading the input is as hard as executing any algorithm; both can be seen

as quantum optimal control.
• Reading the output is impossible, exactly.
• Reading the output is very hard, in terms of sample complexity.

4.7.1 Loading the Input is Impossible, Exactly

Notice that the unitary matrix U need not be possible to store in any digital com-
puter as we know them. For example, consider the Hadamard gate from the previous
chapter,

H =
1√
2

(
1 1
1 −1

)
.

For an irrational number, such as 1√
2
, a digital computer working with a base-2

(rather than base-1/
√

2) encoding would require an infinite amount of memory to
store H.

As an aside, one can consider a model, also known as Blum-Shub-Smale machine,
which can handle the loading, storing, addition, multiplication, and taking square
roots of any real number in a unit of time, which our current digital computers can-
not. Blum-Shub-Smale (BSS) machine makes it possible to analyze the complexity
of the Newton method, where we easily obtain the irrational numbers.

4.7.2 Loading the Input is as Hard as Executing any Algorithm

Notice that we represent the initial state by a vector, but in order to introduce this
initial state, we may have to utilize linear operator. A quantum algorithm also a
linear operator. In both cases, the operators can be represented by unitary matrices in
C2N×2N

. This naturally shows the equivalence of the state preparation and quantum
optimal control (and, as we shall see next, other models of quantum computing).

4.7 The Key Takeways 57

4.7.3 Reading the Output is Impossible, Exactly

Another complication comes from the fact that applying the linear operator U can
lead to a state, which need not be possible to reconstruct from a finite number of
samples with complete accuracy, if and when it involves irrational numbers. As we
have suggested previously, in the quantum measurement, we can sample values of a
random variable Y , wherein the random variable Y has value y with probability |vy|2
for the value v of the quantum state. Let us imagine a state or unitary, as for example
the Hadamard (71) above, which does involve irrational numbers. For an irrational
number, any means of sampling from the random variable would require an infinite
number of samples to reconstruct the complete accuracy, so we should allow for an
error in the reconstruction.

4.7.4 Reading the Output is Very Hard, in terms of Sample
Complexity

Another complication comes from the so-called sample complexity of reconstruc-
tion of the state, i.e., the number of copies of the quantum state that need to be
collapsed in the measurement in order to reconstruct the quantum state as a clas-
sical matrix U ∈ C2N×2N

. Notice that the matrix U ∈ C2N×2N
has 4N entries, and

thus the number of copies of the quantum state certainly grows exponentially with
the number of levels in the quantum system, unless we restrict ourselves to some
particular class of quantum states. For a system with 2 qubits, this is easy enough,
but if you consider a quantum device with hundred or more qubits, it may be very
difficult to imagine reconstructing its state without additional assumptions.

Chapter 5

Theoretical Computer Science 101

Before we consider quantum computing, it is worthwhile to review classical com-
puting. Modern computers are very complicated. People hence study many abstrac-
tions of the workings of a computer, called “models of computation”. In this chapter,
we will introduce three such models of computation.

5.1 Traditional Computer Science

Computer Science grew out of the work led by David Hilbert, who made significant
contributions to the field of mathematics, including the development of formal ax-
iomatic systems, which laid the foundation for the study of mathematical logic and
the formalization of algorithms. His work in these areas has influenced the devel-
opment of theoretical computer science, including the study of computability and
complexity theory. Additionally, Hilbert’s work on geometry and his development
of the concept of Hilbert spaces have had an impact on the field of computer graph-
ics as well as quantum mechanics. In the context of this chapter it is important to
stress that it is Hilbert who tried to distinguish between problems that can be solved
by simple methods and those which can not.

Much of computer science uses a language-inspired definition of a decision prob-
lem. One starts with a finite alphabet A. By stringing elements of the alphabet one
after another, one obtains strings of finite or countably infinite length. A set of strings
is called a language. A decision problem is defined by a fixed set S, which is a subset
of the language U of all possible strings over the alphabet A. A particular instance
of the decision problem is to decide, given an element u ∈U , whether u is included
in S.

Example 5.1 (Primality testing.). For example, the alphabet could be composed of
binary digits A= {0,1}, U could be the set of all natural numbers encoded in binary,

59

https://en.wikipedia.org/wiki/David_Hilbert

60 5 Theoretical Computer Science 101

and the set S could be the binary encodings of prime numbers. The decision problem
is the inclusion of an arbitrary binary encoding of a natural number in the set of S.
♦

Several models of computation were devised. Alan Turing introduced a model,
where characters are stored on an infinitely long tape, with a read/write head scan-
ning one square at any given time and having very simple rules for changing its in-
ternal state based on the symbol read and current state. Another influential model,
called Lambda Calculus, has been introduced by Alonzo Church. Many of these
formalisms turn out to be equivalent in computational power, i.e., any computation
that can be carried out with one can be carried out with any of the others. As it turns
out, quantum computing may be one of the first models where this is not the case.

5.1.1 Turing Machines

Formally, one can define a Turing machine using:

• a finite, non-empty set Q of objects, representing states

• a subset F of Q, corresponding to “accepting” states, where computation halts

• q0 ∈ Q, the initial state

• a finite, non-empty set Γ of objects, representing the symbols to be used on a
tape

• a partial function δ : (Q\F)×Γ →Q×Γ ×{−1,0,1} where for a combination
of a state and symbol read from the tape, we get the next state, the symbol to
write onto the tape, and an instruction to shift the tape left (-1), right (+1), or
keep in its position (0).

Notice that here we assume the input is on the tape, at the beginning.

Example 5.2 (There and Back Again.). Let us, for example, construct a machine,
which scans over an integer encoded in binary and delimited by “blank” on the tape
from left to right, and back. This is not very useful, but will be easy to understand:

• Q = {goingright,goingleft,halt}
• F = {halt}
• q0 = goingright

• Γ = {0,1,“blank′′}
• δ given by the table below:

https://en.wikipedia.org/wiki/Alan_Turing

5.1 Traditional Computer Science 61

Current state Scanned symbol Print symbol Move tape Next state
goingright 0 0 1 goingright
goingright 1 1 1 goingright
goingright blank blank -1 goingleft
goingleft 0 0 -1 goingleft
goingleft 1 1 -1 goingleft
goingleft blank blank 0 halt

♦

Exercise 5.3. Consider the following simulator of a Turing machine (TM):

1 def turing(code, tape, initPos = 0, initState = "1"):
position = initPos
state = initState
while state != "halt":

print f"{state} : {position} in {tape}"
6 symbol = tape[position]

(symbol, direction, state) = code[state][symbol]
if symbol != "noWrite": tape[position] = symbol
position += direction

code/ch1/turing.py

Implement a TM, which checks whether an integer, which is encoded on the tape as
in binary and delimited by “blank” on both ends of the tape, is odd. If so, it should
replace all symbols representing the integer with “1”. Otherwise, it should replace
all symbols representing the integer with “0”.

Exercise 5.4. Consider the same simulator of a Turing machine (TM) as in Exer-
cise 5.3. Implement a TM, which adds two integers, encoded on the tape in binary
and delimited by “blank” on both ends of the tape and between the numbers. Re-
place both numbers with the result.

Exercise 5.5. Consider the simulator of a Turing machine (TM) as in Exercise 5.3.
Implement a TM, which multiplies two integers, which are encoded on the tape in
unary and and delimited by “blank” on both ends and between the numbers. Do not
replace the numbers, but append the result after yet another blank.

Hint: Unary encoding means that the number of occurrences of a particular symbol
(e.g., “1”) is equal to the number (e.g., “11111” stands for 5).

5.1.2 Computability

Computability studies these models of computation, and asks which problems can
be proven to be unsolvable by a computer. For example:

62 5 Theoretical Computer Science 101

Example 5.6 (The Halting Problem). Given a program and an input to the program,
will the program eventually stop when given that input? ♦

A silly solution would be to just run the program with the given input, for a rea-
sonable amount of time. If the program stops, we know the program stops. But if
the program doesn’t stop in a “reasonable” amount of time, we cannot conclude that
it won’t stop. Maybe we didn’t wait long enough. Alan Turing proved the Halting
problem to be undecidable in 1936. This could be seen as a special case of Gödel’s
First Incompleteness Theorem (1929).

To give another example,

Example 5.7 (Hilbert’s Tenth Problem). Given a polynomial equation with integer
coefficients and a finite number of unknowns, is there a solution with all unknowns
taking integer values? ♦

In 1970, Yuri Matiyasevich showed the undecidability Hilbert’s Tenth Problem,
building upon the work of Martin Davis, Hilary Putnam and Julia Robinson.

5.1.3 Analog computing and computability (*)

Bournez et al. [14] have shown that Turing-computable functions correspond to the
functions computable by the GPAC of the previous chapter.

5.2 Complexity theory

Some problems are solvable by a computer, but require such a long time to compute
that the solution is impractical. Here, we express the run time as a function from the
dimensions of the input to the numbers of steps of a Turing machine (or similar).

Example 5.8 (Fischer-Rabin Theorem.). For example, let us have a logic featuring
0, 1, the usual addition, and where the axioms are a closure of the following:

• ¬(0 = x+1)

• x+1 = y+1⇒ x = y

• x+0 = x

• x+(y+1) = (x+ y)+1

https://en.wikipedia.org/wiki/Halting_problem
https://en.wikipedia.org/wiki/Halting_problem

5.2 Complexity theory 63

• For a first-order formula P(x) (i.e., with the universal and existential quantifiers)
with a free variable x, (P(0)∧∀x(P(x)⇒ P(x+1)))⇒∀yP(y) (“induction”).

This is known as the Presburger arithmetic. Fischer and Rabin proved in 1974 that
any classical algorithm that decides the truth of a statement of length n in Presburger
arithmetic has a runtime of at least 22cn

for some constant c, because it may need to
produce an output of that size. Hence, this problem needs more than exponential
run time. ♦

Complexity theory deals with questions concerning the time or space requirements
of given problems: the computational cost. For algorithms working with finite
strings from a finite alphabet, this is often surprisingly easy.

5.2.1 Computational Complexity of Discrete Algorithms

The term analysis of algorithms is used to describe general approaches to putting
the study of the performance of computer programs on a scientific basis. One such
approach1 concentrates on determining the growth of the worst-case performance
of the algorithm (an “upper bound”): An algorithm’s “order” suggests asymptotics
of the number of operations carried out by the algorithm on a particular input, as a
function of the dimensions of the input.

Example 5.9. For example, we might find that a certain algorithm takes time
T (n) = 3n2−2n+6 to complete a problem of size n. If we ignore

• constants (which makes sense because those depend on the particular hard-
ware/virtual machine the program is run on), and

• slower growing terms such as 2n,

we could say “T (n) grows at the order of n2”. ♦

5.2.2 The Bachmann–Landau Notation

Let us introduce a formalisation of the notion of asymptotics. The formalisation
known as “Big O notation” or “Bachmann–Landau notation” goes back at least to

1 Introduced by Hartmanis and Stearns in: Juris Hartmanis and Richard Stearns (1965), On the
computational complexity of algorithms, Trans. Amer. Math. Soc., 117:285–306; and popularised
by Aho, Hopcroft and Ullman.

64 5 Theoretical Computer Science 101

Notation Definition Analogy
f (n) = O(g(n)) see Def. 5.10 ≤
f (n) = o(g(n)) see Def. <
f (n) = Ω(g(n)) g(n) = O(f (n)) ≥
f (n) = ω(g(n)) g(n) = o(f (n)) >
f (n) =Θ(g(n)) f (n) = O(g(n)) and g(n) = O(f (n)) =

Table 5.1: An overview of the Bachmann–Landau notation.

1892 and Paul Gustav Heinrich Bachmann, according to some sources, although it
was reinvented many times over. Suppose our A requires T (n) operations to com-
plete the algorithm in the longest possible case. Then we may say A is O(g(n)) if
|T (n)/g(n)| is bounded from above as n→ ∞. The fastest growing term in T (n)
dominates all the others as n gets bigger and so is the most significant measure of
complexity.

Similarly to “Big O”, there are 4 more notions, as summarised in Table 5.1. For-
mally, suppose f and g are two real-valued functions defined on some subset of R
and consider the following:

Definition 5.10. We write:

f (x) = O(g(x)) (or, to be more precise, f (x) = O(g(x)) for x→ ∞)

if and only if there exist constants N and C > 0 such that

| f (x)| ≤C|g(x)| for all x > N or, equivalently,
| f (x)|
|g(x)| ≤C for all x > N.

That is, | f (x)/g(x)| is bounded from above as x→ ∞. Intuitively, this means that f
does not grow faster than g. The letter “O” is read as “order” or just “Oh”.

Definition 5.11. We also write:

f (x) = Ω(g(x)) (for x→ ∞)

if and only if there exist constants N and C > 0 such that

| f (x)| ≥C|g(x)| for all x > N or, equivalently,
| f (x)|
|g(x)| ≥C for all x > N.

That is, | f (x)/g(x)| is bounded from below by a positive (i.e., non-zero) number
as x→ ∞. Intuitively, this means that f does not grow more slowly than g (i.e.,
g(x) = O(f (x))). The letter “Ω” is read as “omega” or just “bounded from below
by”.

5.2 Complexity theory 65

Definition 5.12.
f (x) =Θ(g(x)) (for x→ ∞)

if and only if there exist constants N, C and D > 0 such that

D|g(x)| ≤ | f (x)| ≤C|g(x)| for all x>N or, equivalently, D≤ | f (x)||g(x)| ≤C for all x>N.

That is, | f (x)/g(x)| is bounded from both above and below by positive numbers as
x→ ∞. Intuitively, this means that f grows roughly at the same rate as g.

Example 5.13. Let us consider algorithm A with parameter n and polynomial run-
time O(nk). By our definition of O, the algorithm is of order O(nk) if |T (n)/nk|
is bounded from above as n→ ∞, or — equivalently — there are real constants
a0,a1, . . . ,ak with ak > 0 so that A requires

aknk +ak−1nk−1 + · · ·+a1n+a0

operations to complete in the worst case. Note that k is an integer constant indepen-
dent of the algorithm input and independent of the parameter n. It may be that there
is no such polynomial for the number of operations in terms of n. If there is such
a polynomial, A is usually considered “good” as it does not require “very many”
operations. ♦

This notation can also be used with multiple parameters and with other expressions
on the right hand side of the equal sign. The notation:

f (n,m) = n2 +m3 +O(n+m)

represents the statement:

there exist C,N such that, for all n,m > N : f (n,m)≤ n2 +m3 +C(n+m).

Similarly, O(mn2) would mean the number of operations the algorithm carries out
is a polynomial in two indeterminates n and m, with the highest degree term being
mn2, e.g., 2mn2 +4mn−6n2−2n+7. This is most useful if we can relate m and n
(e.g., in dense graphs we have m = O(n2), so O(mn2) would mean O(n4) there).

Table 5.2 lists a number of classes of functions that are commonly encountered in the
analysis of algorithms. Here, c is some arbitrary positive real constant. Once again,
if a function f (n) is a sum of functions, the fastest growing one determines the order
of f (n). E.g.: If f (n) = 10log(n)+5(log(n))3+7n+3n2+6n3, then f (n) = O(n3).

One caveat here: the number of summands must be constant and may not depend on
n.

Note that O(nc) and O(cn) are very different. The former is polynomial, the latter
is exponential and grows much, much faster, no matter how big the constant c is.

66 5 Theoretical Computer Science 101

Notation Name
O(1) constant
O(log(n)) logarithmic
O((log(n))c) polylogarithmic
O(n) linear
O(n2) quadratic
O(nc) polynomial
O(cn) exponential
O(n!) factorial

Table 5.2: Classes of functions commonly encountered in algorithm analysis

Input n

Ou
tp

ut

Asymptotic Behavior of Algorithms
Constant
Linear
Logarithmic
Polynomial
Exponential

Fig. 5.1: Schematic of the asymptotic runtime of algorithms as a function of their
input size n.

A function that grows faster than O(nc) is called superpolynomial. One that grows
slower than O(cn) is called subexponential. An algorithm can require time that is
both superpolynomial and subexponential.

Note, too, that O(logn) is exactly the same as O(log(nc)). The logarithms differ only
by a constant factor, and the big O notation ignores such constant factors. Similarly,
logarithms with different constant bases are equivalent.

Exercise 5.14. Prove that any later function in the above table grows faster than
any earlier function. Hint: you need several small proofs. Also, each function is
differentiable.

5.3 Analog Computing and P (*) 67

5.2.3 P and NP

Perhaps the best known question in Computer Science asks whether it can be harder
to solve a problem than to check a given solution.

In complexity theory there are two commonly used classes of (decision) problems:

• The class P consists of all those decision problems that can be solved on a deter-
ministic Turing machine in an amount of time that is polynomial in the size of
the input, i.e., O(nk) for some constant k. Intuitively, we think of the problems in
P as those that can be solved “reasonably fast”.

• The class NP consists of all those decision problems whose solutions (called
witnesses) can be verified in polynomial time on a Turing machine. That is, given
a proposed solution to the problem, we can check that it really is a solution in
polynomial time.

Formally: A language L ⊂ {0,1}∗ is in NP, if there exists a deterministic Turing
machine M and a polynomial p such that upon receipt of:

• an input string x, e.g., x ∈ {0,1}∗,
• a witness of length p(|x|)

M runs in time polynomial in |x| and

• for all x ∈ L, there exists y such that M accepts (x,y) (“completeness”),

• for all x 6∈ L, for all y, (x,y) is rejected (“soundness”).

5.3 Analog Computing and P (*)

As we have mentioned in the previous chapter, the class of P be characterized using
ODEs. This is a stunning result of Bournez et al. [11, 12, 10, 13]

In particular, one considers so-called polynomial initial value problems (PIVP):

y(0) = y0 y′(t) = p(y(t)) (5.1)

where p is a vector of polynomials and y : I→ Rd for some interval I ⊂ R. Notice
that for any initial condition y0, there is a unique solution to the PIVP, which is
analytic.

68 5 Theoretical Computer Science 101

We would like to encode some word w ∈ Γ ∗ in the language using alphabet Γ

into the initial condition. Then, the language would be defined to be poly-length-
analog-recognizable if using a polynomial length portion of the curve, the word
w can be accepted or rejected. See Figure 5.2 for a graphical representation. No-
tice that the length of a curve y ∈ C1(I,Rn) defined over some interval I = [a,b]
is leny(a,b) =

∫
I ‖y′(t)‖ dt, where ‖y‖ refers to the infinity norm of y. In particu-

lar, the encoding of [10] encodes word w over a finite alphabet Γ = {0, ..,k−2} as
ψ(w) =

(
∑
|w|
i=1 wik−i, |w|

)
for a word w = w1w2 . . .w|w|. We also take R+ = [0,+∞[.

In the definition of discrete recognizability of [10], a language L ⊆ Γ ∗ is called
poly-length-analog-recognizable if there exists a vector q of bivariate polynomials
and a vector p of polynomials with d variables, both with coefficients in Q, and a
polynomial : R+→ R+, such that for all w ∈ Γ ∗, there is a (unique) y : R+→ Rd

such that for all t ∈ R+:

• y(0) = q(ψk(w)) and y′(t) = p(y(t)) I y satisfies a differential equation

• if |y1(t)|> 1 then |y1(u)|> 1 for all u > t I decision is stable

• if w ∈L (resp. /∈L) and leny(0, t)> (|w|) then y1(t)> 1 (resp. 6−1) I
decision

• leny(0, t)> t I technical condition2

Then [10] show that language L belongs to the class P if and only if it is poly-
length-analog-recognizable.

5.4 Randomized Algorithms

It seems quite unlikely that the Turing machine can produce a truly random num-
ber. But would the availability of a source of randomness make a Turing machine
more powerful? We will formalise the question using the classes of Probabilistic
Polynomial Time (PP) and Bounded-Error Probabilistic Polynomial Time (BPP),
where BPP ⊂ PP. It is not known whether BPP is equal to P or NP, i.e., whether
the source of randomness helps at all or whether having access to a source of ran-
domness makes a deterministic Turing machine as powerful as a non-deterministic
Turing machine, despite much attention paid to the questions over the past couple of
decades. On the other hand, it is known that NP ⊂ PP and, in a somewhat different
formalisation of [15], we will see that the source of randomness does render many
classes of computation (LOGSPACEA, PA, NPA, PPA, and PSPACEA) properly con-
tained in this order, with probability 1 with respect to random oracles A.

2 This could be replaced by only assuming that we have somewhere the additional ordinary differ-
ential equation y′0 = 1.

5.4 Randomized Algorithms 69

=
∫ t

0 ‖y′‖
`(t)= length of y

over [0, t]

1

−1

poly(|w|)

accept: w ∈L

reject: w /∈L

computing

forbidden

q(ψ(w))

y1(t)
y1(t)

y1(t)

y1(t)

Fig. 5.2: Graphical representation of poly-length-analog-recognizability of [10].
The green trajectory represents an accepting computation, the red a rejecting one,
and the gray are invalid computations. An invalid computation is a trajectory that
is too slow (or converges) (thus violating the technical condition), or that does not
accept/reject in polynomial length. Note that we only represent the first component
of the solution, the other components can have arbitrary behaviors.

leny

f (x)

q1(x)

y1

e−0

(x,0)

e−1

(x,1)

Fig. 5.3: Poly-length-computability of [10]: on input x, starting from initial condi-
tion q(x), the PIVP y′ = p(y) ensures that y1(t) gives f (x) with accuracy better than
e−µ as soon as the length of y (from 0 to t) is greater than (‖x‖ ,µ). Note that we did
not plot the other variables y2, . . . ,yd and the horizontal axis measures the length of
y (instead of the time t).

70 5 Theoretical Computer Science 101

5.4.1 Definitions

In two important definitions of randomized computation, one considers a determin-
istic Turing machine M, which receives:

• an input string x, such as x ∈ {0,1}∗,
• a random string y, such as a realization y ∈ {0,1}∗ of a random variable Y

and

• accepts the input (x,y) for all x that we would like to be accepted with a certain
probability,

• rejects (x,y) for all x we would like to be rejected with a certain probability,

where the probability is with respect to Y .

PP. A language L⊂ {0,1}∗ is in PP, if there exists a deterministic Turing machine
M and a polynomial p such that upon receipt of:

• an input string x, e.g., x ∈ {0,1}∗,
• a realisation y of length p(|x|), e.g., y ∈ {0,1}p(|x|), of a random variable Y

M runs in time polynomial in |x| and

• for all x ∈ L, (x,y) is accepted with a probability strictly greater than 1/2,

• for all x 6∈ L, (x,y) is accepted with a probability less than or equal than 1/2,

where the probability is with respect to Y .

In PP, we hence ask only for some “distinguishability”. The “distinguishing” can,
however, take arbitrarily long. Consider, for instance, a Turing machine M of the
definition, that

• for all x ∈ L, (x,y) is accepted with probability 1/2+1/2|x|
• for all x 6∈ L, (x,y) is accepted with probability 1/2−1/2|x|.

For any number of trials, there is an |x| that makes those necessary to achieve a
fixed probability of the answer being correct. Notice that the number of trials grows
exponentially with |x|.
Alternatively, PP is the set of languages, for which there is a variant of a non-
deterministic Turing machine that stops in polynomial time with the acceptance

5.4 Randomized Algorithms 71

condition being that more than one half of computational paths accept. For this rea-
son, one sometimes refers to PP as Majority-P. It is thus clear that NP ⊆ PP.

PP is often thought of as a counting class. Recall that the permanent of an n× n
matrix A = (ai j) is

perm(A) = ∑
σ∈Sn

n

∏
i=1

ai,σ(i). (5.2)

[16] showed that computing permanents is at least as hard as many so-called count-
ing problems (#P-hard), and it is hard (#P-complete) even for matrices having only
entries 0 or 1. The language {(A,k)| the permanent of A is at least k} is complete
for PP, but it is believed to be outside of P. Alternatively, in terms of the number of
accepting and rejecting paths, PP can be seen as computing the high-order bit of a
#P function.

BPP. Let ε be a constant 0 < ε < 1/2. A language L ⊂ {0,1}∗ is in BPP, if there
exists a deterministic Turing machine M and a polynomial p such that upon receipt
of:

• an input string x, e.g., x ∈ {0,1}∗,
• a realisation y, e.g., y ∈ {0,1}p(|x|), of a random variable Y in dimension p(|x|)

M runs in time polynomial in |x| and

• for all x ∈ L, (x,y) is accepted with a probability strictly greater than 1− ε ,

• for all x 6∈ L, (x,y) is accepted with a probability less than or equal to ε ,

where the probability is with respect to Y .

BPP can be seen as a subset of PP, for which there are efficient probabilistic al-
gorithms. Indeed: the constant ε is independent of the dimension |x|, and thus any
desired probability of correctness can be had with the number of trials independent
of |x| by the so-called amplification of probability. The majority vote of k trials will
be wrong with probability:

∑
S⊆{1,2,...,k},|S|≤k/2

(1− ε)|S|εk−|S| (5.3)

= ((1− ε)ε)k/2
∑

S⊆{1,2,...,k},|S|≤k/2

(
ε

1− ε

)k/2−|S|
(5.4)

< 2k(
√

(1− ε)ε)k = λ
k (5.5)

for some λ = 2
√

ε(1− ε)< 1. Cf. 4.1 in [17].

How large is BPP within PP? It turns out that BPP is a substantial subset of PP. [15]
have shown that for a language L⊂ {0,1}∗, the following are equivalent:

72 5 Theoretical Computer Science 101

• L ∈ BPP.

• For almost all oracles A, L ∈ PA, wherein the almost all is with respect to a
particular measure over the oracles.

Probabilistic Computation of Arora and Barak. It turns out that BPP has yet
another definition, due to [18, Section 20.2], which is very instructive. It uses a
seemingly different model of computation. There, one works with 2N-dimensional
vector v ∈ [0,1]2

N
, which we index with values from {0,1}N , and which satisfies

∑i∈{0,1}N vi = 1. This vector should be seen as a representation of a probability mass
function of a random variable over {0,1}N . One cannot access the values of v di-
rectly; rather, one obtains i ∈ {0,1}N with probability vi, when one attempts to ac-
cess v.

Let us introduce a special notation |i〉 for the representation of (so-called degenerate)
distributions, where all the mass is concentrated in vi = 1 for some i ∈ {0,1}N .
Because |i〉i∈{0,1}N is a basis for R2N

, any v can be represented as ∑i∈{0,1}N vi |i〉. For
the example of N = 1, we have v = v0 |0〉+v1 |1〉. The only operations permitted are
linear stochastic functions U : R2N → R2N

applied to the vector v, where linearity
suggests U(v) =∑i∈{0,1}N viU(|i〉) and stochasticity suggests ∑i∈{0,1}N U(v)i = 1 for
all v satisfying ∑i∈{0,1}N vi = 1. Notice that U can be represented by a matrix with
non-negative entries, wherein each column sums up to 1. U can be a composition of
multiple linear stochastic functions U =UL,UL−1, · · ·U2,U1,Ui : R2N →R2N

, where
each Ui will represent the so-called gate and L will be the known as the depth of the
circuit.

Let a probability threshold be a constant strictly larger than 1/2. A language L ⊂
{0,1}n is in BPP, if and only if its corresponding indicator function F(x) : {0,1}n→
{0,1} can be computed probabilistically in polynomial time such that:

1. one starts with v ∈ [0,1]2N
, for some N ≥ n dependent on F , with an initial state

|x,0N−n〉 consisting of the input padded to length N by zeros;

2. applies a linear stochastic function U : R2N →R2N
to v, whose matrix represen-

tation can be computed in a sparse format by a Turing machine from all-ones
input in time polynomial in n

3. obtains a random variable Y , wherein F(x) is followed by N−1 arbitrary sub-
sequent symbols with probability at least as high as the probability threshold,
while the random variable Y has value y with probability vy for the value v of
some final register.

Exercise 5.15. Prove the equivalence. Hint: find a way of generating N−n Bernoulli
random variables by a suitable U .

5.5 Quantum Algorithms

Now, one can obtain the class of BQP by replacing the real-valued vectors with
complex-valued vectors:

Let a probability threshold be a constant strictly larger than 1/2. A language L ⊂
{0,1}n is in BQP, if and only if its corresponding indicator function F(x) : {0,1}n→
{0,1} can be computed probabilistically such that:

1. one starts with an N-qubit register, for some N ≥ n dependent on F , with an
initial state |x,0N−n〉 consisting of the input padded to length N by zeros;

2. applies a linear function U : C2N → C2N
to v, whose matrix representation (a

unitary matrix in C2N×2N
) can be computed in a sparse format by a Turing

machine from all-ones input in time polynomial in n

3. obtains a random variable Y , wherein F(x) is followed by N−1 arbitrary sub-
sequent symbols with probability at least as high as the probability threshold,
wherein the random variable Y has value y with probability |vy|2 for the value v
of some final register.

See Figure 5.4 for an overview if the complexity classes discussed, under mild as-
sumptions. For example, the separations of BPP and BQP are known to be strict only
in a relativized model of [19], similar in spirit to the work of [15], with probability
one.

See also [20] for a high-level discussion.

74 5 Theoretical Computer Science 101

DECIDABLE

EXPTIME

PSPACE

#P

PP

QMA

NP coNP
BQP

BPP

RP coRP

ZPP

P

Fig. 5.4: An overview of some of the non-strict inclusions among complexity
classes.

Chapter 6

Quantum Computing 101

6.1 What we have seen so far?

In quantum computing, instead of symbols from finite alphabets (e.g., bits), one
works with vectors in suitable complex vector spaces. An extension of BPP to this
setting is known as BQP.

6.1.1 Qubits

One of the main differences between classical and quantum physics is the fact that
quantum states are described by vectors in a complex vector space, rather than bi-
nary strings. Abstractly, we use the Dirac, or bra-ket, notation to denote a state
vector. If the system is in some state, let us call it ψ , we denote this as

|ψ〉.

This is called a ket. The ψ is just a label of the state while the encasing |·〉 is there
to remind us that this is a vector.

The ket vectors satisfy the ordinary axioms of a vector space. Under addition, the
vector space is closed, associative and commutative. There is a unique zero element,
which we denote simply by 0, such that

|ψ〉+0 = |ψ〉. (6.1)

The reason why we do not use |0〉 to denote the zero vector is because we want to
reserve that notation for something completely different, as we will see in a short
while. There is also a unique vector (−|ψ〉) such that

75

76 6 Quantum Computing 101

|ψ〉+(−|ψ〉) = 0. (6.2)

The vector space is linear and distributive under scalar multiplication. This means
that for some complex numbers z,z1,z2 ∈ C,

|(z1 + z2)ψ〉= z1|ψ〉+ z2|ψ〉, z(|ψ〉+ |ϕ〉) = z|ψ〉+ z|ϕ〉. (6.3)

Formally, single qubit can be seen as a two-dimensional complex space, C2, asso-
ciated with an inner product and a basis. The standard complex inner product is
vi

†wi. The standard basis is {|0〉 , |1〉}. Together with the inner product, we call C2

a Hilbert space, sometimes denoted H2. The usual representation of the state of a
qubit is that of unit vector R3 on the so-called Bloch sphere, see Fig. 6.1, which
is isomorphic to the complex projective plane CP1. As such, a qubit’s state can be
completely characterized as the unit vector on the unit sphere. A quantum state |ψ〉
and a quantum state c |ψ〉, c ∈C are indistinguishable. Sometimes, this phase factor
is called “global gauge”.

x

y

|0

|1

Fig. 6.1: The Bloch sphere. The vector in red denotes the qubit state |ψ〉= 1√
2
|0〉+

1√
2
|1〉 which is also denoted as |+〉. The labels x and y represent the Euclidean x

and y directions. It is common to use the term (Pauli) z-basis for the standard basis.

6.1.2 Superposition

Formally, just as in any other vector space, we can represent vectors as combinations
of basis states. Let the arbitrary state of a qubit be denoted as |ψ〉 ∈H2. How do we
describe this state in terms of the two basis states of H2? Let us have two complex
numbers cx ∈ C with x ∈ {|0〉 , |1〉}, which we will call amplitudes. These satisfy
∑x∈{|0〉,|1〉} |cx|2 = 1. The general state |ψ〉 of the qubit, can be seen as:

6.1 What we have seen so far? 77

|ψ〉= ∑
x∈{|0〉,|1〉}

cx |x〉 . (6.4)

The squares of the amplitudes can be thought as the probabilities of finding the qubit
in a particular basis state.

In quantum mechanics, observable quantities always are Hermitian operators. Often,
one can think of them as Hermitian matrices, that is, complex matrices H with the
property H = H†. As a map, an observable simply corresponds to an endomorphism
in the Hilbert space, H : H →H . An observable H is measured by considering its
expectation value when acting on a state |ψ〉.

〈H〉= 〈ψ|H|ψ〉= 〈ψ|Hψ〉 . (6.5)

One of the most important observables in quantum mechanics is the Hamiltonian
of a quantum system. When acting on a state, the Hamiltonian provides the energy
of the state. The Hamiltonians play a fundamental role in many quantum simula-
tion algorithms. However, as described above, the Hamiltonian seems to be a very
physical concept. Within quantum computation, the role of the Hamiltonian can es-
sentially be assumed by any Hermitian operator. It is customary to call operators that
act on qubits as (quantum) gates which are usually discussed in the circuit model of
quantum computation, see Sec. 6.5.

6.1.3 Entanglement

If we imagine that we have several quantum systems, each in some state represented
by some state vector, we can combine the separate system into a combined system
using the tensor product of vector spaces,⊗. If we imagine that we have one system
where the state is given by |ψ〉 and another where the state is given by |ϕ〉, the state
of the composite system is given by

|ψ〉⊗ |ϕ〉. (6.6)

States that can be written in this simple way are called product states. Otherwise,
we call states entangled. Note that the tensor product does not commute in general.

A system of n qubits (also known as a quantum register) has a state space C2n
,

which can be seen as a tensor product C2⊗ ·· ·⊗C2 of the 2-dimensional single-
qubit Hilbert spaces, which we denote (C2)⊗n. There, each factor corresponds to
one qubit. A system of n qubits is associated with the complex inner product 〈v|w〉=

78 6 Quantum Computing 101

∑i v∗i wi and the standard basis {|x1x2 . . .xn〉 : x j ∈ 0,1}. We denote the tensor product
of N spaces C2, together with the inner products and the standard basis, by B⊗N .

Entanglement is a quantum mechanical phenomenon where the properties of two
or more quantum states become correlated. When entangled, the properties of the
qubits are linked in such a way that the state of one qubit cannot be described in-
dependently of the other(s). Multi-qubit states that cannot be written as separable
states are called entangled states. Measuring one qubit of an entangled state will
instantaneously affect the properties of the other qubits, regardless of the distance
between them. This is known as “spooky action at a distance” and is one of the most
mysterious and intriguing aspects of quantum mechanics. We will see that entangle-
ment is necessary but not sufficient for quantum speed-up.

6.1.4 BQP

Several models of quantum computation have been devised. Crucially, they do not
allow for deciding any problems that are not decidable on a classical computer.

Let a probability threshold be a constant strictly larger than 1/2. A language L ⊂
{0,1}n is in BPP or BQP, respectively, if and only if its corresponding indicator
function F(x) : {0,1}n → {0,1} can be computed probabilistically in polynomial
time such that:

1. one starts with register v∈ [0,1]2N
or C2N

, for some N ≥ n dependent on F , with
an initial state |x,0N−n〉 consisting of the input padded to length N by zeros;

2. applies a linear stochastic function U : R2N → R2N
or U : C2N → C2N

to v,
whose matrix representation can be computed in a sparse format by a Turing
machine from all-ones input in time polynomial in n

3. obtains a random variable Y , wherein F(x), i.e., a single 0 or 1, is followed by
N−1 arbitrary subsequent symbols with probability at least as high as the prob-
ability threshold, wherein the random variable Y has value y with probability vy

or with probability |vy|2, for the value v of register.

We know that P ⊆ BPP ⊆ BQP, although the proof is quite non-trivial: one has
to establish the power of reversible (classical) circuits and then of the restriction
thereof to (classical) permutations.

Exercise 6.1. To get a feel for this, notice that for any Boolean function f (x) :
{0,1}n → {0,1}, we can construct f̃ : {0,1}n+1 → {0,1}n+1 such that f̃ (x,y) =
(x,y⊕ f (x)), where ⊕ is the XOR operation. Show that this function is reversible.
Show how to get the output of f (x).

https://en.wikipedia.org/wiki/Quantum_entanglement

6.2 An Alternative Model of Fortnow 79

We know that BQP⊆ PP. The proof is rather simple. (See previous lecture) Because
PP ⊆ PSPACE, i.e., the class of languages that can be recognised by a (classical)
Turing machine with a polynomial amount of space, we also know BQP⊆ PSPACE.
Interestingly, there is no material difference between what can be done by a Turing
machine with a polynomial amount of space and a quantum Turing machine with a
polynomial amount of space. Unfortunately, we do not know much about the rela-
tionship between BQP and non-deterministc Turing machines (NP), other than some
relativised results.

6.2 An Alternative Model of Fortnow

Following [21], we can get some more insight into the derivation of the result of
Arora and Barak.

Let us consider a k-tape extension of a Turing machine:

• a finite, non-empty set Q of objects, representing states

• a subset F of Q, corresponding to “accepting” states, where computation halts

• q0 ∈ Q, the initial state

• a finite, non-empty set Γ of objects, representing the symbols to be used on any
tape

• a partial function δ : (Q\F)×Γ k→ Q×Γ k×{−1,0,1}k, where for a combina-
tion of a state and k symbols read from the tape, we get the next state, the symbol
to write onto the k tapes, and an instruction to shift the k tapes left (-1), right
(+1), or keep in its position (0).

In the “Computation as Matrix Multiplication” view of Fortnow, we consider:

• one-step binary version of the transition function: δ ′ : Q×Γ k×Q×Γ k→{0,1},
which indicates whether the transition from a configuration ca to cb is permitted
ca,cb ∈C ⊆ (Q×Γ k).

• one-step transition matrix T representing δ ′ as a |C|× |C| binary matrix.

• multi-step transition matrix T r representing the r-step transition function as a
|C| × |C| binary matrix, where T r(ca,cb) = 1 if and only if M starting in con-
figuration ca will be in configuration cb when run for r steps. T r(ca,cb) is the
number of computation paths from ca to cb of length r and M accepts if and only
if T r(ca,cb)≥ 1. For polynomial-time machines, we can obtain the definition of
#P this way.

80 6 Quantum Computing 101

One can extend this view to probabilistic machines:

• one-step [0,1] version of the transition function: δ ′′ : Q×Γ k×Q×Γ k→[0,1].

• probabilistic machines use the δ ′′ with the additional restriction that for any ini-
tial state and symbols on the tapes, the values of δ ′′ for all other arguments sum
up to one.

• corresponding one-step transition matrix T and multi-step transition matrices T r

are row and column stochastic.

• Entries of T r(cI ,cA) are the probabilities of acceptance by the probabilistic ma-
chine.

Let a 0 < ε < 1/2 be a constant. A language L ⊂ {0,1}n is in BPP, if and only if
there exists a probabilistic machine as above and a polynomial p such that

• For x in L, we have T p(cI ,cA)≥ 1/2+ ε .

• For x not in L, we have T p(cI ,cA)≤ 1/2− ε .

One can extend this view further to weird machines:

• one-step [−1,1] version of the transition function: δ ′′′ : Q×Γ k×Q×Γ k→[−1,1],
where the negative values can be intersected with rational numbers.

• weird machines use the δ ′′′ with the additional restriction that the corresponding
one-step transition matrix T and multi-step transition matrices T r are unitary.

• Squared entries of T r(cI ,cA) are the probabilities of acceptance by the weird
machine.

Let a 0 < ε < 1/2 be a constant. A language L ⊂ {0,1}n is in BQP, if and only if
there exists a weird machine as above and a polynomial p such that

• For x in L, we have (T p(cI ,cA))
2≥ 1/2+ ε .

• For x not in L, we have (T p(cI ,cA))
2≤ 1/2− ε .

[22] have shown that not only rational numbers suffice, but only a few of those
suffice.

6.3 Quantum Turing Machines

This view of Fortnow, while based on Turing Machines, is not the Quantum Turing
Machine, in some sense the original definition of quantum computation:

[23] defined the quantum Turing machine with one tape for input and output and
one tape for intermediate results using:

6.4 Quantum Circuits 81

• still finite set Σ of symbols used for the inputs and outputs

• Hilbert space instead of a finite set Q of objects, representing states, with an
accepting subspace

• Hilbert space instead of a finite set Γ representing symbols to be used on the
intermediate result tape, with zero-vector instead of a blank symbol,

• partial function δ is now δ : Σ ×Q⊗Γ → Σ ×Q⊗Γ ×{L,R}, where each auto-
morphism of the Hilbert space is given by a unitary matrix.

The probabilistic element comes in the form of a measurement, which translates the
state to the output upon an accepting subspace is reached. Quantum Turing machines
and quantum circuits were shown [24] to be equivalent in the sense that they can
simulate each other in some distributional sense.

While elegant, the analogy with a Turing Machine may be somewhat confusing. It
is important to stress that: There is no branching based on the intermediate results
or states. Measurement required by either would collapse the intermediate result
or state. The addition of a probabilistic equivalent of branching, known as post-
selection, leads to a different complexity class, PostBQP = PP, as shown by [25].
There is no computation in the traditional sense. The state |ψ(nT)〉 at nth time step
is simply Un |ψ(0)〉 for some constant unitary operator U . In some sense, one hence
wishes to represent all possible solutions in the initial state already. There is no
notion a random access memory beyond the qubit register we work with.

6.4 Quantum Circuits

Last but not least, the standard model of quantum computing is known as the quan-
tum circuit model of [26], and it is not too different from the alternative definition
of BQP, due to Arora and Barak.

Let a probability threshold be a constant strictly larger than 1/2. Consider F :
{0,1}n→{0,1}m and N ≥max{n,m}. There, one:

1. starts with an initial state |x,0N−n〉 padded to length N.

2. applies a unitary operator U : B⊗N →B⊗N (realised by a circuit), which is a
composition of multiple unitary operators U =UL,UL−1, · · ·U2,U1,Ui : B⊗N→
B⊗N , where each Ui will be called a gate and L will be the known as the depth
of the circuit.

3. obtains F(x) followed by N−m arbitrary subsequent symbols with probability
at least as high as a probability threshold.

82 6 Quantum Computing 101

Let ε be a constant 0 < ε < 1/2. A circuit U computes F : {0,1}∗→ {0,1}∗ if for
any x we have

∑
z
| 〈F(x),z|U〉x,0N−n|2 ≥ 1− ε. (6.7)

The expression on the left-hand side is, indeed, the probability of getting F(x)
padded with with arbitrary z in the measurement of the outcome of U applied to
the initial state |x,0N−n〉.
A function {0,1}∗ → {0,1}∗ is in BQP, if there exists a deterministic Turing ma-
chine M and a polynomial p such that M runs in time p(|x|) and produces a descrip-
tion of a quantum circuit that computes the function.

6.4.1 Building our first quantum circuits

We are now ready to start building quantum circuits. The ingredients will be qubits
and unitary operators or gates.

First of all we need to discuss where we will start, i.e., what is the initial state of
the system, or the input of the circuit, and how do we prepare that? A simple choice
of input vector that is most commonly used is to pick |0 . . .0〉 as the initial state
vector. Given some general initial state, how do we prepare it in the |0 . . .0〉? Well,
one very simple way is found by remembering that measurements will make the
system collapse to a given eigenvector of the observable being measured. We can
then simply make a measurement of σz on each qubit, which will return the results
±1 with some probabilities. If we get +1 we know that the qubit is in the state |0〉 as
desired, while if we find −1 we know that it will be in the state |1〉. Then we simply
keep the qubits that are in the |0〉 state and act with σx on the others, since we saw
previously that σx|1〉= |0〉. Now we have our input vector |ψ〉= |0 . . .0〉.
The quantum circuit will then start with a number of qubits in the |0〉 state and act
on this with some number of gates, or unitary operators. The most basic gates are :

• NOT =
(

0 1
1 0

)
, CNOT =




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


, CCNOT =




1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0




and other

classical gates. When acting upon two qubits, he controlled-not, or CNOT, gate,
acts in the following way:

6.5 Looking beyond the Basics (*) 83

|00〉 → |00〉,
|01〉 → |01〉,
|10〉 → |1〉⊗σx|0〉= |11〉,
|11〉 → |1〉⊗σx|1〉= |10〉.

(6.8)

CCNOT, also known as the Toffoli gate, is a controlled-controlled-gate acting on
three qubits. If the two first qubits are in the state |1〉, then it acts on the third
with the NOT gate. Otherwise it does nothing. For classical circuits, the Toffoli
gate is important, because similar to the NAND gate, any boolean function can
be implemented by using a combination of Toffoli gates. (This property is called
universality or functional completeness.)

• The Pauli matrices: σx, σy and σz. These are typically denoted by X, Y and Z in
the circuit diagrams. On the Bloch sphere we can visualize them as a π-rotation
of the qubit about the corresponding axis.

• The Hadamard gate: H := 1√
2
(σx +σz). It changes |0〉 → |+〉 and |1〉 → |−〉. So

it can be seen as a change of basis. On the Bloch sphere we can visualize it as
a π-rotation about the axis 1√

2
(x̂+ ẑ). Hadamard and CNOT make it possible to

entangle qubits.

• Phase shift gates changes the relative phase in the expansion in the computational
basis by sending |0〉 → |0〉 and |1〉 → eiϕ |1〉. Common examples are the T gate,
with ϕ = π/4,1 and the S gate, where ϕ = π/2. On the Bloch sphere, these gates
can be seen as a rotation of ϕ radians about the ẑ axis.

• The controlled-U gate acts on a number of qubits and uses the first as a control.
If this is |0〉 it does nothing, while if it is |1〉 it acts on the second qubit with the
operator U .

One example circuit is Figures 6.2. One important thing to note is that when we read
the circuits we read it from left to right, but when we write it down mathematically
the gates act in the opposite order.

6.5 Looking beyond the Basics (*)

Let us now summarize a few important results briefly, following papers of [27], [28],
and [29]. These concern:

1 the T gate is confusingly also known as the π/8 gate,

84 6 Quantum Computing 101

|0⟩ H |ψ⟩

|0⟩ H • |φ⟩

|0⟩ H |+⟩

1

Fig. 6.2: A simple example of a quantum circuit using the H and CNOT gates.

• “role of entanglement” and “interference”: are maximally-entangled states2 suf-
ficient and necessary?

• “universality”: what gates are sufficient to implement any unitary matrix in
SU(n)?

• “weak simulation”: can we sample from the distribution on the measurement of
a quantum circuit’s first qubit in polynomial time using a classical computer?

• “strong simulation”: can we compute the probability of measuring 1 on a quan-
tum circuit’s first qubit to any given precision in polynomial time a classical
computer?

A crucial questions relate to “universality”: what gates are sufficient to implement
any unitary matrix in SU(n)? Traditionally [30], one considers all one-qubit gates
plus CNOT. One often implements controlled rotations by a given angle, the phase
shift gate, and CNOT, which are sufficient. [28] based on [31] defines computa-
tional universal the set of gates that can be used to simulate to within ε error any
quantum circuit which uses n qubits and t gates from a strictly universal set with
only polylogarithmic overhead in (n, t,1/ε). Then, she shows that the set of Toffoli
and Hadamard gate is computationally universal. Contrast this with the classical
computation, where Toffoli on its own is universal.

We clearly need to be able to produce maximally entangled states, using CNOT, Tof-
foli, or similar. Let us consider the question of what gates produce maximally entan-
gled states from some separable states. One can consider, e.g., using Hadamard and
a non-local gate such as CNOT. (Non-local gate is from SU(4) \ SU(2)⊗ SU(2).)
[27] have shown that the local equivalence classes of two-qubit gates are in one-to-
one correspondence with the points in a tetrahedron, except on the base. Using this
tetrahedral representation of non-local gates, they have shown that exactly half the

2 States where if you take a partial trace over one of the subsystems, the resulting state has the
maximum entropy.

6.5 Looking beyond the Basics (*) 85

non-local gates are perfect entanglers. This means that the second half of the non-
local gates are imperfect entanglers. While we need a perfect entangler, the role of
CNOT is hence not particularly “central”.

Having said that, even the role of Hadamard and CNOT is not particularly cen-
tral either. Hadamard, CNOT, and one particular phase shift gate (phase shift by
π/2) generate a group called the Clifford group. By a non-trivial Gottesman-Knill
theorem, the Clifford gates does not make a universal gate set. In particular, the
Gottesman-Knill theorem shows that a uniform family of Clifford circuit(s) acting
on the computational basis state |0〉N followed by a computational basis measure-
ment, can be simulated efficiently on a classical computer. (Actually, their simu-
lation of Clifford-gate circuits belongs to the complexity class ⊕L (“parity-L”) as
classical computation with NOT and CNOT gates, which is not believed to equal
to P.) This shows that while maximally entangled states are provably necessary, cf.
[32] to disallow efficient classical simulation, they are not sufficient.

In a striking result, [29] shows that circuits implementing unitaries from the Clif-
ford group (Clifford circuits), which may contain many Hadamard gates at different
places in the circuit, causing rounds of constructive and destructive interference, are
(efficiently) mapped to circuit that do not utilize any interference at all. In particu-
lar, to circuits where threre is one round of Hadamard gates applied to a subset of
the qubits, followed by a round of “classical gates” such as Toffoli, CNOT, NOT,
etc. Let C be an arbitrary n-qubit Clifford operation. Then there exist: (a) poly-size
circuits M1 and M2 composed of CNOT, PHASE and CPHASE gates and (b) a ten-
sor product of Hadamard gates and identities H = HS⊗ I acting nontrivially on a
subset S of the qubits, such that C ∝ M2H M1. Moreover, M1, M2 and H can be
determined efficiently.

The so-called depth of the circuit, in terms of the numbers of gates applied in suc-
cession, is related to the length of the trajectory of the time-optimal control. This
relationship has been elaborated by Nielsen et al.

In real world, all quantum systems interact with the environment. We often use clas-
sical distributions over quantum states to reason about such “partially known” quan-
tum states. Let us associate probability pk to the event of system being in state |αk〉.
Such a classical distribution is called a “mixed states”, as opposed the usual “pure”
state. A unitary matrix U acts on a mixture {pk, |αk〉} component-wise {pk,U |αk〉}.
In a simple model of an open quantum system due to [33], one assumes:

• single qubit faults: each qubit decoheres independently, or undergoes a fault with
probability η per step.

• all operations equal: no decoherence takes place inside the gates.

There, η is referred to as the decoherence rate. This is equivalent to a model, where
at each timestep, at each qubit i, we can have a fault with a probability ηi, as long
as ∑i ηi = η .

[33] have shown that for models of quantum computing with gates on up to log(n)
qubits, considering the noise model above introduces a delay into the simulation
by a probabilistic machine that is polynomial in the number of qubits and depth
of the circuit, for any decoherence rate. [34, 35] suggested that one can correct for
a substantial decoherence rate in a Clifford circuit using quantum error correcting
codes, at the expense of some overhead in terms of numbers of “physical” qubits.

The introduction of noise can make the geodesics of the work of Nielsen et al.
into rather more complicated trajectories. This relationship has been elaborated by
Lawrence et al.

Chapter 7

Foundamental Quantum Algorithms I

7.1 What we have seen so far?

Quantum algorithms resemble randomized algorithms, except probability ampli-
tudes are complex. This makes it possible to work with interference. Reversibility
of quantum computing (modulo noise) means one has to use the interference to pick
out the solution of a functional problem. This solution needs to be represented al-
ready in some early superposition, and then see its complex probability amplitude
amplified.

7.2 Introduction

Fig. 7.1: All successful quantum algorithms resemble a boa constructor that ate an
elephant.

87

88 7 Foundamental Quantum Algorithms I

Quantum algorithms ideally have only a modest amount of input. Typically, one uses
an initial state with only a single complex probability amplitude, whose magnitude
squares is 1. We can assume without loss of regularity that this corresponds to the
basis state of all zeros. Often, people assume that the input is “magically made
available” via oracles – but that is often “magical thinking”. Often, one loads the
input via controlled rotations, one scalar at a time.

Quantum algorithms then construct a maximally-entangled state on q qubits, whose
representation requires a 2q complex probability amplitudes. (In order for the state
to be maximally entangled, the complex probability amplitudes have to be equal.)
One can see the large entangled state as a root of a large tree, where in the leaves,
one applies Hadamard gates to individual qubits, and in the non-leaf nodes, one
applies CNOT. Then, applying a single-qubit gate may change all exponentially-
many complex probability amplitudes in parallel, at a unit cost in terms of the depth
of the quantum circuit.

Finally, the output needs to be very simple. Clearly, the measurement ends up with
a basis state, depending on the corresponding complex probability amplitude. In
some sense, one may wish the output were only a single complex probability ampli-
tude whose magnitude squares is 1. This is to be seen from the sample complexity
of parameter estimation in multivariate distributions: if we expect a non-trivial su-
perposition on the output, we will need very many copies of the circuit and very
many collapsing measurements to estimate the output state. Often, one employs
some classical post-processing.

7.3 A View from Theoretical Computer Science

7.3.1 Definitions

First, let us introduce some more complexity classes:

In the definition of [36]: FBPP, resp. FQPP is the class of polynomially-bounded
relations R⊆{0,1}∗×{0,1}∗ for which there exists a polynomial-time randomized,
resp. quantum algorithm A such that for all x for which there exists a y with (x,y)∈R
and all ε > 0,

P[(x,A(x,01/ε)) ∈ R]> 1− ε,

where the probability is over A’s outputs.

In the definition of [36]: FP/rpoly, resp. FBQP/qpoly is the class of polynomially-
bounded relations R ⊆ {0,1}∗×{0,1}∗ for which there exists a polynomial-time
deterministic classical algorithm A, resp. a polynomial-time quantum algorithm Q,

7.3 A View from Theoretical Computer Science 89

a polynomial p(n,m), and an infinite list of advice distributions {Dn,m}n,m≥1, where
Dn,m is supported on {0,1}p(n,m), resp. advice states {|ψn,m〉}n,m≥1, where |ψn,m〉 is
on p(n,m) qubits, such that for all x for which there exists a y such that (x,y) ∈ R
and all m,

Pr∼Dn,m [(x,A(x,0
m,r)) ∈ R]> 1− 1

m
,

resp.

P[(x,Q(x,0m, |ψn,m〉)) ∈ R]> 1− 1
m
.

If you rely on your circuit calling an oracle, you often typically cannot prove any
“usual” separation between complexity classes, e.g., BPP 6= BQP. You can prove
only weaker “relativized” results, known as “oracle separations”. The strongest re-
sults consider unstructured, random oracles. In the classical/quantum random oracle
model of [37], a random function H is chosen at the beginning, anyone can classi-
cally/quantumly access H, i.e., apply a unitary |x〉 |y〉 7→ |x〉 |y⊕H(x)〉.

7.3.2 Results

[38] show that relative to an oracle chosen uniformly at random with probability 1
an NP-Complete problem cannot be solved on a quantum Turing machine (QTM)
in time o(2n/2). [39] show that relative to a random oracle with probability 1, there
are NP search problems solvable by BQP machines but not BPP machines. We will
revisit the results of Yamakawa and Zhandry later, in the chapter on security, be-
cause the same paper also shows that relative to a random oracle with probability 1,
there exist functions that are one-way, and even collision resistant, against classical
adversaries but are easily inverted quantumly.

From the point of view of Theoretical Computer Science, the situation in decision
problems is somewhat dire: We do not know any non-relativized separation between
P, BPP, and BQP. (Notice that with non-linear quantum mechanics [40], we could
actually solve NP-Complete and #P-Complete problems.)

In functional problems, the situation is somewhat better. In February 2023 [36] have
shown FP 6= FBPP, unconditionally, and FBQP/qpoly 6= FBQP/poly. Notice that the
FBQP/qpoly refers to a quantum advice, not to an oracle.

90 7 Foundamental Quantum Algorithms I

7.4 Our first Quantum Algorithm: Deutsch–Jozsa

In the so-called Deutsch–Jozsa problem, we have

• a dimension n

• a black-box function f (x) : {0,1}n → {0,1} that has a rather unusual property:
either it is a constant function (there is y ∈ {0,1} such that for all x ∈ {0,1}n,
the output is y) or balanced (for precisely 2n−1 inputs, the output is 0, and for
precisely 2n−1 inputs, the output is 1)

The decision version of the problem asks whether the unknown function f is con-
stant. It is clear that classically, one may need to perform 2n−1+1 oracle calls in the
worst-case, but that there would be excellent randomized algorithms. Notice that for
n = 1, one asks whether f (0)+ f (1) mod 2 is zero.

Let us illustrate the algorithm of [41] for n = 1:

1. creates an initial, two-register state |0〉 |1〉
2. apply Hadamard transform to both registers: 1

2 ∑
1
x=0 |x〉(|0〉− |1〉)

3. apply the function via the oracle to obtain 1
2 ∑

1
x=0 |x〉(|0⊕ f (x)〉− |1⊕ f (x)〉)

4. apply the Hadamard transform on the first register again:

1
2

1

∑
x=0

(−1) f (x)

[
1√
2

1

∑
y=0

(−1)x⊕y |y〉
]
=

1

∑
y=0

[
1
2

1

∑
x=0

(−1) f (x)(−1)x⊕y

]
|y〉

5. obtain y by measuring the first register. The probability of measuring |0〉 is∣∣∣ 1
2 ∑

1
x=0(−1) f (x)

∣∣∣
2
, which evaluates to which evaluates to 1 for constant func-

tions (constructive interference) and to 0 for balanced functions (destructive
interference).

We have used 1 query to the oracle. This can be generalized to any n, without in-
creasing the number of queries!

7.5 First Few Tricks

If the algorithm seems hard to parse, do not despair. There are a few insights that
will help us elucidate its workings:

7.5 First Few Tricks 91

• the Boolean group

• the oracle

• the Hadamard transform

• amplitude amplification.

We will also introduce the phase kickback, which we will need later.

7.5.1 Artihmetics modulo 2

First, let us consider the artihmetics modulo 2 and its relationship to the XOR oper-
ation (⊕, “must have one or the other but not both”). In n = 1 we have seen

(0+1) mod 2 = 1 mod 2 = 1 = (0⊕1) and

(1+1) mod 2 = 2 mod 2 = 0 = (1⊕1).

Beyond n = 1 the binary inner product � of bitvectors x,y ∈ {0,1}n is x1y1 + · · ·+
xnyn mod 2 = x1y1 ⊕ ·· · ⊕ xnyn, i.e., essentially counting ones that appear at the
corresponding positions in two bitstrings, modulo 2, and thus suggesting whether
the count is odd or even. One can formalize this in terms of finite field GF(2).

7.5.2 The Oracle

Next, let us consider the oracle. One assumes that for a function f , there is an
oracle U f that maps |x〉 |y〉 → |x〉 |y⊕ f (x)〉, where ⊕ denotes the XOR operation
(or addition modulo 2). This can be simplified to U f |x〉 = (−1) f (x) |x〉. Clearly,
|x〉 |0〉→ |x〉 | f (x)〉. Either way, this is a reversible operation and can be implemented
in a unitary.

In the case of Boolean function f on n = 1 bits, one can think of this as a CNOT
gate controlled by the value of f (x). In the top-left corner, you have I (the identity)
for f (0) = 0 and σx (flip) for f (0) = 1. Similarly in the bottom-right corner, you
have I (the identity) for f (1) = 0 and σx (flip) for f (1) = 1.

U f =




1− f (0) f (0) 0 0
f (0) 1− f (0) 0 0

0 0 1− f (1) f (1)
0 0 f (1) 1− f (1)




92 7 Foundamental Quantum Algorithms I

7.5.3 Amplitude Amplification

In a way, the Deutsch–Jozsa algorithm also demonstrates the significance of allow-
ing quantum amplitudes to take both positive and negative values. In the Qiskit
Textbook and many other sources, this is illustrated starting with an interference
experiment (cf. Young’s double-slit interferometer, 1803): a particle can travel from
the source to an array of detectors through two slits. Each detector has a probability
of observing a particle that depends on the phases of the incoming waves. Same
phases increase the probability (constructive interference); very different phases re-
duce the probability (destructive interference). One can consider 2n possible paths
x and 2n possible detectors y, both labeled by bitstrings. The phase accumulated at
detector x along a path y equals C(−1) f (x)+x·y, where x · y is the binary inner prod-
uct and C is a normalizing constant. The probability of a particle at detector y is
P(y) = |C ∑x(−1) f (x)+x·y|2 with C = 2−n.

Now let us consider the probability of observing an all-zero string y, which is

|2−n
∑
x
(−1) f (x)+x·y|2 = |2−n

∑
x
(−1) f (x)+0|2,

in the two cases of the promise problem:

• if the f (x) = c, then the probability is |2−n
∑x(−1)c|2 = 1

• if the f (x) is balanced, then the probability is zero |2−n
∑x(−1) f (x)|2 = 0, because

the alternating sign will lead to a cancellation of the terms.

Exercise 7.1. Plot a diagram of the double-slit experiment and the 2n detectors and
the inference pattern for some n≥ 8.

7.5.4 The Hadamard Transform

We have seen the Hadamard gate:

H(|0〉) = 1√
2
|0〉+ 1√

2
|1〉=: |+〉 (7.1)

H(|1〉) = 1√
2
|0〉− 1√

2
|1〉=: |−〉 (7.2)

H(|+〉) = H
(

1√
2
|0〉+ 1√

2
|1〉
)
=

1
2

(
|0〉+ |1〉

)
+

1
2

(
|0〉− |1〉

)
= |0〉 (7.3)

H(|−〉) = H
(

1√
2
|0〉− 1√

2
|1〉
)
=

1
2

(
|0〉+ |1〉

)
− 1

2

(
|0〉− |1〉

)
= |1〉 (7.4)

7.5 First Few Tricks 93

without really understanding it.

First, notice that for an n-qubit state |k〉, the application of Hadamards qubit-wise
yields:

H⊗n |k〉= 1√
2n

2n−1

∑
j=0

(−1)k� j | j〉 ,

where j� k = j1k1 ⊕ j2k2 ⊕ ·· · ⊕ jnkn and ⊕ is XOR as above. Second, this is
rooted in a non-trivial fact that the Hadamard transform is the Fourier transform on
the Boolean group (Z/2Z)n. (If this sounds difficult, notice that GF(2)is isomorphic
to the quotient ring of the ring of integers Z by the ideal 2Z of all even numbers,
GF(2) = Z/2Z.)

In the example of the second application of Hadamard in Deutsch–Jozsa for n = 1,
we obtain:

1
2

1

∑
x=0

(−1) f (x)

[
1√
2

1

∑
y=0

(−1)x⊕y |y〉
]
=

1

∑
y=0

[
1
2

1

∑
x=0

(−1) f (x)(−1)x⊕y

]
|y〉 .

More broadly, the Hadamard maps |x〉 to 2−n/2
∑y(−1)x�y |y〉. For our state 2−n/2

∑x(−1) f (x) |x〉,
this will amount to 2−n

∑x(−1) f (x)+x�y |y〉, just as in the interference experiment.

Exercise 7.2. Write down the Hadamard gate on n = 3.

7.5.5 Phase Kickback

In the previous chapter, we have seen the phase factor (“global phase”, “global
gauge”), whereby quantum states |ψ〉 and eiα |ψ〉 are indistinguishable by measure-
ment with any linear operator φ in the sense of | 〈φ〉ψ|2 = |eiα 〈φ〉ψ|2 = | 〈φ〉ψ|2.
(A phase-shift gate P(α) = eiα I multiplies any state by a global phase α .) If we
apply a control-U gate to |ψ〉, where |ψ〉 is an eigenstate of U , then

• |ψ〉 is unchanged

• the phase |0〉〈0|+ eiα |1〉〈1| is transferred to the input state |ψ〉 of the control
qubit.

Let us see the phase kickback in action. Let us consider a single-qubit gate U and its
eigenstate |ψ〉:

U |ψ〉= eiφ |ψ〉 .
We wish to estimate φ up to the period (2π). This is possible with an extra (“ancilla”)
qubit, one Hadamard gate on the ancilla qubit, and a CNOT gate. Notably, after

94 7 Foundamental Quantum Algorithms I

applying the CNOT controlled by the ancilla qubit, the phase of the ancilla will be
φ :

XH⊗ I |0〉 |ψ〉= |0〉+ eiφ |1〉√
2

|ψ〉 ,

where we have used the fact that CNOT = [I0;0X].

In the two-qubit Deutsch algorithm above, the first qubit acts as an ancilla qubit, and
the controlled qubit is in the eigenstate of the NOT gate with eigenvalue -1. φ = π .
Thus, we get 1√

2
|0〉+(−1) f (0)⊕ f (1) |1〉. The phase kick-back is either 0 or π , which

can be distinguished by measuring σx, or by applying Hadamard gate again and
then measuring in the computational basis. This will be important in the following
discussion of Simon’s algorithm.

7.6 The Proof (Sketch) of our first Oracle Separation

Let us illustrate the first, historically, and most commonly taught “oracle separation”
between BPP and BQP on Simon’s problem. This is not a problem, which would
be useful on its own, more akin a “guessing game”. It uses a highly structured,
“periodic” oracle. We will see, however, that the crucial concept of “period finding”
underlies the famous Shor factoring algorithm. (Daniel Simon actually recalls1 that
Shor developed his factoring algorithm having seen a preprint of his.)

In the so-called Simon’s problem, we have

• a dimension n

• a black-box function f (x) : {0,1}n→ {0,1}n that has a rather unusual property:
for all x,y ∈ {0,1}n, f (x) = f (y) if any only if x⊕y ∈ {0n,s} for some unknown
secret s ∈ {0,1}n,

where ⊕ denotes the elementwise XOR operation. Notice that x⊕ y = 0n, if and
only if a = b. Thus,

• either the secret is s = 0n and the function is a bijection (“one-to-one”, invertible)

• or the secret is s 6= 0n and the function is not a bijection, but rather “two-to-one”.

The decision version of the problem asks whether the unknown function f is a
bijection (and thus whether s = 0n).

Exercise 7.3. To get a feel for this, pick an f (x) : {0,1}3 → {0,1}3. Ask your
neighbour to guess whether it’s a bijection. How many queries did he need?

1 https://aws.amazon.com/blogs/quantum-computing/simons-algorithm/

7.7 Going beyond our first Oracle Separation 95

Notice that there is no input. Hence, it is impossible to reason about the description
complexity of the input. Let us measure the complexity of (a classical or quantum
algorithm) by the number of evaluations of f at distinct values (x) it requires. (This is
also known as the number of oracle queries or oracle complexity.) In a deterministic
Turing machine, one may try 2n inputs one by one until one obtains two inputs
producing the same output, or decides that no two match. In a probabilistic machine,
one may try to sample the 2n inputs randomly, and as long as no two match, suggest
that the function is a bijection, with an ever higher probability.

The quantum algorithm for solving the problem is similar to the randomized algo-
rithm. Repeatedly, for each sample, we perform the following steps:

1. creates an initial, two-register state |0〉⊗n|0〉⊗n

2. apply Hadamard transform on the first register: 1√
2n ∑

2n−1
k=0 |k〉|0〉⊗n

3. apply the function via the oracle to obtain 1√
2n ∑

2n−1
k=0 |k〉| f (k)〉

4. apply the Hadamard transform on the first register again:

1√
2n

2n−1

∑
k=0

[
1√
2n

2n−1

∑
j=0

(−1) j�k| j〉
]
| f (k)〉=

2n−1

∑
j=0
| j〉
[

1
2n

2n−1

∑
k=0

(−1) j�k| f (k)〉
]

5. obtain y by measuring the first register. The probability of measuring | j〉 is∣∣∣ 1
2n ∑

2n−1
k=0 (−1) j�k| f (k)〉

∣∣∣
2
.

Then, we classically solve a system of equations given by the samples to obtain s.
(Each sample satisfies ys = 0.) If s = 0n, return YES.

7.7 Going beyond our first Oracle Separation

Shor’s factoring algorihm uses a non-trivial initial preprocessing, but then we per-
form the following steps:

1. creates an initial, Q-qubit state |0〉⊗Q

2. apply Hadamard transform on it: 1√
Q ∑

Q−1
k=0 |x〉

3. apply the function f (x) = ax mod N using U f |x,0n〉= |x, f (x)〉 to obtain

U f
1√
Q

Q−1

∑
x=0
|x,0n〉= 1√

Q

Q−1

∑
x=0
|x, f (x)〉

such that the value we are looking for is in the phase of

4. apply the quantum Fourier transform: 1
Q ∑

Q−1
x=0 ∑

Q−1
y=0 ωxy|y, f (x)〉

5. obtain y by measuring the first register. The probability of measuring |y,z〉 is

1
Q2

sin2(πmry
Q)

sin2(πry
Q)

.

Then, we apply classical post-processing.

If you felt that there is common pattern across these algorithms, you are right. The
quantum Fourier transform is, in some sense, just a more efficient way of measuring
the phase. There are, actually, very few “paradigms” in the design of quantum algo-
rithms, and some of the steps (equal superposition, some operation thereupon) are
necessary. One may consider, for example [42], amplitude amplification (algorithms
above and Grover) with or without quantum Fourier transform, Harrow-Hassidim-
Lloyd (HHL), and quantum signal processing (QSP).

Chapter 8

Harmonic Analysis 101

In this lecture, we introduce the quantum Fourier transform, which is O((logN)2),
i.e., exponentially faster than the classical fast Fourier transform in O(N logN). As is
perhaps familiar, the simple intuition for the classical Fourier transform is basically
as a change of basis, or perhaps a duality transformation. Typically we think of it as
taking us from the original function domain to its corresponding frequency domain,
where certain properties, such as which frequencies are present in a signal, are easier
to analyze. This is directly translated to the quantum Fourier transform, which is a
change of basis from the computational basis to the Fourier basis. For example, as
we will see below, in the simplest case of one qubit the quantum Fourier transform
is simply the Hadamard gate. Which we have already seen is a change of basis from
the computational basis to the Hadamard basis |±〉. Before we get into the quantum

97

98 8 Harmonic Analysis 101

Fourier transform, we will begin with the classical case, and in particular try to
explain some harmonic analysis in general.

Time

Frequency

Harmonic analysis as we need it requires discrete samples and finite fields. The
corresponding, perhaps seemingly obscure parts of harmonic analysis have also led
to classical breakthroughs, such as multiplication of n-bit integers in time O(n logn)
[43] and multiplication of polynomials over finite fields [44] in the same time. The
idea is that we can think of the Fourier transform in a very general way as a function
on a group or over a finite field. The only difference between things like the full
continuous Fourier transform, the discrete-time Fourier transform and the discrete
Fourier transform are then simply the choice of group. For a very nice introduction
to Harmonic analysis on finite groups, see [45].

8.1 Discrete Fourier Transform

The discrete Fourier transform (DFT) maps an N-vector x of complex numbers to
an N-vector X of complex numbers:

Xk =
N−1

∑
j=0

x j · e
2π jki

N , (8.1)

8.1 Discrete Fourier Transform 99

up to a normalization 1√
N

. (This is sometimes called the analysis formula.) Let us
assume N = 2n throughout, where n is a constant.

One way to think of the N-vector x is to see those as samples of a periodic function
with period T , i.e., f (t) = f (t +T). In particular, one would sample f uniformly at
points j∆ t, where ∆T = T/N and j = 0,1, ...,N−1.

Alternatively, one could see discrete Fourier transform as a function on a finite cyclic
group Gq = {1,g,g2, . . . ,gq−1} ∼= Z/qZ. A simple representation of the elements of

this group is as qth roots of unity, gn = exp
(

2πin
q

)
, with n = 0, . . . ,q−1, where the

group multiplication is simply ordinary complex multiplication. By visualizing this
group action on the unit circle we can see that it is the rotational symmetry group of
the q-polygon.

For any group G, and especially for cyclic groups Zq, it may be tempting to identify
the group with its elements g ∈ G and consider f (g) only, or to identify the cyclic
groups Zq with the set {0, . . . ,q− 1} and modulo q addition. One could do much
better, however, if one considers the group’s symmetries.

Alternatively, one could see the analysis formula (8.1) as a matrix equation X = Fx.
Thus, a discrete Fourier transform can be expressed as a so-called Vandermonde
matrix (Sylvester, 1867),

F =
1√
N




ω0·0
N ω0·1

N · · · ω
0·(N−1)
N

ω1·0
N ω1·1

N · · · ω
1·(N−1)
N

...
...

. . .
...

ω
(N−1)·0
N ω

(N−1)·1
N · · · ω

(N−1)·(N−1)
N




(8.2)

where ω
m·n
N = e−i2πmn/N and the mn is the usual product of the integers.

Notice that:

• because ω depends only on the product of frequency m, and position n, the DFT
F is symmetric. Notice that it is also unitary: F−1 = F∗ and |det(F)|= 1.

• X is the inner product of x with the m-th row of F. Conversely, f is a linear
combination of the columns of F, where the mth column is weighted by Xm.

• the vectors um =
[

e
i2πmn

N

∣∣∣ n = 0,1, . . . ,N−1
]T

form an orthogonal basis over
the set of N-dimensional complex vectors.

• F2 reverses the input, while F4 = I. The eigenvalues satisfy: λ 4 = 1 and thus are
the fourth roots of unity: +1,−1,+i,or− i.

100 8 Harmonic Analysis 101

8.1.1 The Hadamard Transform

We can define the 1×1 Hadamard transform H0 = 1 as the identity, and then define
Hm for m > 0 by:

Hm =
1√
2

[
Hm−1 Hm−1
Hm−1 −Hm−1

]
.

Other than the normalization, the Hadamard matrices are made up of 1 and -1. No-
tice that Hadamard

H1 =
1√
2

[
1 1
1 −1

]

is a discrete Fourier transform; indeed, we have ω
0·0
1 = ω

0·1
1 = ω

1·0
1 = e0 =+1 and

ω
1·1
1 = e−iπ =−1. As a further example, the next Hadamard matrix is

H2 =
1
2




1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1


 .

Note that this is not a DFT as defined by (8.2).

Notice that classically, we can compute the fast Hadamard transform algorithm in
O(n logn) while performing only sign-flips. Quantumly, the Hadamard transform
can be computed in time O(1), in many commonly used gate sets.

8.1.2 The z-Transform

If you know the z-transform, notice that the Xk can also be seen as evaluation of the
z-transform X(z) = ∑

N−1
j=0 x jz− j at points ω

− j
N , i.e., X j = X(z)z=ω

− j
N

.

8.1.3 Examples of Discrete Fourier Transform

Let us see:
F0 = H0 = 1

F1 = H1 =
1√
2

[
1 1
1 −1

]

8.1 Discrete Fourier Transform 101

F2 =
1√
3




1 1 1
1 ω1·1

3 ω1·2
3

1 ω2·1
3 ω2·2

3




While the omega notation may obscure the nature of the DFT, see that the column
correspond to passes along the unit circle, clockwise, expressed in the corresponding
complex number (e.g., 1, −i, −1, i for F3) at varying frequency (e.g., 0, 1, 2, 3 for

F3): F3 =
1√
4




1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i


.

Im

Re

z = |z|eiθ

1−1

−i

i

θ

Exercise 8.1. Visualise F3, F4 on the unit circle.

Let us further consider some simple examples:

1√
4




1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i







1
1
1
1


=




2
0
0
0


 (8.3)

1√
4




1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i







1
−i
−1
i


=




0
0
0
2


 (8.4)

1√
4




1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i







0
1
0
1


=




1
0
−1
0


 (8.5)

102 8 Harmonic Analysis 101

8.2 Fast Fourier Transform

8.2.1 The Many Fast Fourier Transforms

A straightforward implementation of DFT as a matrix-vector product requires
O(N2) operations. In the so-called fast Fourier transform (Cooley and Tukey, 1965),
one requires only O(N log2 N) = O(2nn) operations. There are a number of vari-
ants, all based on the divide-and-conquer approach. As we assume N = 2n, we will
present a variant known as the radix-2 decimation in time (DIT) algorithm.

This speedup is achieved by this variant of the divide-and-conquer approach, where
we consider subsets of the initial sequence, take the DFT of these subsequences, and
reconstruct the DFT of the original sequence from the results on the subsequences.
One option is based on the following insight:

Xk =
1√
N

N−1

∑
j=0

x j · e
2π jki

N (8.6)

=
1√
N

(
∑

even j
x j · e

2π jki
N + ∑

odd j
x j · e

2π(j−1)ki
N

)
(8.7)

=
1√
2

(
1√
N/2

∑
even j

x j · e
2π(j/2)ki

N/2

)
+

(
1√
N/2

∑
odd j

x j · e
2π(j−1)/2ki

N/2

)
(8.8)

8.2 Fast Fourier Transform 103

The divide-and-conquer approach can be illustrated on N = 16 with the following
cartoon.

x0

x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

x11

x12

x13

x14

x15

X0

X8

X4

X12

X2

X10

X6

X14

X1

X9

X5

X13

X3

X11

X7

X15

× × ×
× × ×
× × ×
× × ×
× × ×
× × ×
× × ×
× × ×
× × ×
× × ×
× × ×
× × ×
× × ×
× × ×
× × ×
× × ×

ω0·0
16

ω1·0
16

ω2·0
16

ω3·0
16

ω4·0
16

ω5·0
16

ω6·0
16

ω7·0
16

ω0·1
16

ω1·1
16

ω2·1
16

ω3·1
16

ω4·1
16

ω5·1
16

ω6·1
16

ω7·1
16

ω0·0
8

ω1·0
8

ω2·0
8

ω3·0
8

ω0·1
8

ω1·1
8

ω2·1
8

ω3·1
8

ω0·0
8

ω1·0
8

ω2·0
8

ω3·0
8

ω0·1
8

ω1·1
8

ω2·1
8

ω3·1
8

ω0·0
4

ω1·0
4

ω0·1
4

ω1·1
4

ω0·0
4

ω1·0
4

ω0·1
4

ω1·1
4

ω0·0
4

ω1·0
4

ω0·1
4

ω1·1
4

ω0·0
4

ω1·0
4

ω0·1
4

ω1·1
4

If you know the z-transform, you should see that X(z)=∑
N−1
j=0 x jz− j =∑

r−1
l=0 ∑ j∈Il

x jz− j

for some partition I of {0,1, . . . ,N− 1} into r subsets, and that one can also nor-
malise the terms. This way, one can define a variety of recursions similar to the one
above, as long as the subset are chosen to be similar to the initial sequence in terms
of their periodicity. This is very nicely explained in [46].

8.2.2 Fast Fourier Transform as a Factorization

Alternatively, [47] sees the Fast Fourier Transform as a certain matrix factorization.
This is both important to understand FFT, but also to understand the QFT later. In
particular, the 2n×2n DFT matrix Fn can be factored as:

F = PnA(0)
n A(1)

n · · ·A(n−1)
n , (8.9)

where,

• Pn is some permutation matrix

• A(k)
n = In−k−1 ⊗Bk+1,

• Bk+1 =
1√
2

[
Ik Ik

k − k

]
with Ik the k× k identity matrix

• k := 2k is a 2k×2k diagonal matrix:

104 8 Harmonic Analysis 101

2k :=




ω0
2k+1

ω1
2k+1

. . .

ω
2k−1
2k+1



, (8.10)

where ω2k+1 is e
−2πi
2k+1 as before.

Notice that each matrix A(i)
n has two non-zero elements on every row. Consequently,

the matrix-vector product A(i)
n x can be computed in O(2n) operations, resulting in

O(2nn) operations, when one includes the permutation.

8.3 Quantum Fourier Transform

In general, F is an N×N unitary matrix, and thus we can implement it on a quantum
computer as an n-qubit unitary for N = 2n. As such, it maps an N-dimensional vector
of amplitudes to an N-dimensional vector of amplitudes. This is called the quantum
Fourier transform (QFT). [48, 49] presented the first polynomial, O(n2) quantum
algorithms for QFT over certain finite fields and arbitrary finite Abelian groups,
respectively. This is exponentially faster than the classical fast Fourier transform,
which takes O(N logN) steps.

Recall that the DFT is:

Xk =
1√
N

N−1

∑
j=0

x j · e
2π jki

N .

In contrast, the QFT on an orthonormal basis |0〉 , |1〉 , . . . , |N−1〉 is a linear opera-
tor:

| j〉 → 1√
N

N−1

∑
k=0

e
2π jki

N |k〉 .

An alternative representation of the QFT utilizes the product form:

| j1, j2, . . . , jn〉→
(
|0〉+ e2πi 0. jn |1〉

)(
|0〉+ e2πi 0. jn−1 jn |1〉

)
· · ·
(
|0〉+ e2πi 0. j1 j2··· jn |1〉

)

2n/2 ,

where | j1, j2, . . . , jn〉 is a binary representation of a basis state j and 0. j1 j2 · · · jn is a
notation for binary fraction j1/2+ j2/4 · · · jn/2n+1. This is actually easy enough to
derive:

8.3 Quantum Fourier Transform 105

| j〉 → 1√
N

N−1

∑
k=0

x j · e
2π jki

N |k〉 (8.11)

1
2n/2

2n−1

∑
k=0

e
2π jki

2n |k〉 (8.12)

1
2n/2

1

∑
k1=0

1

∑
k2=0
· · ·

1

∑
kn=0

e2π j(∑n
l=1 kl2−l)i |k1k2 . . .kn〉 (8.13)

1
2n/2

1

∑
k1=0

1

∑
k2=0
· · ·

1

∑
kn=0

n⊗

l=1

e2π jkl2−l i |kl〉 (8.14)

1
2n/2

n⊗

l=1

[
1

∑
kl=0

e2π jkl2−l i |kl〉
]

(8.15)

1
2n/2

n⊗

l=1

[
|0〉+ e2π j2−l i |1〉

]
(8.16)

A simplistic illustration of the quantum circuit for QFT, omitting swaps at the end

and normalization:

· · ·

· · · · · ·

· · · · · · ...

. ...
...

...

· · · · · · · · ·

· · · · · · · · ·

|j〉

H R2 R3 Rn−1 Rn

H Rn−2 Rn−1

H R2

H

Its derivation is very nicely given in [47], using the framework of matrix decompo-
sitions above. Instead of a proper derivation, let us consider the workings of the
circuit step by step. The key to its understanding is the phase kickback, which we
have seen earlier.

Applying the Hadamard gate to the first qubit of the input state | j1 . . . jn〉 gives

1
21/2

(
|0〉+ e2πi 0. j1 |1〉

)
| j2 . . . jn〉 (8.17)

since e2πi 0. j1 equals +1 when j1 = 0 and equals −1 when j1 = 1. We define a
unitary gate Rk as

Rk =

(
1 0
0 e2πi/2k

)
(8.18)

The controlled-R2 gate applied on the first qubit, conditional on j2, now gives

106 8 Harmonic Analysis 101

1
21/2

(
|0〉+ e2πi 0. j1 j2 |1〉

)
| j2 . . . jn〉 (8.19)

Applying further the controlled-R3, R4 ... Rn gates, conditional on j3, j4 etc., we get

1
21/2

(
|0〉+ e2πi 0. j1 j2... jn |1〉

)
| j2 . . . jn〉 (8.20)

Next we perform a similar procedure onto the second qubit. The Hadamard gate
produces the state

1
22/2

(
|0〉+ e2πi 0. j1 j2... jn |1〉

)(
|0〉+ e2πi 0. j2 |1〉

)
| j3 . . . jn〉 (8.21)

and the controlled-R2 through Rn−1 gates yield the state

1
22/2

(
|0〉+ e2πi 0. j1 j2... jn |1〉

)(
|0〉+ e2πi 0. j2... jn |1〉

)
| j3 . . . jn〉 (8.22)

We continue this procedure for each qubit, obtaining a final state

1
2n/2

(
|0〉+ e2πi 0. j1 j2... jn |1〉

)(
|0〉+ e2πi 0. j2... jn |1〉

)
. . .
(
|0〉+ e2πi 0. jn |1〉

)
(8.23)

Eventually, we use the SWAP operations to reverse the order of the qubits to obtain
the state in the desired product form

1
2n/2

(
|0〉+ e2πi 0. jn |1〉

)(
|0〉+ e2πi 0. jn−1 jn |1〉

)
. . .
(
|0〉+ e2πi 0. j1 j2... jn |1〉

)
(8.24)

8.3.1 Even Faster QFT

Above, we have clearly used at most O(n2) gates. [50], [51], and others improved
this to O(n logn) depth, if one allows for some error. This is based on the realization
that Rs for s� logn are very close to the identity and can be omitted.

Part II

Beyond the Basics

Chapter 9

Grover Search and Dynamic Programming

So far, we have seen examples of quantum algorithms with an exponential speed-up,
but only for problems that are not NP-Hard. For NP-Hard problems, we know only
algorithms with quadratic speed-up so far, and even that is disputed [52, 53, 54]. In
this chapter, we will explain these in a very general framework of [55].

9.1 Grover Algorithm

In the problem of [56], we have

• a dimension n

• a black-box function f (x) : {0,1}n→{0,1} parametrized by a secret n-bit string
j, which returns 1 if x = j and 0 otherwise.

The functional version of the problem asks what is the unknown w. It is clear that
classically, one may need to perform 2n oracle calls in the worst-case, and that ran-
domized algorithms would not help much. Notice that N = 2n is sometimes referred
to as the “library size” we are searching.

The black-box function is usually thought of as an oracle operator Uw such that for
states | j〉 in the computational basis

Uw | j〉= (−1) f (j) | j〉= I−2 |w〉〈w|=
{
−| j〉 , if j = w

+ | j〉 , if j 6= w
(9.1)

This is sometimes known as the ±-oracle or phase oracle. One can generalize this
to the situation where there are multiple secrets.

We will also use a variant for an arbitrary known state |s〉, the so-called diffusion op-
erator or reflection (mirror operator) with respect to the hyper-planes perpendicular

109

110 9 Grover Search and Dynamic Programming

to s:

Us = 2 |s〉〈s|− I (9.2)

Notice that one can replace the diffusion operator Us by H⊗nZORH⊗n, where

ZOR |s〉=
{
+ |s〉 s = 0n

−|s〉 s 6= 0n
.

This view is common in many textbooks.

Grover’s algorithm performs the following steps:

1. creates an initial, n-qubit state |0〉⊗n

2. apply Hadamard transform on it to obtain the uniform superposition 1√
n ∑

n−1
k=0 |x〉

3. apply the function oracle operator Uw and the diffusion operator Us, repeatedly,
q times.

4. obtain ŵ by measuring the n-qubit register. With probability sin2((q+ 1
2)θ) for

some θ depending on 1√
N

, estimate ŵ will be the correct f (ŵ) = 1. Otherwise,
we repeat.

Ideally [57], one considers q ≈ π

4 2n/2. If the Grover iteration UsUw could be im-
plemented in unit time (a big if!), this would correspond to O(2n/2) = O(

√
2n) =

O(
√

N) algorithm and quadratic speed-up compared to the linear search in time
O(2n) = O(N).

Let us have a bit of a geometric detour: any state |φ〉 can be uniquely expressed as
|φ〉= α |ψ〉+β |ψ⊥〉, where |ψ⊥〉 is orthogonal to |ψ〉. Then:

Us |φ〉=−α |ψ〉+β |ψ⊥〉 (9.3)

that is, amplitudes of basis states orthogonal to |ψ〉 are left unchanged, while signs
of amplitudes of the basis state |ψ〉 are flipped. Furthermore, for any state φ , Uψ ,
preserves the subspace spanned by |φ〉 and |ψ〉.
The diffusion operator should be viewed as a quantum amplitude amplification pro-
cedure, with the aim to increase the probability amplitude of the target state. Fol-
lowing [58, 59], one could consider |φ〉= ∑i αi |i〉 and some partition:

|φ〉= ∑
i∈good

αi |i〉+ ∑
i∈bad

αi |i〉 ,

with P(good) = ∑i∈good |αi|2. Then,

|φ〉=
√
P(good) |φgood〉+

√
1−P(good) |φbad〉= sin(θ) |φgood〉+ cos(θ) |φbad〉

9.1 Grover Algorithm 111

where considering sin2(θ)+cos2(θ)= 1, we arbitrarily introduce sin2(θ)=P(good).
The state |φ〉 is thus orthogonal to |φ⊥〉= cos(θ) |φgood〉−sin(θ) |φbad〉. {|φgood〉 , |φbad〉}
and {|φ〉 , |φ⊥〉} are thus two orthonormal bases in a 2-dimensional subspace. One
obtains

Uw
(
sin(θ) |φgood〉+ cos(θ) |φbad〉

)
=−sin(θ) |φgood〉+ cos(θ) |φbad〉 (9.4)

U
φ⊥

(
sin(θ) |φ〉+ cos(θ) |φ⊥〉

)
= sin(θ) ||φ〉〉− cos(θ) |φ⊥〉 (9.5)

U
φ⊥Uw |φ〉= cos(2θ) |φ〉+ sin(2θ) |φ⊥〉 (9.6)

= sin(3θ) |φgood〉+ cos(3θ) |φbad〉 . (9.7)

We will see this view in the following lecture.

This amplitude amplification also has a geometric interpretation: one should see Uw

and Us as Householder reflections. Grover’s algorithm stays in a subspace spanned
by (|s〉 , |w〉). The two operators are reflections with respect to the hyper-planes per-
pendicular to w and s. It is an elementary fact of Euclidean geometry that when M1
and M2 are two lines in the plane intersecting at point O with intersection angle α ,
the operation of reflection with respect to M1, followed by reflection with respect to
M2, is rotation by angle 2α around O. Then, the product UsUw is a rotation in the
(|s〉 , |w〉) plane (for the first≈ π

√
N/4 iterations from |s〉 to |w〉) by θ = 2arcsin 1√

N
.

This view is beautifully elaborated by [58].

Without giving a complete derivation here, let us consider |x⊥0 〉 and |φ0〉 at an
angle β . Then U|φ⊥0 〉U|x0〉 is a rotation around the origin by angle 2β .Starting

with a state |φ0〉 = sin(β) |x0〉+ cos(β) |x⊥0 〉, after q Grover iterations, we obtain:
|φk〉 = sin((2q+ 1)β) |x0〉+ cos((2q+ 1)β) |x⊥0 〉. We thus wish to pick q such that
sin((2q+1)β) is as close as possible to 1.

[54] suggests that Uw should be seen as:

Uw =
[
1 1
]
(

n

∏
i=1

Mi

)[
1
−2

]
(9.8)

with

Mi =




Ii 0 0 ...

0 |w1
i 〉〈w1

i | 0 ...

0 0 |w2
i 〉〈w2

i | ...

...

... 0 0 |wS
i 〉〈wS

i |




(9.9)

where Ii is the 2× 2 identity matrix acting on qubit i and |wα
i 〉〈wα

i | projects α on
the bitstring i.

The diffusion operator Us is similar, except for the replacement of Mi by

112 9 Grover Search and Dynamic Programming

M′i =
[

Ii 0
0 |+〉〈+|

]
(9.10)

in (9.8).

The Grover iteration has a number of appealing interpretations: Perhaps the most
physical is due to [60]. Recall the discussion of the oscillators from the second
lecture. The oscillator could describe a weight (or bob) suspended from a pivot on
a (massless) cord such that the bob can swing freely. Now, consider N oscillators,
one of which has a slightly shorter cord, and hence a different frequency. We seek to
find the one with the shorter cord. We could check the frequency of the N oscillators
one by one. Alternatively, we can consider a compound pendulum.

To this end, we consider a system where the N oscillators are suspended from a
support pendulum. We use the following notation:

• The length, mass and displacement coordinate for the support pendulum are de-
noted L,M,X ;

• the pendulum we aim to identify has length, mass and displacement l1,
m1
N ,x1;

• the remaining N−1 oscillators have length, mass and displacements l, m
N ,x j for

j = 2, . . . ,N.

The setup thus looks something like the following:

L

ll1

1

The Lagrangian (kinetic energy minus potential energy)1 is then:

1
2
[MẊ2−KX2 +

1
N
(m1ẋ1

2− k1(x1−X)2)+
1
N

N

∑
j=2

(mẋ j
2− k(x j−X)2)]

K ≡ (M+
m
N
)

g
L
, k j ≡ m j

g
l j
,

(9.11)

where

• g is the acceleration due to gravity;

1 remember that the Hamiltonian is the kinetic energy + potential energy

9.1 Grover Algorithm 113

• K,k1 and k are the spring, or stiffness, constants, of the corresponding oscillators.
For a simple, uncoupled, harmonic oscillator with mass m, this is related to the

frequencies ω through ω =
√

k
m .

Through a simple change of variables, one obtains:2

Lred ≈
1
2
[MẊ2−KX2 +m1ξ̇

2− k1(ξ −
1√
N

X)2 +m ˙̄x2− k(x̄−X)2]. (9.12)

Note that this has 3 degrees of freedom, two that are strongly coupled X and x̄,
while the third, ξ , is weakly coupled due to the 1/

√
N factor. Solving first the X , x̄

system gives us two modes with frequencies ωa and ωb. The natural frequency of
the ξ degree of freedom that corresponds to the special pendulum is approximately

ω1 =
√

k1
m1

. If ω1 is close to either ωa or ωb, there will be resonant transfer of energy

between the two weakly coupled systems. In O(
√

N) cycles, one should be able to
identify the correct pendulum by having amplified its energy. If we instead had n
shorter cords, it would take O(

√
N/n) cycles.

Imagine that one starts by a single push to the support pendulum and can change
parameters of any pendulum and then observe their frequency with a finite precision
that is independent of N. By bisection, we can adjust the cords of 1/2 of the pendula,
1/4 of the pendula, etc., until we identify the one pendulum. This would have a
runtime of O(

√
N logN).

As we have mentioned at the beginning, there is also a fair amount of controversy,
which centers around three issues:

• [52, 53]: one needs to be able to run the oracle with an error that scales with
N−1/4 = 1/2n−4. This is a very exacting standard which may be difficult to obtain
for non-trivial n.

• quantumly, one needs to be able to implement the oracle in unit amount of time,
but not to be able to implement the product of the Grover iteration UsUw in unit
amount of time, and not to be able to implement many things classically.

• [54]: the tensor-analytic view (9.8) suggests that if one knew w, one would
use rank-2 matrix product operation, which is classically simulable in polytime.
Then, one efficiently simulates the product of the Grover iterations as well.

2 Essentially, the change of variables is to the center-of-mass frame for the j = 2, . . . ,N pendulums,
and ξ ∝ x1 is simply a normalization. Finally, we ignore some O(1/N) terms.

9.2 Dynamic Programming

Let us now consider two NP-Hard functional (optimization) problems. In the TRAV-
ELLING SALESMAN PROBLEM (TSP), we seek the shortest simple cycle that visits
each vertex in a weighted graph G once (Hamiltonian circuit). In the MINIMUM

SET COVER, we seek the minimum cardinality subset S ′ ⊆S such that
⋃

S∈S ′
S = U

for some given S ⊂U , with the cardinality of the ground set |U |= n and |S |=m.

A naive classical approach to either problem would construct a dynamic program-
ming tableau, where in each row r in the tableau, we would have the lengths of
Hamiltonian circuits in r-vertex subgraphs. Following [55], let f (S,u,v) denote the
length of the shortest path in the graph induced by a subset of vertices S that starts
in u ∈ S, ends in v ∈ S and visits all vertices in S exactly once. Then:

f (S,u,v) = min
t∈N(u)∩S

t 6=v

{w(u, t)+ f (S\{u}, t,v)} , f ({v},v,v) = 0. (9.13)

where N(u) is the neighbourhood of u in G. For k ∈ [2, |S|−1] fixed,

f (S,u,v) = min
X⊂S,|X |=k
u∈X ,v/∈X

min
t∈X
t 6=u

{ f (X ,u, t)+ f ((S\X)∪{t}, t,v)}. (9.14)

The algorithm of [55] picks some α ∈ (0,1/2] and classically precomputes f (S,u,v)
for all |S| ≤ (1−α)n/4 using dynamic programming (9.13). That is, it computes the
bottom rows of the tableau classically, in time exponential in n. Quatumly, it obtains

min
S⊂V
|S|=n/2

min
u,v∈S
u 6=v

{ f (S,u,v)+ f ((V \S)∪{u,v},v,u)}

over all subsets S⊂V such that |S|= n/2 by taking the following steps:

1. Run Grover on (9.14) with k =αn/4 to calculate f (S,u,v) for |S|= n/4 starting
with the rows of the tableau obtained classically.

2. Run Grover on (9.14) with k = n/4 to calculate f (S,u,v) for |S|= n/2.

Under very strong assumptions about storing the data in quantum RAM (QRAM),
[55] claim a speed-up as suggested in Table 9.1. Notice that much of the contro-
versy surrounding the original Grover applies to this setting as well, compounded
by the QRAM assumptions. Under more plausible assumptions, [61] study dynamic
programming with convex value functions.

9.2 Dynamic Programming 115

Classical (best known) Quantum (of [55])
Vertex Ordering Problems O∗(2n) O∗(1.817n)

Travelling Salesman Problem O(n22n) O∗(1.728n)
Minimum Set Cover O(nm2n) O(poly(m,n)1.728n)

Table 9.1: Summary of the results of [55].

Chapter 10

Quantum Walks and Quantum Replacements of
Monte Carlo Sampling

In what follows we denote the imaginary unit as i =
√
−1 and the n×n unit matrix

as 111n (we skip the subscript if implied).

10.1 Quantum Walks

Quantum (Random) Walks serve as a fundamental concept in the realm of quantum
computing, offering a distinct perspective on random processes compared to their
classical counterparts. Quantum walks, and algorithms that utilize them, have sev-
eral important features that we aim to address in this section. Most notably quantum
walks often show quadratic speedups [62] (similar to Grover’s algorithm), some-
times show exponential speedups [63] (for example, in the Hidden Flat Problem we
describe in Sec. 10.1.7) and, of equal importance, form a model of universal (quan-
tum) computation [64, 65] allowing them to be on the same foot with the quantum
Turing machine or the quantum circuit model of computation.

Here we will first introduce discrete quantum walks, then continuous quantum
walks, and finally motivate their universality. A good, comprehensive introduction
to quantum walks is [66] as well as the textbook [67].

10.1.1 Basics of Quantum Walks

The first quantum algorithms were built on the foundation of Fourier sampling (fa-
mously Shor’s algorithm [68]), but a new category of algorithms emerged with the
introduction of the quantum walk [69, 66]—a quantum version of the classical ran-
dom walk.

117

118 10 Quantum Walks and Quantum Replacements of Monte Carlo Sampling

A quantum walk is a quantum process on a graph G = (V,E), where V = V (G) is
the set of vertices and E = E(G) the set of edges, with basis states |x〉, x ∈ V . For
simplicity, let V = Z in what follows. Denote the corresponding Hilbert space as
HG. At each time step, a quantum walk corresponds to a unitary map U ∈U(N)

such that
U : HG→HG

|x〉 7→ a|x−1〉+b |x〉+ c |x+1〉
(10.1)

which conveys the information for the potential that |x〉

1. moves left with some amplitude a ∈ C,

2. stays at the same place with amplitude b ∈ C,

3. moves right with amplitude c ∈ C.

In addition, our goal is for the process to exhibit consistent behavior across all ver-
tices. That is, a,b and c should be independent of x ∈V (similarly to how the prob-
abilities of moving left/right are independent of x in the classical random walk).
Unfortunately, this definition does not work.

Theorem 10.1. Transformation U defined by (10.1) is unitary if and only if one of
the following three conditions is true:

1. |a|= 1,b = c = 0,

2. |b|= 1,a = c = 0,

3. |c|= 1,a = b = 0.

The reason is that the only possible transformations are the trivial ones (ones that at
each step either always move left or always stay in place or always move right). The
same problem also appears when defining quantum walks on many other graphs.

10.1.2 Coin Space

This problem can be solved by introducing an additional “coin” state tensored to
|x〉. We consider the state space consisting of states |i,x〉 for i ∈ {0,1}, x ∈ Z, with
Hilbert spaces HC = C2, HW = (C2)⊗K , K ∈ Z>0, respectively. At each step, we
perform two unitary operations:

(1) A coin flip operation C : HC→HC which “puts” the walker in superposition,
so it walks all possible paths simultaneously.

10.1 Quantum Walks 119

(2) This is followed by a shift operation S : HW →HW the operator responsible
for the actual walk on G.

These operators act as:

C |i,x〉=
{

a |0,x〉+b |1,x〉 if i = 0,

c |0,x〉+d |1,x〉 if i = 1.
(10.2)

S |i,x〉=
{
|0,x+1〉 if i = 0,

|1,x−1〉 if i = 1.
(10.3)

In fact, C can be any element of U(2). Very often the Hadamard operator is chosen
(giving the walker the name “Hadamard walker”), that is

H =
1√
2

(
1 1
1 −1

)
, (10.4)

Note that the coin operator C is termed a “coin” operator because its action on |i,x〉,
i ∈ {0,1}, is to put it in the superposition state

√
p0 |0,x〉+√p1 |1,x〉 and it will be

measured with probability p0 in |0,x〉 and with probability p1 in |1,x〉. If C = H,
then p0 = p1 = 1/2, thus the coin analogy.

The shift operator S can be explicitly described as follows:

S =

(
|0〉〈0|⊗

∞

∑
x=−∞

|x+1〉〈x|
)
+

(
|1〉〈1|⊗

∞

∑
x=−∞

|x−1〉〈x|
)
. (10.5)

Remark. We can equally exchange the order of the Hilbert spaces. In this convention
C ≡ (111|V |⊗C) and S≡ (S⊗1112).

Remark. A step of a quantum walk amounts to the unitary U = SC.

Following Eqs. (10.3) and (241), in Fig. 10.1 we can see the probability distribution
we obtain after performing a quantum walk with 100 steps. There seems to be an
inherit bias towards the right (center at x = 50).

Remark on Bias. The quantum walker’s initial state is the product of the coin state
and the position state. The former state controls the direction in which the walker
moves. Therefore, the choice of coin operator leads to vastly different constructive
and destructive interference patterns.

In the case of Fig. 10.1, the initial coin state and coin operator are chosen such that
the quantum amplitudes add up constructively in one direction and destructively in
the other, and the walker is more likely to move preferentially in the direction where
constructive interference occurs.

120 10 Quantum Walks and Quantum Replacements of Monte Carlo Sampling

Fig. 10.1: Probability distribution of quantum walk, starting at |+,0〉, after different
numbers of steps.

This behavior is in stark contrast to a classical random walk, where the walker has
equal probability of moving left or right at each step, and there is no preference or
bias for either direction. The bias in a quantum walk is a unique characteristic of the
underlying physics.

10.1.3 Quantum walk on a subset of Z

Let us see how this works with an example on a bounded subset of the integer line
with C = H. It is common to assume that the walker starts at position x = 0 with the
coin state being the |0〉 or |1〉 state.

For ease of notation, we denote the r-th application of the quantum walk operator
U by U (r) |ψr−1〉. Following the previous discussion, the quantum walk amounts to
the following set of operations:

Select coin operator C = H

Initialize the state (position of the walker):

10.1 Quantum Walks 121

|000〉= |0〉C⊗|0〉W = |0,0〉 (or |1,0〉)

for r ∈ N repeat U r |000〉 as:
Apply the coin operator: C |000〉
Apply the shift operator: S(C |000〉)

Measure U r |000〉
Listing 10.1: Quantum Walk

Therefore, the initial state is |000〉 ≡ |ψ0〉 and we obtain

|ψ1〉=
|0,−1〉+ |0,1〉√

2
(10.6)

|ψ2〉=
|0,−2〉+ |1,0〉+ |0,0〉− |1,2〉

2
(10.7)

|ψ3〉=
|1,−3〉− |0,−1〉+2(|0〉+ |1〉) |1〉+ |0,3〉

2
√

2
(10.8)

This state is not symmetric around the origin, and the probability distributions will
not be centered at the origin. This is clear from Fig. 10.1. As a matter of fact the
standard deviation of the walker, after r iterations of U is [70]:

σ(r)≈ 0.54r, (10.9)

see Fig. 10.3. This implies that the standard deviation in a coined quantum walk
increases linearly over r, in contrast to the classical case where it grows with the
square root in r.

In a classical random walk, the walker moves randomly through the graph, and its
position becomes more uncertain over time. The standard deviation of its position
typically increases linearly with the number of steps taken. This linear increase sig-
nifies a diffusive spread of the walker. On the other hand, a quantum walk displays
ballistic behavior, which means that it spreads faster than a classical random walk.
In a Hadamard quantum walk, the walker’s position uncertainty (as measured by the
standard deviation) increases roughly quadratically faster with the number of steps
taken, which is a more efficient spreading of the walker over the graph.

-2 -1 0 1 2

|+, 0⟩

Fig. 10.2: Beginning a quantum walk, after the coin operator has been applied, at
|+,0〉, by applying C = H on |0,0〉, on the Z-line.

122 10 Quantum Walks and Quantum Replacements of Monte Carlo Sampling

0 10 20 30 40 50
Time

0

5

10

15

20

25

S
ta

nd
ar

d
D

ev
ia

tio
n

Quantum Random Walk
Classical Random Walk

Fig. 10.3: The standard deviation of a classical versus quantum walk as a function
of the steps.

10.1.4 Quantum Walk on a Complete Graph

Quantum walks can be studied on more generic graphs. In this section, we will study
quantum walks on a symmetric (complete) graph in order to attain more intuition.

Let us pick an easy-to-work-with graph, the complete graph K4 with 4 vertices and
6 edges and perform such search.

Reminder. A complete graph K is an undirected graph in which every pair of dis-
tinct vertices is connected by a unique edge. That is, for each i, j ∈ V (K), there
exists a unique edge (i, j) ∈ E(K).

Classical Random Walks on K4

Let us commence with a classical random walk on K4 wherein we are looking to
“find” the marked vertex #2 (but we do not know it). In Fig. 10.5 we display the
success probability after 1 and 2 steps.

10.1 Quantum Walks 123

1 2 3 4

5 6 7

8

1

2

3

4

5

6

7

8

Fig. 10.4: An asymmetric non-complete graph G = (8,10) and its symmetric com-
pletion G = K8.

Overall, the trend for the success probability continues, and we observe the behavior
of the walker in Fig. 10.6.

Then, for large N, the success probability of 1/2 is reached after O(N) steps.

Quantum Grover Walks on K4

Moving on to quantum walks, we have to implement the coin and shift operators.
At each vertex, we have two pieces of information: the position and the direction,
just like in the case of the Z-walker. Diagrammatically at step 0 we are back at the
left of Fig. 10.5. In total we have 12 amplitudes to consider; see Fig. 10.7. Initially,
we have ai j =

1√
12

for all i, j.

Then, the coin flip operator C, which here is taken to be Grover’s diffusion op-
erator, amounts to marking the state we look for, assigning a negative sign to the
corresponding amplitudes. The marking is done by assuming access to an oracle
O (essentially the same oracle found in Grover’s operator) that is able to perform
this operation. Then, it changes the direction of adjacent red-blue pair vertices, see
Fig. 10.7. Then S reverses the amplitude values along their mean at each vertex. For
example, the mean of the vertex #1 after application of C is

124 10 Quantum Walks and Quantum Replacements of Monte Carlo Sampling

Fig. 10.5: Left: At step 1 the probability that the walker “lands” on vertex #2 is 1/4.
Right: At step 2 the probability that the walker “lands” on vertex #2 is 1/2. The loop
in vertex #2 denotes that this vertex is a trap: it allows us to know the walker landed
on the marked vertex and the walker is not allowed to attain any other state.

Fig. 10.6: The success probability of a classical random walk on symmetric G = K4.

µ1 =
a21 +a13 +a14

3
. (10.10)

Therefore, S amounts to a map S : ai j 7→ a′i j = 2µ12 − ai j, for the three pairs
{21,13,14}. Of course, this is applied to all amplitudes for all vertices. In the sec-
ond step, we already get the amplitude asymmetry resulting from the oracle flipping
the signs of the marked vertex followed by C and then S. As a result, one observes

10.1 Quantum Walks 125

1 2

3 4

a12

a13
a14

a21

a24
a23

a31
a34

a32 a41
a42

a43

1 2

3 4

a12

a13
a14

a21

a24
a23

a31
a34

a32 a41
a42

a43

Fig. 10.7: Left: the state of the quantum walk is a superposition of the amplitudes
ai j ∈C, for all i, j ∈V (K4). Once the oracle is applied the marked state’s amplitudes
obtain a negative sign (marked with blue and in analogy with Grover’s operator).

1 2

3 4

a21

a13
a14

a12

a42
a32

a31
a34

a23 a41
a24

a43

1 2

3 4

a′21

a′13
a′14

a′12

a′42
a′32

a′31
a′34

a′23 a′41
a′24

a′43

Fig. 10.8: Left: Coin operator is applied and reverses the relevant amplitudes. The
shift operator reverses these amplitudes along their means.

that:

probability of success at step 1 =
1
4
= 0.25 (10.11)

probability of success at step 2 =
25
36
≈ 0.7 (10.12)

Overall, for a large number of vertices N, the probability that the walker lands on the
marked vertex is 1/2 is given after π

√
N steps and therefore the run-time is O(

√
N).

This marks another example in which quantum walks portray a quadratic speedup
over classical random walks.

126 10 Quantum Walks and Quantum Replacements of Monte Carlo Sampling

10.1.5 Szegedy Walks

Consider an undirected and unweighted graph G. Szegedy’s quantum walk occurs
on the edges of the bipartite double cover of the original graph. If the original graph
is G, then its bipartite double cover is the graph tensor product G×K2 which du-
plicates the vertices into two partite sets X and Y . A vertex in X is connected to a
vertex in Y if and only if they are connected in the original graph; see Fig. 10.9.

4 3

2

1

4

3

2

1 3

4

2

1

Fig. 10.9: Left: A graph G. Right: The bipartite double cover of G. The double cover
contains double the number of edges.

The Hilbert space of a Szegedy walk, therefore, is C2|E|. Let us denote a walker on
the edge connecting x ∈ X with y ∈ Y as |x,y〉. Then the computational basis is:

|x,y〉 , x ∈ X ,y ∈ Y,x∼ y (10.13)

where x∼ y denotes that the vertices x and y are adjacent. Szegedy’s walk is defined
by repeated applications of the unitary

UP = R2R1, (10.14)

where

R1 = 2 ∑
x∈X
|φx〉〈φx|−111 (10.15)

R2 = 2 ∑
y∈Y

∣∣ψy
〉〈

ψy
∣∣−111, (10.16)

are reflection operators and

10.1 Quantum Walks 127

|φx〉=
1√

deg(x)
∑
y∼x
|x,y〉 (10.17)

∣∣ψy
〉
=

1√
deg(y)

∑
x∼y
|x,y〉. (10.18)

Here, deg(x) is the degree of vertex x and y∼ x denotes the sums over the neighbors
of x, that is ∑y∈Y such that x 6= y. We still did not explain the subscript P in UP. That
stems from the notion of a transition matrix P whose elements pi j provide, at least
in the classical walks, the probability that the walker moves from vertex i to vertex
j. More on this later.

Observe that |φx〉 is the equal superposition of edges incident to x ∈ X , and
∣∣ψy
〉

is the equal superposition of edges incident to y ∈ Y . Here, there is an equivalent
of the “inversion about the mean” operation of Grover’s algorithm, which we also
saw previously in the context of walks over K4. The reflection R1 goes through
each vertex in X and reflects the amplitude of its incident edges about their average
amplitude, and R2 similarly does this for the vertices in Y .

Classically, to search for a marked vertex on G with a classical random walk, one
randomly walks until a marked vertex is found, and then the walker stays at the
marked (absorbing) vertex.

Quantumly, Szegedy’s quantum walk searches by quantizing this random walk
with absorbing vertices and the resulting bipartite double cover. Search is performed
by repeatedly applying the unitary

Ũ = R̃2R̃1, (10.19)

where the tilde distinguishes in that we are searching for absorbing vertices. At
unmarked vertices they act as R̃ j = R j simply by inverting the amplitudes of the
edges around their average at each vertex. At the marked vertices, similarly to the
K4 case, they act by flipping the signs of the amplitudes of all incident edges. The
initial state can be though of as

|ψ0〉=
1√

n(n−1)

n

∑
x=1,x 6=y

|x,y〉 , (10.20)

where n is the number of vertices. Assuming 1 marked vertex (e.g. in Fig. 10.10 that
is vertex #2) the probability to find the marked state |m〉 is

Pm(t) = 〈ψt |m〉〈m|⊗1|ψt〉 , (10.21)

where

|ψt〉= Ũ |ψ0〉 . (10.22)

128 10 Quantum Walks and Quantum Replacements of Monte Carlo Sampling

Then, by explicit computation [71] we find that

pm(t1st time) =
1
2
+

√
1
2n

+O(n−1). (10.23)

4

3

2

1 3

4

2

1

Fig. 10.10: The marked state corresponds to vertex #2 which is an absorbing vertex:
〈2Y |2X 〉= 〈2X |2Y 〉= 0.

10.1.6 Continuous-time Quantum Walks

Let us define the quantum analog of continuous-time random walks that will allow
us later to understand the universality of quantum walks.

Classical continuous-time random walks.

The continuous-time random walk on a graph G = (V,E) with adjacency matrix A
defined as:

Ai j =

{
1, (i, j) ∈ E

0, (i, j) /∈ E
(10.24)

for every pair i, j ∈ V . In this definition we do not allow self-loops therefore the
diagonal of A is zero. There is another matrix associated with G that is of equal
importance, the Laplacian of G defined as:

10.1 Quantum Walks 129

Li j =





−deg(i), i = j

1, (i, j) ∈ E

0, otherwise.

(10.25)

Here, deg(i) denotes the degree of vertex i. Let pi(t) denote the probability associ-
ated with the vertex i at time t. The continuous-time random walk on G is defined
as the solution of the differential equation

d
dt

pi(t) = γ ∑
j∈V

L jk p j(t). (10.26)

where γ ∈ R≥0. This can be viewed as a discrete analog of the diffusion equation.
Observe that

d
dt ∑

j∈V
p j(t) = γ ∑

j,k∈V
L jk pk(t) = 0 (10.27)

This shows that an initially normalized distribution remains normalized; the evolu-
tion of the continuous-time random walk for any time t is a stochastic process. The
solution of the differential equation can be given in closed form as:

p(t) = eLt p(0). (10.28)

Remark. We note that the Laplacian L does not provide the only possible Hamilton-
ian for a quantum walk. It is common, for example, to choose H = −γA (you can
easily check that H = H†). For regular (i.e., deg(j) is independent of j),these two
choices give rise to the same quantum dynamics. However, this is not the case for
more generic graphs.

Continuous-time quantum walks. Eq. (??) is very similar to the Schrödinger equa-
tion

i
d
dt
|ψ〉= H|ψ〉, (10.29)

Instead of probabilities of Eq. (??) we can insert the amplitudes q j(t) = 〈 j | ψ(t)〉
where {| j〉 : j ∈ V} is an orthonormal basis for the Hilbert space. Then, we obtain
the equation:

i
d
dt

q j(t) = ∑
k∈V

L jkqk(t), (10.30)

where the Hamiltonian is given by the Laplacian L. Since the Laplacian is a Hermi-
tian operator, these dynamics preserve normalization in the sense that d

dt ∑ j∈V
∣∣q j(t)

∣∣2 =
0. The solution of reads:

U(t) = e−iHt = e−iLt , (10.31)

https://en.wikipedia.org/wiki/Diffusion_equation

130 10 Quantum Walks and Quantum Replacements of Monte Carlo Sampling

and the evolution of an initial state from t = 0 to some arbitrary time t is given by:

|ψ(t)〉=U(t)|ψ(0)〉. (10.32)

Quantum Walk on the Hypercube. This is another example where the differ-
ence between random and quantum walks becomes tremendous. Consider the
Boolean hypercube, that is, the graph with vertex set V = {0,1}n and edge set
E = {(x,y) ∈V ×V |∆(x,y) = 1}, where ∆(x,y) denotes the Hamming distance be-
tween strings x and y. When n = 1, the hypercube is simply an edge, with adjacency
matrix

σx :=
(

0 1
1 0

)
. (10.33)

For general n, the graph is the Cartesian product of this graph with itself n times,
and the adjacency matrix is

A =
n

∑
j=1

σ
(j)
x , (10.34)

where σ
(i)
x denotes the operator acting as σx on the ith bit, and as the identity on

every other bit. Consider the quantum walk with the Hamiltonian given by A. Since
the terms in the above expression for the adjacency matrix commute, the unitary
operator that describes the evolution of this walk is simply

e−iAt =
n

∏
i=1

e−iσ (i)
x t

=
n⊗

i=1

(
cos t −i sin t
−i sin t cos t

)

≡U(t).

(10.35)

Note that U(π/2) flips every bit of the state (up to an overall phase), resulting in a
mapping of any input state |x〉 to the state |x̄〉 corresponding to the opposite vertex
of the hypercube.

In contrast, consider the continuous-time (or discrete-time) random walk starting
from the vertex x. The probability of reaching the opposite vertex x̄ is exponentially
suppressed at any time, since the walk rapidly reaches the uniform distribution over
all 2n vertices of the hypercube.

10.1 Quantum Walks 131

10.1.7 Exponential speedups using Quantum Walks

In this section we will briefly introduce the Hidden Flat Problem (HFP) and how
quantum walks offer an exponential speedup. This is an algorithm that aims to find
hidden nonlinear structures over Galois fields1 Fp, for p prime.

You have already heard about Schor’s algorithm and its successes:

1. Factoring (see Lecture 9 for the implications thereof).

2. Discrete log.

In the former, the hidden structure here amounts to period finding over Z that is, a
hidden linear structure in one dimension, while for the latter it amounts to finding a
hidden line in Zp×Zp.

In the HFP the goal is to determine a flat (e.g. a line) for spheres of radius r = 1,
given a uniform superposition over points in Fd

q . In this context, we are promised
that the centers of the spheres lie on an unknown flat H, and the goal is to determine
this flat using oracular access.

Problem Details

Fig. 10.11: Equidistant circles of various radii over F2
q that lie on an unknown flat

H on which the radii sit at. Note that the density of points in each sphere is approx-
imately the same since they live on a Galois field.

For that, we need to first introduce some weird notation. Let St
r(Fd

q) denote the
sphere of radius r with center t over Fd

q . Additionally, for a finite set S, we denote
by

|S〉 :=
1√
|S|∑s∈S

|s〉 (10.36)

1 Galois fields over primes are also called prime fields. For each prime number p, the prime field
Fp of order p is constructed as the integers modulo p, that is Z/pZ. See Chapter 5, Sec. 5.1.

132 10 Quantum Walks and Quantum Replacements of Monte Carlo Sampling

the normalized uniform superposition over elements of S. Using two oracles2 f1, f−1
– let us assume they exist indeed; they are concretely defined in the context of the
Hidden Radius Problem [72]– it is possible to construct the state

ρr :=
1
qd ∑

t∈Fq

|Sr + t〉〈Sr + t| . (10.37)

The flat we are looking for is such a discrete set H ⊆ Fq allowing us to construct

ρ1 :=
1
|H| ∑

h∈H
|S1 +h〉〈S1 +h| (10.38)

The goal is to determine H by making measurements on this state. To accomplish
this, a quantum walk is implemented that moves the amplitude from |S1 +h〉 to |h〉.
If a sufficiently large fraction of the amplitude is moved, then the hidden flat can be
determined by (classically) solving a noisy linear algebra problem.

To move amplitude from unit spheres to their centers, we will use a continuous-time
quantum walk on the Winnie-Li graph.

Fig. 10.12: A Winnie-Lie graph over F2
p centered at x = 0. The edges are not shown.

This graph has vertex set Fd
q , and edges between points x,x′ ∈Fd

q with ∆ (x− x′) = 1.
Thus its adjacency matrix (that serves as a Hamiltonian) is

A := ∑
x∈Fd

q

∑
s∈S1

|x+ s〉〈x| (10.39)

2 C.f. Lecture 4, Sec. 5.2 “The Oracle”.

10.1 Quantum Walks 133

The continuous-time quantum walk for time t is simply the unitary operator U(t) =
e−iAt . This unitary operator can be efficiently implemented on a quantum computer
provided that we can efficiently transform into the eigenbasis of A, and can effi-
ciently compute the eigenvalue corresponding to a given eigenvector.

The adjacency matrix (10.39) has eigenvectors

|k̃〉 :=
1√
qd ∑

x∈Fd
q

ω
k·x
p |x〉 , (10.40)

for k ∈ Fd
q . Therefore, by using the Fourier transform of

U :=
1√
qd ∑

x,k∈Fd
q

ω
k·x
p |k〉〈x| (10.41)

we can transform to the eigenbasis of A where the corresponding eigenvalues
are given by the Fourier transform of a unit sphere λk (whose precise form is
computable). Almost all of these eigenvalues can be computed with complexity
O
(√

qd−1
)

.

Then, the main result is the following algorithm:

Require ρH

for t = 1/
√

qd−1 logq:
Perform a continuous-time quantum walk with U = e−iAt

Measure in the computational basis

Listing 10.2: Quantum Flat Problem using Quantum Walks

Each point in H occurs with probability |H|−1
(

1/ logq+O
(

1/ log3/2 q
))

, and any

point not on H occurs with probability O
(
q−d
)
.

With the above in mind, and assuming d = O(1) and odd, there is a quantum algo-
rithm to determine the hidden flat of centers in time poly(logq). This provides an
exponential speedup over classical algorithms.

While this algorithm is not the most trivial to follow, it is a remarkable example on
the exponential speedup that quantum walks provide for certain problems.

Further quantum algorithms for algebraic problems are given in[73], an excellent
survey.

134 10 Quantum Walks and Quantum Replacements of Monte Carlo Sampling

10.1.8 Universality of Quantum Walks

In earlier lectures you have seen that quantum computation with time-independent
Hamiltonians provides a universal model of computation. In this section, we will ar-
gue that quantum walks form a universal model of computation. Childs [64] showed
that even a restricted version of this model, the “universal computation graph,” forms
a universal model for quantum computation. This means that any problem that can
be solved by a common gate-based quantum computer can also be solved by such a
quantum walk (similarly to programable quantum gate arrays or to adiabatic quan-
tum computing, as we discuss in the Chapter 12).

This result shows the computational power of the quantum walk and that, at least
in principle, any quantum algorithm we have seen previously can be recast as a
quantum walk algorithm. Further improvements, in terms of complexity theoretic
issues, were made in [65] using multi-particle walks.

To understand universality, we consider a (continuous) walker on Z, like in Sec.
10.1.3, where the basis states are |x〉. The eigenstates of the adjacency matrix are
the (normalized) momentum states |k〉, that is, the states that satisfy

〈x|k〉= e−ikx, (10.42)

with 〈k|k′〉 ∼ δ (k− k′). The reason for this is deeply routed in physics (we will not
go into details here). The point is that, |k〉 are the momentum eigenstates which
are used to understand how scattering (particle interactions) works in quantum me-
chanics (and quantum field theory). In momentum space, with orthogonal states
|φk〉 ≡ |k〉, we know that

|k〉= ∑
x∈Z

e−ikx |x〉 . (10.43)

These are also referred to as momentum states however, they are not normalizable
(instead, we can think of them as maps E(G)→ C. Using the adjacency matrix as
the Hamiltonian H, it follows that

H |k〉= 2cos(k) |k〉 . (10.44)

Next, let us consider a finite graph G and create out of it an infinite graph with
adjacency matrix H by attaching semi-infinite lines to M of its vertices.

The states living on the j-th line are labeled as |x, j〉 where |0, j〉 corresponds to the
state in G and where x is allowed to walk along the j-th line. The adjacency matrix
of this graph is denoted by H and each of its eigenstates must be a superposition of
the form of Eq. (10.43) with momenta k taking any of the values:

• ±k with eigenvalues 2cos(k),

10.1 Quantum Walks 135

j0 j1

j2

j3

Fig. 10.13: The original graph G (thick) corresponds to the one with colored vertices
{ j0, j1, j2, j3} and corresponding edges. By attaching semi-infinite lines (vertices
with edges) to M = 4 vertices of G we construct a new infinite graph. The state of
vertex j` is |0, `〉with each subsequent edge on the same line having a corresponding
state |x, `〉. We call the expanded graph a universal computation graph.

• k =±iκ and eigenvalue 2cosh(κ),

• k =±iκ +π and eigenvalue −2cosh(κ).

Here κ ∈ R≥0. We can truncate |k〉 such that it has support over a finite number of
vertices. Denote the truncated state supported over L vertices as

|k〉L :=
1√
L

L

∑
x=1

e−ikx |x〉 . (10.45)

In the physics literature, such states are called wave packets (this is just terminology
originating from physics; there is no physical wave of any form or size propagating
through any physical medium here) and the sign of the exponential denotes the
direction of the wave; see Fig. 10.14. The infinite line in Fig. 10.14 becomes a

-4 -3 -2 -1 0 1 2 3 4

k −→

Fig. 10.14: A wave packet supported over 2 vertices moving coming from the (far)
left.

universal computation graph by inserting a finite graph G at, say, vertex 0. As seen

136 10 Quantum Walks and Quantum Replacements of Monte Carlo Sampling

in Fig. 10.15. In principle, one can prepare a wave packet as the one with momentum
k and let it propagate.

−4 −3 −2 −1 1 2 3 4
G

k →

Fig. 10.15: Inserting a finite graph G into the integer line, yields a one-dimensional
universal computation graph.

This amounts to a dynamic scattering process. Let us denote this incoming (to G)
wave packet as

|w(k)〉L if the wave packet comes from the left, (10.46)

|w(k)〉R if the wave packet comes from the right. (10.47)

The dynamics correspond to the following equations:

〈xL|wL(k)〉= e−ikx +RL(k)eikx (10.48)

〈xR|wL(k)〉= TL(k)eikx (10.49)

H |w(k)〉= 2cos(k) |w(k)〉 , (10.50)

where RL is a reflection coefficient and TL is the transfer coefficient. Similarly, we
can write down the equations for right-coming wave packets.

−4 −3 −2 −1 1 2 3 4
G

← RL TL →

Fig. 10.16: Part of the wave packet will be reflected and part will be transfered
through G. The coefficients RL,R,TL,R are called reflection and transfer coefficients.

For every scattering process, as the one above, there is a scattering matrix S. In this
case,

S =

(
RL TL
RR TR

)
, (10.51)

and it is an element of U(2). More generally, an arbitrary number of semi-infinite
lines can be considered as in Fig. 10.13 with an arbitrary graph G. If there are N
semi-infinite lines, then S ∈U(N).

10.1 Quantum Walks 137

We are now in a position to understand why quantum walks form a universal
model of quantum computation. It is possible to encode a qubit state by consider-
ing two universal computation diagrams in one dimension as in Fig. 10.17.

: |1⟩
-4 -3 -2 -1 0 1 2 3 4

: |0⟩
k = π/4

k = π/4

Fig. 10.17: A single qubit can be represented by two infinite lines. Crucially the
momentum must be equal to π/4. The qubit is in the |0〉 state if the wavepacket
propagates in the top line and in the |1〉 state if at the bottom.

As before, we can insert a graph G with 4 semi-infinite lines as in Fig. 10.18.

−4 −3 −2 −1 1 2 3 4G
|0⟩out
|1⟩out

|0⟩in
|1⟩in

Fig. 10.18: A two-qubit unitary U can be encoded through G to be implemented as
a quantum walk.

Then, a unitary is implemented by inserting a graph G such that its corresponding
S-matrix3 has the structure

S =

(
0 U†

U 0

)
, (10.52)

where U ∈U(2). Therefore, a unitary U is implemented by the scattering process of
quantum walkers, through a graph G that encodes it. Childs [64] showed that with
the above process, it is possible to implement the unitaries

Uπ/4 =

(
e−iπ/4 0

0 1

)
, Ub =−

i√
2

(
1 −i
−i 1

)
, (10.53)

3 The S-matrix relates the initial and final (asymptotic) states of a quantum system involved in scat-
tering processes. Essentially, it encodes the probability amplitudes for different scattering channels
or processes, which can be used to calculate various observables such as cross-sections and decay
rates in particle physics.

138 10 Quantum Walks and Quantum Replacements of Monte Carlo Sampling

which form a universal gate set for one-qubit operations; up to a certain precision ε ,
any single-qubit gate can be implemented by a string of these two unitaries.

|0⟩in |0⟩out

|1⟩in |1⟩out
|0⟩in |0⟩out

|1⟩in |1⟩out

Fig. 10.19: The graphs encoding Uπ/4 and Ub [64].

This construction was further generalized to n-qubit gates proving that quantum
walks form a universal model of computation.

G

Fig. 10.20: The graph G obtained by attaching N semi-infinite paths to a graph G.

By considering a finite graph G and attaching N/2 = n pairs of semi-infinite paths,
we are able to encode n qubits. Eventually, it is possible to encode any n-qubit
unitary to a graph G to obtain a quantum walk equivalent of any arbitrary circuit.

Later, [65] showed that continuous-time multi-particle quantum walks on such
graphs are also universal. They too, are generated by a time-independent Hamilton-
ian with a term corresponding to a single-particle quantum walk for each particle,
along with an interaction term. Interestingly, the authors suggest that multi-particle

10.1 Quantum Walks 139

figures/fig_1dfinal.pdf

Fig. 10.21: If G is chosen to encode a desired unitary U ∈U(n) the circuit can be
implemented by a quantum walk.

quantum walks can be used, in principle, to build a scalable quantum computer with
no need for time-dependent control (e.g. for pulse scheduling).

140 10 Quantum Walks and Quantum Replacements of Monte Carlo Sampling

10.2 Quantum Amplitude Estimation and Monte Carlo
Sampling

Quantum Amplitude Amplification (QAE) was discovered by Gilles Brassard, Peter
Hoyer, Michele Mosca and Alain Tapp in [59] and generalizes Grover’s algorithm,
as we will describe below. In what follows, we proceed to explain QAE directly
through the lens of an algorithm candidate to replace Monte Carlo sampling tech-
niques following closely Montanaro’s work [74].

The reason lies in the speedup provided by Quantum Phase Estimation.

Classical Monte Carlo Sampling. For simplicity, let us consider a one-dimensional
random variable X and a function f : R → [0,1]. Assume that the mean µ =

E[f (X)] < ∞ and the standard deviation σ2 = V[f (X)] < ∞ are well defined. The
Central Limit Theorem ensures that, given an i.i.d. collection of random variables
(X1, . . . ,XN), following the same distribution as X , for N→∞, the quantity

√
N µ̂−µ

σ

converges to a mean-zero Gaussian with unit variance N (0,1). Here, µ̂ refers to
the empirical mean. This implies that for any ε > 0 we estimate that

lim
N→∞

P(|µ̂−µ| ≤ ε) = lim
N→∞

P
(
|N (0,1)| ≤ ε

√
N

σ

)
. (10.54)

In turn, this implies that for any z > 0 and δ ∈ (0,1), in order to obtain an estimate
of the form P(|µ̂−µ| ≤ ε), N = O(1/ε2) samples are required.

QAE Replacement of Monte Carlo Sampling.

Consider a unitary operator A that acts on an n-qubit register as follows:

A |0〉⊗n = ∑
x∈{0,1}k

ax |ψx〉 |x〉 , (10.55)

for k < n, where |ψx〉 is a quantum state consisting of n− k qubits and |x〉 is a state
consisting of k qubits. We are interested in A because it will allow us to prepare a
specific quantum state that encodes a distribution of interest, with encoded data in
the states |x〉, for which we want to estimate certain properties, such as the mean or
other moments.

Furthermore, the states {|ψ〉x}x∈{0,1}k are assumed to be orthogonal. Next, assume
that there is a unitary W acting as follows:

W |x〉 |0〉= |x〉
(√

1− f (x) |0〉+
√

f (x) |1〉
)
. (10.56)

This unitary is introduced to create a quantum state that encodes the function f (x),
which represents the property or condition of interest. The quantum state that it
creates captures the information about the properties pf f (x) in the amplitudes of
the ancilla qubits |0〉 and |1〉.

10.2 Quantum Amplitude Estimation and Monte Carlo Sampling 141

Something quite interesting happens when one combines the two operators in the
following way:

G := (111n−k⊗W)(A ⊗111k). (10.57)

Applying G to a |0〉⊗(n+1) qubit register yields the following state:

|ψ〉= G |0〉⊗(n+1) (10.58)

= ∑
x∈{0,1}k

ax |ψx〉 |x〉
(√

1− f (x) |0〉+
√

f (x) |1〉
)
, (10.59)

It is customary to refer to these two states as the “bad state”:

|ψbad〉 := ∑
x∈{0,1}k

ax
√

1− f (x) |ψx〉 |x〉 , (10.60)

and the “good state”:

|ψgood〉 := ∑
x∈{0,1}k

ax
√

f (x) |ψx〉 |x〉 . (10.61)

By considering the projection operator

P := 111n⊗|1〉〈1|, (10.62)

we can measure the probability that the last state is the |1〉 state,

〈ψ|P†P|ψ〉= |ψgood|2. (10.63)

From the definition of a good state, we can further see that

|ψgood|2 = ∑
x∈{0,1}k

|ax|2 f (x), (10.64)

which corresponds, precisely, to the mean µ = E(f (X)) (note that the random vari-
able X is discretized, as is common with Monte Carlo sampling, to fit the discrete
probability of X being in x).

The whole process of estimating µ for a distribution f , therefore, amounts to run-
ning the circuit that represents G , measuring the output on the computational basis
(this step requires QFT†) and determining the probability of observing the state |1〉.
Quadratic Speedup of Monte Carlo Sampling

The speedup arises from [59, Theorem 12]. Concretely, assume access to a unitary

U |0〉=
√

1−µ |ψbad〉+
√

µ |ψgood〉 . (10.65)

Then, for any N ∈ Z≥0, the QAE algorithm outputs the estimate µ̂ such that

|µ̂−µ| ≤ 2π

√
µ(1−µ)

N
+

π2

N2 , (10.66)

with probability at least 8/π2 by quering the algorithm exactly N times.

By using the so-called “Powering Lemma” which states (approximately) that for
any δ ∈ (0,1), it is sufficent to iterate with U approximately O(log(1/δ)) times to
obtain

P(|µ̂−µ| ≤ ε)≥ 1−δ . (10.67)

Putting everything together, we realize that it is required to iterate G approximately
O(N log(1/δ)) times to obtain the guarantee of Eq. (10.67), where

ε = 2π

√
µ(1−µ)

N
. (10.68)

That is, for fixed δ the computational cost to obtain (10.67) is O(1/ε) which is
quadratically better than the N = O(1/ε2) samples required by classical Monte
Carlo.

Require a probability distribution, a moment f,
samples x.

Require a unitary A that acts on n qubits, such that
0≥ µ ≥ 1, t ∈ Z, δ ∈ R>0.

Require a unitary W that acts on k+1 qubits

for t iterations repeat the QAE unitary:

G t |0〉⊗(n+1) = [(111n−k⊗W)(A ⊗111k)]
t |0〉⊗(n+1)

Perform QFT†

Measure in the computational basis the probability the
last qubit is |1〉

Listing 10.3: QAE for Monte Carlo sampling

Chapter 11

Adiabatic Quantum Computing and Practical
Implementations

Outcomes In this chapter you will learn about Adiabatic Quantum Computing, an
alternative model of quantum computation, a specific form of which, Quantum An-
nealing, is a candidate for showcasing quantum advantage in the near term future.
Furthermore, you will learn that this model of quantum computation is actually uni-
versal.

11.1 Adiabatic Quantum Computing

Background. We have already seen the quantum Turing machine (QTM) in Chapter
7, the quantum circuit model (QCM) in Chapters ?? and the quantum random walk
(QRW) model in Chapter ?? and we have further discussed their universality. In
this Chapter we are introducing another model of quantum computation, adiabataic
quantum computation (AQC), and prove it is another universal model of quantum
computation.

Comparing adiabatic quantum computation with QCM, as the most intuitive and
practically achievable model, the idea behind AQC is quite distinct. While in the
QCM a computation (in principle) evolves along the entire Hilbert space and is
encoded into a series of unitary quantum logic gates, in AQC the computation pro-
ceeds from an initial Hamiltonian H0 whose ground state is easy to prepare, to a
final Hamiltonian H1 whose unknown ground state encodes the solution to the com-
putational problem. The adiabatic theorem [75] ensures that a quantum system that
begins in the nondegenerate ground state of a time-dependent Hamiltonian H0 will
remain in the instantaneous ground state provided the Hamiltonian changes suffi-
ciently slowly. A precise description is given in Theorem ??.

The study of adiabatic quantum computation was initiated several years ago by Farhi
et. al. [76], who suggested a novel quantum algorithm for solving classical optimiza-

143

144 11 Adiabatic Quantum Computing and Practical Implementations

tion problems such as Satisfiability (SAT) as well as the hope to achieve speedups
for NP-complete problems. [FILL IN]

Definition 11.1 (k-local Hamiltonian). A k-local Hamiltonian acting on a system
of n qudits with local dimension d is a Hermitian positive semidefinite operator H
with a decomposition

H =
m

∑
i=1

hi

of local terms hi, where each term satisfies ‖hi‖ ≤ 1 and only acts nontrivially on at
most k qudits.

Definition 11.2 (Adiabatic Quantum Computation). Consider two k-local Hamil-
tonians H0 and H1, acting on n-th tensor power of a d-dimensional Hilbert space
with d ≥ 2. Assume that the ground state of H0 is unique and is a product state.
Then, a k-local adiabatic quantum computation, specified by {H0,H1} amounts to
a transformation of the ground state |0〉H0

of H0 to a state |0〉H1,ε
that is ε-close in

`2-norm to the ground state of H1 := H1,0. For this a schedule function s is required.
Specifically, s is a map s(t) :

[
0, t f

]
7→ [0,1] and t f is the smallest time such that the

final state of an adiabatic evolution generated by H(s) = (1− s)H0+ sH1 for time t f

(run time) is ε-close in `2-norm to the ground state of H1.

A few remarks are in order. First, Ref. [77] required uniqueness of |0〉H1
but it was

later understood it is not a strict requirement. Secondly, as noted in [77], it may be
useful to allow for more general “paths” between H0 and H1, e.g., by introducing
an intermediate “catalyst” Hamiltonian that vanishes at s = 0 and s = 1. This is a
concept closely related, to some modern advances in adiabatic quantum computing,
specifically, the inclusion of counter-diabatic terms (see Sec. ??).

Run time of AQC Let ∆ be the minimum eigenvalue gap between the ground state
and the first excited state of the Hamiltonian H1 [78]. Formally:

Definition 11.3 (Spectral Gap). The spectral gap of a Hamiltonian H is defined to
be the difference ∆(H)≡ λ2−λ1 ≥ 0 of its smallest two eigenvalues.

The run time t f of AQC scales at worst as 1/∆ 3[citation needed]. However, if the H0 is
varied sufficiently smoothly, one can improve this to O

(
1/∆ 2

)
up to a polylogarith-

mic factor in ∆ [79].

These bounds on the spectral gap ∆ are useful indications for practical approaches
of AQC. However,determining whether a Hamiltonian has a

Spectral Gap While these are useful sufficient conditions, they involve bounding
the minimum eigenvalue gap, the spectral gap, of a complicated many-body Ham-
iltonian, a notoriously difficult problem. The spectral gap is a traditionally impor-
tant quantity in condensed matter physics connected to the occurence of topological
quantum phase transitions among other phenomena [FILL IN].

11.2 The Adiabatic Theorem 145

Problem 11.1 (Spectral Gap). Given a Hamiltonian H of a quantum many-body
system, is it gapped or gapless?

The problem was proven to be undecidable [80] by constructing a Hamiltonian
whose ground state encodes the evolution of a quantum phase estimation algo-
rithm (see Chapter ??) followed by a universal Turing machine. The authors of
[80] showed that spectral gap depends on the outcome of the corresponding halting
problem which is undecidable in any uniform model of computation. Of course, it is
possible for particular cases of a problem to be solvable even when the general prob-
lem is undecidable. Some examples are known where the spectral gap analysis can
be carried out, for example it is possible to perform Grover search using AQC where
the
√

N speedup is preserved [81]. Furthermore, important families of Hamiltonians
in physics have the “gap property”, meaning that the spectral gap in the limit of large
system size of the system n→ ∞ (thermodynamic limit) where n is the dimension
of the Hilbert space, is lower-bounded by a constant[citation needed]. One such exam-
ple is the frustration-free Affleck-Kennedy-Lieb-Tasaki (AKLT) chain [82]. More
generally, the occurance of gap vs gapless Hamiltonians is an open area of research
[83, 84, 85].

11.2 The Adiabatic Theorem

The adiabatic theorem comes in a range of forms. There exists approximate versions
and rigorous versions. We will focus on the latter, in particular the proof of Ambainis
and Regev [86].

Consider a time-dependent Hamiltonian H(s),0≤ s≤ 1, where H(0) corresponds to
the initial Hamiltonian and of H(1) to the final Hamiltonian. For H, denote by ‖H‖
to denote maximum (operator) norm maxs∈[0,1] ‖H(s)‖. Let |ψ(s)〉 be an eigenstate
of H(s) with eigenvalue γ(s), H |ψ(s)〉= γ(s) |ψ(s)〉. As discussed previously, in the
context of adiabatic quantum computing usually |ψ(s)〉 is chosen to be the ground
state of H(s). Adiabatic evolution for time T means that the system is initialized
in the state |ψ(0)〉 := |ψ〉0 and being acted uponby the continuously varying Ham-
iltonian H(t/T) for times t ∈ [0,T]. According to the adiabatic theorem, the final
state of the system to be close to |ψ(1)〉 := |ψ〉1.

Theorem 11.1 (Adiabatic Quantum Theorem, paraphrasing Theorem 2.1 [86]).

Consider H(s),0 ≤ s ≤ 1, |ψ(s)〉 one of the eigenstates of H, and γ(s) the corre-
sponding eigenvalue. Assume that for any s ∈ [0,1], all other eigenvalues of H(s)
are either smaller than γ(s)−λ or larger than γ(s)+λ (i.e., there is a spectral gap
of λ around γ(s)). Consider the adiabatic evolution given by H and |ψ〉 applied for

https://en.wikipedia.org/wiki/AKLT_model

146 11 Adiabatic Quantum Computing and Practical Implementations

time T . Then, the following condition is enough to guarantee that the final state is
at distance at most δ from |ψ(1)〉 :

T ≥ 105

δ 2 ·max

{
‖H ′‖3

λ 4 ,
‖H ′‖ · ‖H ′′‖

λ 3

}
.

This implies that as long as H has a 1/poly spectral gap around γ , we can reach a
state that is at most 1/poly away from |ψ(1)〉 in polynomial time. Furthermore, it
might be possible to improve the dependence on λ to λ 3 or even λ 2.

Proof. TO BE FILLED BASED ON [86]: https://arxiv.org/pdf/quant-ph/0411152.pdf
ut

Gapped spin systems. Ref. [87] proved a version of the adiabatic theorem for
gapped ground states of interacting quantum spin systems, under assumptions that
remain valid in the thermodynamic limit.

11.3 Adiabatic Quantum Computation is Universal

TO BE FILLED BASED ON [77]

In this section we will show that AQC is universal, just like the circuit model. For
that, use Def. 11.1 and 11.2, AQC with a k-local Hamiltonian. However, let us
slightly refine these definitions so as to merge them to a new one that will be su-
ficient for what follows.

Definition 11.4 (AQC with k-local Hamiltonians). A k-local AQC (n,d,Hinit ,Hfinal ,ε)

is specified by two k-local Hamiltonians, Hinit and Hfinal acting on n d-dimensional
states (i.e., if d = 2 they are qubits), such that both Hamiltonians have unique ground
states. The ground state of Hinit is a tensor product state. The output is a state that is
ε-close in `2-norm to the ground state of Hfinal. Let T be the smallest time such that
the final state of an adiabatic evolution according to H(s) := (1− s)Hinit + sHfinal
for time T is ε-close in `2-norm to the ground state of Hfinal . The running time of
the adiabatic algorithm is defined to be T ·maxs ‖H(s)‖.

Quantum Gate Model to AQC The universality theorem can be proved by simu-
lating a quantum circuit with L (two-qubit) gates on n qubits by an adiabatic com-
putation on n+L qubits. The opposite direction can also be shown [76].

We will show this by considering 5-qubit interactions. (However, it is possible to
reduce it to 2-qubit interactions [88, This is the same reference which shows that
the 2-local Hamiltonian problem is QMA-hard].)

https://arxiv.org/pdf/quant-ph/0411152.pdf

11.3 Adiabatic Quantum Computation is Universal 147

Theorem 11.2 (From Gate Model to AQC). Given a quantum circuit on n qubits
with L 2-qubit gates implementing a unitary U and ε > 0 , there exists a 5-local
adiabatic computation (n+ 2,2,Hinit,Hfinal,ε) whose running time is poly(L,1/ε)

and whose output is ε-close to U |0〉n = U |0〉⊗n. Additionally, Hinit and Hfinal can
be computed by a polynomial time Turing machine.

The Hamiltonian we need, to show the result above, is defined in [89] and we will
explain it now. We begin by defining a state

|γ`〉 := |α(`)〉⊗ |1`0L−`〉c . (11.1)

Here |α(`)〉 denotes the state of the circuit after the application of the `-th gate (and
the superscript c denotes the clock qubits, to be explained shortly, required for the
proof of the theorem). The notation |1`0L−`〉 means that there are ` qubits in the
state |1〉 followed by (L− `) qubits in the state |0〉.
Using this “special” state we now to discuss the Hamiltonians Hinit and Hfinal . These
Hamiltonians will have ground states |γ0〉 = |0n〉⊗

∣∣0L
〉c and |η〉 = 1√

L+1 ∑
L
`=0 |γ`〉

respectively [89].

We know, therefore, what our initial and final eigenstates need be. The two Hamil-
tonians we need to explain will have the following form.

Hinit := Hclock init +Hinput +Hclock

Hfinal :=
1
2

L

∑
`=1

H`+Hinput +Hclock
(11.2)

Let us remarks that the terms in the two Hamiltonians are defined in such a way that
the only state whose energy is 0 is the desired ground state [77]. This is done by as-
signing an energy penalty to any state that does not satisfy the required properties of
the ground state. These different Hamiltonian terms, which correspond to different
properties of the ground states, are described in what follows.

The adiabatic evolution, as expected, follows the time-dependent Hamiltonian

H(s) = (1− s)Hinit + sHfinal . (11.3)

Looking at the two Hamiltonians (11.2), as s goes from 0 to 1, Hclock init is slowly
replaced by 1

2 ∑
L
`=1 H` while Hinput and Hclock are held constant. Now let us discuss

these Hamiltonians.

• First, Hclock checks that the clock’s state is of the form |1`0L−`〉c for some 0 ≤
`≤ L (thus “clock”).

148 11 Adiabatic Quantum Computing and Practical Implementations

11.4 Stoquastic Hamiltonians and Quantum Annealing

A restricted version of adiabatic quantum computing, termed as quantum stochastic
optimization, appeared initially in the context of combinatorial optimization prob-
lems [90] and was later renamed quantum annealing [91]. Several seminal works [],
conceptualized quantum annealing as an algorithm, rather than a (quantum) com-
putational model, that utilizes simulated quantum fluctuations and quantum tunnel-
ing, in contrast to thermal fluctuations. Consequently, this methodology furnishes a
quantum-inspired adaptation of the Simulated Annealing (SA) algorithm [92].

Quantum speedup with quantum annealing [93]

Practical Implementation with D-Wave [94]

11.5 Counterdiabatic Driving

The counterdiabatic (CD) driving, one of the proposed techniques within the frame-
work that is generally refered to as “shortcuts to adiabaticity
(STA) [95, 96], was introduced to speed up adiabatic evolution of a reference ini-
tial Hamiltonian H0(t) by adding certain Hamiltonian terms suitable to suppress
possible non-adiabatic transitions. The CD driving paradigm was worked out and
developed systematically in [97, 98, 99] using control fields and then rediscovered
in a different but equivalent way as “transitionless tracking” in [100]. The latter,
[100] is the one that forms the basis of modern CD-based algorithms.

Berry’s formulation. The starting point is a reference Hamiltonian in the spectral
basis

H0(t) = ∑
n

En(t)|n(t)〉〈n(t)|. (11.4)

We adopt for simplicity a notation appropriate for a discrete (real) spectrum and no
degeneracies. Here, the state |n(0)〉 which is initially an eigenstate of H0(0), will
continue to be so under slow enough driving with the form

|ψn(t)〉= eiξn(t)|n(t)〉, (11.5)

where the adiabatic control fields ξn(t) are assumed to be known or can be found.
Then, one seeks a Hamiltonian H(t) for which the approximate states |ψn(t)〉 be-
come the exact evolving states,

ih̄∂t |ψn(t)〉= H(t) |ψn(t)〉 . (11.6)

11.5 Counterdiabatic Driving 149

This Hamiltonian H(t) is constructed solving

H(t) = ih̄U̇U† (11.7)

One obtains then

U(t) = ∑
n

eiξn(t)|n(t)〉〈n(0)|, (11.8)

so that an arbitrary state evolves as

|ψ(t)〉= ∑
n

eiξn(t)|n(t)〉〈n(0)|ψ(0)〉. (11.9)

By substituting Eq. (11.8) into Eq. (11.7), or alternatively differentiating Eq. (11.9),
the Hamiltonian becomes

H(t) = H0(t)+HCD(t), (11.10)

where

HCD(t) = ih̄∑
n

(
|∂tn(t)〉〈n(t)|− 〈n(t)|∂tn(t)〉 |n(t)〉〈n(t)|

)
. (11.11)

Note that HCD is Hermitian and nondiagonal in the |n(t)〉 basis.

Exercise 11.1. Derive Eq. (11.11).

From Eq. (11.8) the unitary evolution operator is

U(t) = ∑
n

eiξn(t) |n(t)〉〈n(0)| . (11.12)

We differentiate it with respect to time to obtain

U̇(t) = ∑
n

(
iξ̇n(t)eiξn(t) |n(t)〉〈n(0)|+ eiξn(t) |ṅ(t)〉〈n(0)|

)
. (11.13)

To find the Hamiltonian H(t), we will multiply both sides of the Schrödinger equa-
tion by U†(t) on the right to isolate H(t). The adjoint of U(t), denoted U†(t), is
given by

U†(t) = ∑
m

e−iξm(t) |n(0)〉〈n(t)| , (11.14)

so we have
H(t) = ih̄U̇(t)U†(t). (11.15)

Substituting U̇(t) from Eq. (11.13) into the above equation gives

H(t)= ih̄∑
n

(
iξ̇n(t)eiξn(t) |n(t)〉〈n(0)|+ eiξn(t) |ṅ(t)〉〈n(0)|

)(
∑
m

e−iξm(t) |n(0)〉〈n(t)|
)
.

(11.16)

As a simple example of H0 and HCD, consider a two-level system with reference
Hamiltonian

H0(t) =
h̄
2

(
−∆(t) ΩR(t)
ΩR(t) ∆(t)

)
,

where ∆(t) is the detuning and ΩR(t) is the real Rabi frequency. The counterdiabatic
Hamiltonian has the form

11.6 Universality and Controllability

An alternative notion of universality exists in the literature. This strong notion is
algebraic, wherein a system is called universal if its generating Lie algebra is proven
to span su(2n) for n qubits. We call this controllability.

Chapter 12

Variational Quantum Algorithms

12.1 Randomized Algorithms

Background. Colloquially, randomized algorithms [101] are algorithms whose
evolution depends on random choices, in contrast to deterministic algorithms which
decide how to evolve based on their input only. One such example is, of course,
classical Monte Carlo, which may produce wrong output (but the error probability
can be made appropriately small, actually negligible).

Recall that a randomized algorithm is one that receives, in addition to its input data,
a stream of random bits, represented by a string x ∈ {0,1}n that it can use for the
purpose of making random choices. Even for a fixed input, different runs of a ran-
domized algorithm may give different results; thus it is inevitable that a description
of the properties of a randomized algorithm will involve probabilistic statements.
For example, even when the input is fixed, the execution time of a randomized al-
gorithm is a random variable.

Why consider randomized algorithms in the first place?

Recall that we consider NP-hardness of a problem P as evidence that no poly-time
algorithm is likely to be found for P; this suggests either the use of partial enu-
meration methods if the instance of the problem is of sufficiently small dimension
(for example, exhaustive search), or the use of heuristics when dimension is large.
Heuristics for NP-hard combinatorial optimization problems that include embed-
ding steps of stochastic nature, that is the string x ∈ {0,1}n from before, are of
theoretical but also practical interest because of:

• the possibility of exploring more globally the feasibility region of a given prob-
lem and therefore the higher likelihood of hitting a point whose value approaches
the global optimum;

151

152 12 Variational Quantum Algorithms

• the avoidance of the common unpleasant feature of most entirely deterministic
heuristics of being trapped into some neighborhood of an often disappointing
local optimum1.

12.2 Variational Quantum Algorithms

Variational Principle. The variational principle is at the core of many fields in
physics and chemistry.

Theorem 12.1 (Variational Theorem in Quantum Mechanics). Given a system
with a time-independent Hamiltonian H, a trial state |ψ〉 whose wavefunction is
a well-behaved function of the underlying quantum system satisfying its boundary
conditions, and E0 the ground energy (lowest eigenvalue) of H, then

〈ψ|H|ψ〉
〈ψ|ψ〉 ≥ E0. (12.1)

The variational theorem allows us to calculate an upper bound for the system’s
ground state energy.

Proof. Assume the true orthornormal eigenbasis of H is {|φn〉} such that H |φn〉 =
En |φn〉. Then, for an arbitrary |ψ〉, we can represent it as linear combination of
{|φn〉} (superposition) |ψ〉= ∑n Cn |φn〉. Therefore we have,

〈ψ|H|ψ〉=
(

∑
n

C∗n 〈φn|
)

H
(

∑
m

C∗m |φm〉
)

= ∑
n,m

C∗nCm〈φn|Ĥ|φm〉

= ∑
n,m

C∗nCmEm 〈φn | φm〉

= ∑
n,m

C∗nCmEmδnm

= ∑
n
|Cn|2 En.

Similarly, 〈ψ|ψ〉 = ∑n |Cn|2. Note that E0 is the ground state, by definition E0 ≤
E1 ≤ E2 ≤ ·· · ≤ En ≤ ·· · , and also, |Cn|2 ≥ 0. Thus,

〈ψ|H|ψ〉
〈ψ|ψ〉 =

∑n |Cn|2 En

∑n |Cn|2
≥ ∑n |Cn|2 E0

∑n |Cn|2
= E0.

1 Although, as we will discover, VQAs can be trapped in regions called “barren plateaus”.

12.2 Variational Quantum Algorithms 153

ut

Variational Quantum Algorithms. Introduced originally by [102], VQAs [103]
form a class of hybrid algorithms. Hybrid, in this context means explicitly that they
utilise both quantum and classical resources; see Fig. 12.1. Specifically VQAs oper-
ate in an iterative classical-to-quantum feedback loop where an optimization prob-
lem is encoded into a parametrized quantum circuit out of which a quantum cost
function C is constructed and then classically optimized; see Fig. 12.1 for a graphi-
cal representation.

|Ψ(ϑ)⟩|Ψ0⟩ U(ϑ)

argmin
ϑ

C(ϑ)

Ê[{Ok}]updated ϑ∗

Quantum
w.r.t. {Ok}

Classical

Input

{D, U(ϑ), |Ψ0⟩, C(ϑ)}

Output

Fig. 12.1: Schematic of the VQA schema.

Concretely, VQAs are described by:

• A dataset D that describes features of the problem and a quantum embedding of
D .

• A parametrized quantum circuit, U(ϑ) :Rd→ SU(n), ϑ ∈Rd , and an initial state
|Ψ0〉.

• A cost function C =C(ϑ) to be optimized classically.

• A classical algorithm A that optimizes C over Rd .

154 12 Variational Quantum Algorithms

First, the role of D is slightly vague above; for good reason. Here D is data de-
pendent on the problem and may be seen as a map Rinput → Cn if, for example,
one is using amplitude encoding. Or as a map Rinput→ Herm(Cn) if, for example,
Hamiltonian encoding is chosen. Can you describe such maps for combinatorial
optimization problems?

Second, a parametrized quantum circuit U(ϑ), θ ∈Rd , prepares the ansatz U(ϑ) |Ψ0〉=
Ψ(ϑ) where |Ψ0〉 is some initial state, for example |0〉⊗n or the equal superposition
state or some other state suitable for the application of the unitary. Specifically, the
parametrized circuit U(ϑ) may be expanded as U(ϑ) = UL(ϑL) · · ·U1(ϑ1) where
d = L for example in the case of the Variational Quantum Eigensolver [102] or
d = 2L in the case of the Quantum Approximate Optimization Algorithm [104].
Therefore, for each layer i we associate (at least) a generator Hi such that

Ui(ϑi) = e−iϑiHi . (12.2)

Note that the choice of layers L is a hyperparameter, much like the number of layers
in classical deep neural networks.

Third the cost function C is the expectation value of a set of Hermitian operators
{Ok}k∈N, usually in their Pauli-basis representation. Without loss of generality, we
may write

C(ϑ) = ∑
k∈N

fk (〈Ψ(ϑ)|Ok|Ψ(ϑ)〉) ,

where fk can be different functions that lead to different costs for different purposes
(often fk may be the identity function). Given the cost function, the parametrized cir-
cuit can be used in order to compute an an empirical estimate of it by repeated mea-
surements; Given the output probability distribution in each measurement basis one
then is able to construct the empirical estimate Ĉ = E[{Ok}] = {〈Ψ(ϑ)|Ok|Ψ(ϑ)〉}
(up to a polynomial additive error ε).

Fourth Given Ĉ, a classical algorithm A solves argminϑ C(ϑ). In practice this can
be done either in a derivative-free method utilising algorithms such as SPSA or SA,
or with first-order methods, for example utilizing the Parameter Shift Rule (PSR).

For example, in the case of variational quantum approximate optimization [104]
that we will discuss in Sec. 12.3, a state is prepared by alternating a Hamiltonian
representing a penalty function (such as the NP-hard Ising embedding of 3-SAT)
with a Hamiltonian representing local tunneling terms. The objective function C,
which in this case is the same as the penalty function, is measured, and the resulting
bit string serves as a candidate solution to minimize the penalty function.

Several questions arise:

1. Can any problem be efficiently encoded onto a VQA?

12.2 Variational Quantum Algorithms 155

2. Given C and Ψ0, how one may determine L?

3. What is the sample complexity (how many shots are required) to obtain Ĉ?

4. What is the most suitable classical algorithm A ?

5. Are VQAs local search algorithms? Are they approximation algorithms? What
type of problems they are able to solve?

Exercise. Consider the problem of finding the lowest energy eigenstate of the spin-
chain Hamiltonian

H = J
n

∑
i=1

ZiZ j +h
n

∑
i=1

Xi,

and let J < 0. Here Zi (Xi) represents the action of σz (σx) on site i and the product
acts on neighboring pairs of spins as Zi⊗Z j. This is the transverse field Ising model.
Use the variational principle for the ansatz state

|ψ(θ ,φ)〉= cos(θ) |0〉+ eiφ sin(θ) |1〉 . (12.3)

Then run a small experiment on (minimum) 3 qubits with small h. Compare and
present the result. Should you be able to do this successfully, you will have com-
puted your first VQA. (The exact solution can be found using the Jordan-Wigner
transform.)

VQAs as local search algorithms. VQAs may be argued to be local search al-
gorithms. If we consider a local search algorithm. Recall how local search works.
Having selected the stop criteria, local search generates an initial random solution
s∗ = s0 and evaluates it, f (s0) = f (s∗). While the stop criteria are not achieved, lo-
cal search perturbs s0 by δ , with δ small. If f (supd.) < f (s0) store s∗ = supd.. This
iterates until the stop criteria are satisfied and returns the lastly stored s∗.

Similarly, for VQAs after selecting stop criteria (usually number of iterations)
the VQA begins with a randomized variational parameter ϑ ∗ = ϑ0 and computes
C(ϑ0). While the stoping criteria are not satisfied it updates to ϑupd. by solving
argminϑ C(ϑ). If C(ϑupd.)<C(ϑ ∗) it stores ϑ ∗ = ϑupd. and iterates until the stop-
ing criteria are satisfied and returns the lastly stored ϑ ∗.

VQAs are not approximation algorithms. However, one may argue that VQAs
cannot be viewed as approximation algorithms. The reason is that an approxima-
tion algorithm for a problem P is a polynomial-time algorithm that computes a lo-
cally optimal solution for every instance of the problem. For example, the famous
Goemans-Williamson algorithm is an approximation algorithm which for Max-Cut
provides an instance independent approximation ratio of 0.878; such a result does
not exist for VQAs.

https://en.wikipedia.org/wiki/Jordan%E2%80%93Wigner_transformation
https://en.wikipedia.org/wiki/Jordan%E2%80%93Wigner_transformation

156 12 Variational Quantum Algorithms

12.3 Quantum Approximate Optimization Algorithm

Variational quantum algorithms can be thought of as quantum randomized algo-
rithms as well, and find many interesting applications. One of the very first appli-
cations that sparked the interest of the community is in the context of the Max-Cut
problem. Fahri et. al. introduced the quantum approximate optimization algorithm
(QAOA) [104] as a candidate algorithm to improve upon Max-Cut best bounds,
although it is well understood that unless P = NP, this is NP-hard to achieve. Nev-
ertheless, there is nothing that forbids VQAs to achieve exponential speedups in
theory, thus a lot of hope is placed upon them.

Max-Cut Given a graph G = (V,E) as the input,the Max-Cut problem amounts to
finding a partition of the vertex set V into two subsets, S and its complement V\S,
such that the number of edges going between S and V\S is maximized. That is, we
define a cut in the graph G as a pair (S,V\S), where S ⊆V . The edge set of the cut
(S,V\S) is

E(S,V\S) = {e ∈ E : |e∩S|= |e∩ (V\S)|= 1}

(see Fig. 12.2), and the size of this cut is |E(S,V\S)|, i.e., the number of edges.
Here, an edge e belongs to this set if it connects a vertex in set S with a vertex in the
complement V\S. The condition |e∩S|= |e∩ (V\S)|= 1 ensures that each edge in
the cut has exactly one vertex in S. We also say that the cut is induced by S.

Fig. 12.2: An example of a maximum cut (in bold).

Formally:

Problem 12.1 (Max-Cut).

Instance An unweighted undirected graph G=(V,E) represented by an adjacency
matrix A ∈ {0,1}d×d with the vertex set V of cardinality |V |= d.

12.4 VQAs are NP-hard to train 157

Task Determine a subset S ⊆ V that maximizes the size of the cut, which is the
sum of the edges in the edge set E(S,V\S) = {e ∈ E : |e∩S|= |e∩ (V\S)|= 1},
that is, find S to maximize |E(S,V\S)|, the number of edges with one endpoint
in S and the other in V\S, which corresponds to maximizing ∑i∈S, j∈V\S Ai j.

Remark 12.1. The decision version of the MaxCut problem is NP-complete [105].

Max-Cut is not just an NP-hard problem, rather APX-hard [106] with the optimal
(classical) approximation ratio2 αmax = αGW = 0.878 of the Goemans-Williamson
algorithm [107] under the assumption that the Unique Games Conjecture (UGC) is
true. The APX-hardness essentially means that finding a polynomial time algorithm
that improves upon the Goemans-Williamson bound is itself a NP-hard problem.
However, if the UGC is false, it has been proven that αmax ≤ 16

17 ≈ 0.941 [108].

12.4 VQAs are NP-hard to train

An interesting result was given by Bittel and Kliesch [109]. To describe this seminal
work we can outsource the quantum computation to an oracle O to avoid potential
computational complications associated with the quantum circuit. Then, we can ex-
press Prob. ?? as follows.

Problem 12.2 (VQA minimization, oracular formulation).

Instance A set of Hermitian generators {Hi}i=1,...,L and an observable O, given in
terms of the Pauli basis representation, acting on H .

Oracle Access The oracle O returns the expectation value 〈O〉 ≡ 〈O(ϑ)〉 for a
given ϑ ∈ RL up to any desired polynomial additive error ε .

Task Find ϑ ∈ RL that 〈O〉 provided access to the oracle O .

To provide further motivation, the crucial feature of Problem 12.2 is that it captures
the complexity of only the classical optimization part of VQAs since the oracle
makes the return of the quantum part deterministic by postselecting3 on the suc-
cessful runs only.

2 The approximation ratio α is defined as the ratio between the algorithmic solution and the optimal
solution and it holds that α ≤ αmax ≤ 1.
3 Postselection is the process of discarding all runs of a (quantum) computation in which a given
event does not occur [25].

158 12 Variational Quantum Algorithms

Theorem 12.2 (Hardness of VQA optimization, oracular formulation). Assum-
ing P 6=NP, there is no deterministic classical algorithm that solves Prob. 12.2 in
polynomial time.

The proof of Theorem 12.2 amounts to reducing Prob. 12.2 to the continuous,
trigonometric version of MaxCut:

Problem 12.3 (continuous, trigonometric Max-Cut).

Instance The adjacency matrix A ∈ {0,1}d×d of an un weighted undirected graph
G = (V,E) with |V |= d.

Task Find φ ∈ [0,2π)d that minimizes

µ(φ) :=
1
4

d

∑
i=1

d

∑
j=1

Ai, j (cos(φi)cos(φ j)−1)

Minima of real valued functions are given by real numbers that may not have an
efficient numerical representation. However, it is commonly said that a minimization
problem is solved if it is solved to exponential precision, which is the convention
we will also be using throughout this paper. The intuitive notion is that the hardness
does not come from the difficulty of representing the minimum.

Proof. ut

12.5 Research Topics in Variational Quantum Algorithms

Warm-starting QAOA [110], [111], [112] (including SDPs) and [113] suggest that
one can use the best solution obtainable classically to start the quantum computa-
tion.

Number of QAOA rounds. A reasonable question to ask is “how many rounds
of the quantum-classical feedback loop are required to achieve some guaranteed
approximation ratios?”. [114] and [115] gave answers, but [114] consider biased
noise coming from the measurement of the quantum system.

Barren plateaus. [116] suggest that one can start several stochastic processes and
that this would obtain a speed-up corresponding to the proportion of the barren
plateaus.

Part III

Applications

Chapter 13

Applications in Financial Services

In this chapter, we want to make a few remarks on the practical aspects of use
of what we have seen, esp. in Chapters 7 and 8, in the financial services industry.
Therein, one needs to deal with many more vendors (i.e., salesmen) than universities
(i.e., researchers).

13.1 Practical aspects of quantum annealers

Outside of many reputable vendors of gate-based quantum computers, there are also
numerous vendors of so-called quantum annealers. While there are several quantum
annealers across the world in academic environments, the most well-known vendor
is D-Wave Systems. Other vendors that develop superconducting quantum anneal-
ers are Qilimanjaro and Avaqus. Recall, QA is a type of analog quantum compu-
tation based on the concept of adiabatic quantum computation (AQC). As such, it
is possible to devise systems that perform AQC with stoquastic Hamiltonians but
are not necessarily based on superconducting qubits. Such examples include Pasqal
and QuEra that use arrays of Rydberg atoms which are highly excited atoms with
a large distance between the electron and the nucleus. Finally, several companies
manufacture specialized classical hardware (e.g., based on FPGAs) that simulates
quantum annealing, for example Fujitsu.

What is common among the above is that the most obvious use cases and candidate
problems to be attacked by these machines are hard optimization problems. There-
fore, similar to companies offering classical solvers, such as Gurobi, understanding
of optimization is crucial for a career in this area.

Note that the applications go beyond optimization, e.g. to machine learning, and we
discuss below an example: QBoost.

161

https://www.dwavesys.com/
https://www.qilimanjaro.tech/
https://www.avaqus.eu/home
https://www.pasqal.com/
https://www.quera.com/
https://www.fujitsu.com/global/services/business-services/digital-annealer/
https://www.gurobi.com/

162 13 Applications in Financial Services

13.1.1 Focus: D-Wave

D-Wave being the first company to file for a patent. D-Wave gained a lot of notice
once multi-qubit quantum tunneling effects were observed experimental and showed
the computational potential it may have.

Currently, the most advanced D-Wave machine is the 5,760-qubit Advantage ma-
chine with which the study [117] was performed.

How is performance measured? It is commong to use a metric known as Time-To-
Solution (TTS) when performing benchmarking studies. There, data collected from
multiple runs of the QA are used to compute the probability of finding a ground state
solution for the given configuration of (adjustable) parameters. This probability is:

pTTS :=
of ground state solutions

of total QA runs
. (13.1)

The TTS proper is defined as the expected time to obtain the ground state solution
at least once with success probability α and it is computed as:

TTS = trun
1− logα

1− log pTTS
. (13.2)

Here trun is the annealing time for a single run of the QA and α = 0.99 by default.
Scheduling is a NP-Hard problem and you should expect that TTS scales exponen-
tially with the size of the input N.

In the context of adiabatic quantum optimisation algorithms (Ising model mapping)
as well as the quantum adiabatic theorem, for a problem of size N , quantum opti-
misers (are hoped to) solve NP-Hard combinatorial optimisation problems in time
proportional to exp(βNγ) as N→ ∞, for positive coefficients β (scaling exponent)
and γ .

It should expected that, since scheduling problems are NP-Hard, TTS should scale
exponentially with the problem size N in the asymptotic limit for γ = 1. The value
of the β parameter that turns out to fit the experimental results TTS = T0 expβN,
for some constant T0 > 0, ranges between 1.01 and 1.17 depending on the D-Wave
machine.

13.2 More on QUBO

In this section we aim to discuss a few more QUBO formulations of interesting hard
problems.

https://patents.google.com/patent/WO2005093649A1/en

13.2 More on QUBO 163

13.2.1 Graph Partitioning

Consider an undirected graph G = (V,E). The task is to partition the set of vertices
V into two subsets of equal size N/2, such that the number of edges connecting the
two subsets is minimized.

1

2

3

4

5

6

7

8

1

2 5

63

4 7

8

We can directly assign spin variables represented by the graph vertices where x=+1
values mean the blue class and x = −1 values mean the orange class. The problem
is solved by considering the following cost function:

L(x) = LA(x)+LB(x), (13.3)

where

LA(x) = α

N

∑
i=1

xi, (13.4)

a term that provides a penalty term if the number of elements in the blue set is not
equal to the number of elements in the orange set, and

LB(x) = β ∑
(u,v)∈E(G)

1− xuxv

2
, (13.5)

a term that provides a penalty each time an edge connects vertices from different
subsets. If β > 0, then we wish to minimize the number of edges between the two
subsets while if β < 0 we want to maximize this number. If β < 0 is chosen, then it
must be small enough so that it is never favorable to violate the other constraint LA.

13.2.2 Binary Integer Linear Programming

Consider the binary vector x = (x1 . . .xN) ∈ {0,1}N . Binary integer linear program-
ming (BILP) amounts to the following problem:

164 13 Applications in Financial Services

max
x∈{0,1}N

cx

s.t. Ax = b

A ∈ RM×N

b ∈ RM

(13.6)

A variety of problems can be formed as BILPs (for example in the context of bank-
ing revenue maximization subject to regulating constraints). The cost function L(x)
corresponding to the QUBO formulation is

L(x) = LA(x)+LB(x), (13.7)

where

LA(x) = α

m

∑
j=1

(
b j−

N

∑
i=1

Ai jxi

)2

, (13.8)

where α is a constant. Note that LA(x) = 0 enforces the constraint Ax = b. When
this is not met, we get an overall penalty to the objective function. Furthermore,

LB(x) =−β

N

∑
i=1

cixi, (13.9)

for β < α another constant. Essentially, the constants α and β are tuning param-
eter that determines the relative importance of maximizing the objective function
compared to satisfying the constraints. The condition β < α ensures that the con-
straints take precedence over the objective function, which is usually the case in
constrained optimization problems. The reason for the minus sign is there since in
QUBOs (naturally) we have a minimization problem.

13.2.3 Portfolio optimization

One of the fundamental problems in quantitative finance is portfolio optimization
which is part of modern portfolio theory (MPT). A typical portfolio optimization is
formulated as follows. Let N be the number of assets (things you can buy or sell
in a market), µi the expected return of asset i ∈ [N], σi j the covariance between the
returns of asset i and asset j and R the target portfolio return. The decision variables
are the weights wi ∈ R associated to asset i for all i ∈ [N] with.

The standard approach here is the Markowitz mean-variance approach. This amounts
to the following quadratic program:

13.2 More on QUBO 165

min
w∈RN

N

∑
i, j=1

wiw jσi j

s.t.
N

∑
i=1

wi = 1,

N

∑
i=1

wiµi = R.

(13.10)

Intuition. Essentially, this problem amounts to the construction of an optimal port-
folio from the set of all possible assets with known characteristics such as their
returns, volatilities, and pairwise correlations. Realistically, we would expect to be
able to select M ≤ N assets from the set of available N assets that should be the best
possible choice according to the criteria set by the constraints.

Quadratic programs of this form are efficiently solvable using a number of quadratic
programming solvers efficiently. However, consider the case where where weights
w are discrete; this situation starts resembling like a NP-Complete problem.

In such a situation Prob. (13.10) can be mapped to a QUBO suitable for QA. This is
done as follows. We define the QUBO objective as:

L(s) =
N

∑
i=1

aisi +
N

∑
i=1

N

∑
j=i+1

bi jsis j. (13.11)

In this context

si =

{
1 means asset i is selected,

0 means asset i is not selected.
(13.12)

Then, given the N asset set s = {s1, . . . ,sN} find the binary configuration that min-
imizes the L(s) subject to the cardinality constraint that can be added via a penalty
term Lpen(s). Specifically, the requirement that ∑

N
i=1 si = M is encoded via:

Lpen(s) = P

(
M−

N

∑
i=1

si

)2

. (13.13)

Furthermore, in Eq. (13.12), the coefficients ai, reflect the asset attractiveness as
a standalone (think user defined hyperparameter). Assets with large expected risk-
adjusted returns are commonly rewarded with negative values for ai while assets
with small expected risk-adjusted returns should be penalised with positive values
of ai. Finally, the coefficients bi j reflect the pairwise diversification penalties (if pos-
itive) and rewards (if negative) and are derived from the asset pairwise correlations.
For all purposes of this course, assume ai and bi j as given.

The total QUBO to be solved is:

166 13 Applications in Financial Services

min
s∈{0,1}N

Ltotal(s) := L(s)+Lpen(s). (13.14)

The minimization of this QUBO optimizes for the risk-adjusted returns by using the
so-called Sharpe ration which is computed as (r− r0)/σ where r is the expected
annualised asset return, r0 is the applicable risk-free interest rate and σ is the asset
volatility.

The higher the Sharpe ratio the better returns relative to the risk taken. Volatility
is usually estimated as the historical annualized standard deviation if the net as-
set value returns. Finally, expected returns can be either estimated as the historical
returns or derived independently using e.g. Monte Carlo simulations.

13.3 Quantum Boost

Let us discuss how QBoost is used in the context of Machine Learning (ML). First,
let us set up some notation:

Object Definition
xt ∈ RN vector of N features

yt ∈ {0,1} binary classification label
{xt ,yt}t∈[M] training set
ci(xt) =± 1

N value of weak classifier i on event t
q := (q1, . . . ,qN) vector of binary weights associated with each weak classifier

Table 13.1: Notation

The classification error for sample t is given by the square error

(
N

∑
i=1

ci(xt)qi− yt

)2

. (13.15)

The total cost function to minimize is the sum of squared errors across the training
data:

L(s) =
M

∑
t=1

(
N

∑
i=1

ci(xt)si− yt

)2

(13.16)

Expanding this out yields a term y2
t that does not depend on s and does not influence

the minimization of L (can be absorbed as a constant energy shift). Overfitting can be
done by adding a penalty λ > 0. The objective to minimize in the QBoost agorithm
is:

13.3 Quantum Boost 167

L̃(s) =
M

∑
t=1

(
N

∑
i=1

ci(xt)qi

N

∑
j=1

c j(xt)s j−2yt

N

∑
i=1

ci(xt)si

)
+λ

N

∑
i=1

si (13.17)

=
N

∑
i=1

N

∑
j=1

Ci jqiq j +
N

∑
i=1

(λ −2Ci)si, (13.18)

where

Ci j :=
M

∑
t=1

ci(xt)c j(xt), Ci :=
M

∑
i=1

ci(xt)yt .

Remark: the penalty term added here is analogous to LASSO regression method
with L1 penalty. This is sort of ubiquitous in the ML literature. Note that ridge
regression with L2 penalty could be chosen instead.

Next, we need to map the problem to an Ising model. To do so we consider σ to be
spin variables by defining

σ = 2s−1. (13.19)

The Ising Hamiltonian is then written as:

H =
1
4

N

∑
i, j=1

Ci jσiσ j +
1
2

N

∑
i, j=1

Ciσi +
N

∑
i=1

(λ ′−Ci)σi, (13.20)

where λ ′ := 1
2 λ is a rescaled penalty coefficient. QA aims to solve the problem

to minimize H and compute the ground state spin configuration bit-string |s〉, with
s ∈ {−1,1}N . Then, for each new sample x, the classifier is given as

R(x) =
N

∑
i=1

sici(x) ∈ [−1,1]. (13.21)

Application: QBoost

QA for ML applications has been gaining a lot of popularity (and serves as a busi-
ness model for a number of quantum computing startups). It is claimed to have
demonstrated performance advantage in compaerison with algorithms such as bi-
nary decision tree-based Extreme Gradient Boosting (XGBoost) and DNN classi-
fiers on small datasets.

A very interesting application is that of forecasting credit card client defaults. For
that one can utilize a publicly available dataset available from the UCI Machine
Learning Repository [307,308]. This dataset consists of 30,000 samples with binary
classifications:

• a client does not default - class 0

• a client does default - class 1

168 13 Applications in Financial Services

There are N = 23 features (F1, . . . ,F23) that are available to extract predictive power
from:

• F1: amount of given credit (continuous)

• F2: gender (binary)

• F3: education (discrete)

• F4: marital status (discrete)

• F5: age (discrete)

• F6: repayment status of previous month (discrete)

• F7: repayment status of two months ago (discrete)

• F8-F11: similar (discrete)

• F12: bill amount past month (continuous)

• F13: bill amount two months ago (continuous)

• F14-F17: similar (continuous)

• F18: amount of previous month payment (continuous)

• F19: amount of payment two months ago (continuous)

• F20-F23: similar (continuous)

Having these features, the next step is to construct the weak classifiers. For that each
feature can be used separately as an input into a logistic regression classifier with
the goal to make a binary prediction: −1/N for class 0 and +1/N for class 1. That,
of course, would require splitting the data to a training and validation test (e.g., 0.7
training and 0.3 validation). A rule for determining the output can be set to be a
majority vote: the prediction of the (strong) classifier is given by the sum of the of
the weak classifiers with values in {−1,+1} (as required by QBoost).

It can be argued that QBoost provides an improvement on this approach by finding
an optimal configuration of the weak classifiers.

Such a simple implementation can lead to results such as the ones in Fig. 13.2 (you
are more than welcome to try this on your own) where QBoost shows what some
people call “performance” advantage. While several, much more sophisticated clas-
sical classifiers exist, there is no fundamental reason that the same argument cannot
be applied for quantum classifiers as well.

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html

13.4 Warm-starting QAOA 169

Accuracy Precision Recall
GradBoost 0.83 0.69 0.35

MLP 0.83 0.69 0.35
QBoost 0.83 0.71 0.33

Table 13.2: Caption

13.4 Warm-starting QAOA

Recall, that we have discussed the Quantum Approximate Optimization Algorithm
(QAOA) [104] last time. We discussed that QAOA This algorithm encodes a com-
binatorial optimization problem in a Hamiltonian HC whose ground state is the op-
timum solution. The QAOA first creates an initial state which is the ground state of
a mixer Hamiltonian HM where a common choice is

HM =−
N

∑
i=1

σ
x
i , (13.22)

with ground state being |+〉⊗n. Then, recall, for depth-L QAOA, we apply L times
the unitary UQAOA =UC(γ)UB(β) defined as:

UC(γ) := e−iγHC (13.23)

UB(β) := e−iβHM . (13.24)

The result is:

UQAOA |+〉⊗n = |γ,β 〉 . (13.25)

A classical optimizer (e.g. SPSA) then seeks the optimal values of β and γ to create
a trial state which minimizes the energy of the problem Hamiltonian HC.

While a very promising algorithm, initially it lacked any theoretical guarantees on
its performance ratio and for certain problem instances of interest (e.g. Max-Cut) it
cannot, for constant L, outperform the classical Goemans-Williamson randomized
rounding approximation (which for MAXCUT finds cuts whose expected value is an
α fraction of the global optimum, for 0.87856 < α < 0.87857, with the expectation
over the randomization in the rounding procedure).

While several improvements of the QAOA have been developed in the literature, we
will focus here on warm-starting QAOA [110].

Relaxations. QUBOs have already been discussed a lot. A common formulation is:

min
x∈{0,1}n

xT Qx+µ
T x. (13.26)

170 13 Applications in Financial Services

where x is a vector of n binary decision variables, Q∈Rn×n a symmetric matrix, and
µ ∈Rn a vector. Since for binary variables x2

i = xi,µ can be added to the diagonal of
Σ , and in the following, we only add µ when it simplifies the notation in the given
context. Note that, as discussed, practically any mixed-integer linear program can
be encoded in a QUBO it is automatically NP-Hard.

If Q is positive semidefinite, there exists a trivial continuous relaxation of the QUBO
above:

min
x∈[0,1]n

xT Qx (13.27)

is a convex quadratic program and the optimal solution c∗ of the continuous relax-
ation is easily obtainable with classical optimizers. However, if Q is not positive
semidefinite (and in many applications of interest there is no reason to be) one can
obtain another continuous relaxation, the semidefinite program (SDP):

maxY∈Sn tr(QY)
diag(Y) = 111

Y � 0,
(13.28)

where Sn×n denotes the set of n× n symmetric matrices, 111 is an n-vector of ones,
and Y � 0 denotes that Y must be positive semidefinite. Given the optimal solution
Y ∗ to the SDP above, there exist several approaches to generating solutions1 of the
corresponding (QUBO), often with approximation guarantees. Furthermore, quan-
tum computers offer the prospect of some speed-ups in solving SDPs (not discussed
in these lectures).

Warm-starting QAOA. The solutions of either continuous-valued relaxation dis-
cussed above can be used to initialize VQAs: this is known as warmstarting them
[118]. Let us focus on how to warm-start the QAOA [104].

In QAOA, each decision variable xi of the discrete optimization problem corre-
sponds to a qubit by the substitution xi = (1− si)/2. Each si is replaced by a spin
operator σi to transform the cost function to a cost Hamiltonian HC. Then, after the
procedure described initially, that is utilizing the unitary UQAOA, one performs the fi-
nal measurement which can be considered as a randomized rounding. Warm-starting
amounts to replacing the initial equal superposition state |+〉⊗n with a state

|φ ∗〉=
n−1⊗

i=0

R̂y (θi) |0〉n (13.29)

1 As a matter of facr, a classical laptop can solve instances of (SDP) relaxations of QUBO, where
Q has 1013.

13.4 Warm-starting QAOA 171

which corresponds to the solution c∗ of the relaxed Problem (13.27). Here, R̂Y (θi)

is a θi-parametrized rotation around the y-axis of the qubit (see Fig. 13.1) and θi :=
2arcsin(

√
c∗i) for c∗i given as the solution of QUBO (13.27).

Fig. 13.1: The initial state is given by the red segment. The yellow path shows the
evolution of the quantum state starting at |0〉 to Ry(−θi)Rz(−β)Ry(2θi) for β = π/2.

Additionally, the mixer Hamiltonian also is replaced. A choice for the warm-starting
mixer Hamiltonian is

Hws
M =

n

∑
i=1

Hws
M,i (13.30)

where

Hws
M,i =

(
2c∗i −1 −2

√
c∗i (1− c∗i)

−2
√

c∗i (1− c∗i) 1−2c∗i

)
(13.31)

which has Ry(θi) |0〉 as ground state. One can show that the ground state of Hws
M is

|φ ∗〉 with energy −n. Therefore, WS-QAOA applies at layer k a mixing gate which
is given by the time-evolved mixing Hamiltonian UM(β) = e−iβHws

M .

172 13 Applications in Financial Services

For technical reasons [110] one has to actually modify the definition of θi as

θi = 2arcsin
(√

c∗i
)

if c∗i ∈ [ε,1− ε]

θi = 2arcsin(
√

ε) if c∗i ≤ ε

θi = 2arcsin(
√

1− ε) if c∗i ≥ 1− ε.

where ε ∈ [0,0.5] and the mixer Hamiltonian HM is adjusted accordingly. The pa-
rameter ε provides a continuous mapping between WS-QAOA and standard QAOA
since at ε = 0.5 the initial state is the equal superposition state and the mixer Ham-
iltonian is the X operator. If all c∗i ∈ (0,1) or ε > 0, WS-QAOA converges to the
optimal solution of (QUBO) as the depth L approaches infinity as does standard
QAOA.

This directly follows from (surprise) the adiabatic theorem and the fact that we start
in the ground state of the mixer which overlaps with all computational basis states
including the optimal solution.

For large enough L, WS-QAOA therefore the adiabatic evolution transforming the
ground state of the mixer into the ground state of HC as expected. The speed of the
adiabatic evolution is limited by the spectral gap of the intermediate Hamiltonians
as we discussed in the previous lecture.

The speed of the evolution can be related to the depth L, where a slow evolution
(larger terminal time T) implies a larger L. The idea of WS-QAOA is to speed-up
this evolution by optimizing the parameters instead of following a fixed annealing
schedule.

Several other variations of WS-QAOA have been studied, for example “rounded
warm-started” QAOA. Such a technique is very appealing for application on NISQ
devices for combinatorial optimization problems.

Below we quote a nice experimental demonstration from [110].

There, the authors investigate the role of the warm-start mixer operator Ĥ(ws)
M by

replacing it with the standard mixer −∑
n−1
i=0 X̂i while using the initial state given

by the continuous solution c∗. Under these conditions the energy of the optimized
state does not converge to the minimum energy, see blue triangles in Fig. 9.2(b).
The probability of sampling the optimal discrete solution is between warm-start and
standard QAOA but depends heavily on the initial point given to COBYLA, see Fig.
9.2(a). These results further justify the use of the modified mixer in WS-QAOA.

They even proceed to further illustrate the advantage of a warm-starting QAOA at
low depth by solving 250 random portfolio instances with warm-started and stan-
dard QAOA, both at depth L = 1. There the standard QAOA produces variational
states that poorly approximate the ground state, see the histogram of E∗cold in Fig.
9.3(a). However, WS-QAOA produces optimized variational states that are much
closer to the minimum energy of each problem Hamiltonian. Furthermore, we find

Fig. 13.2: (a) Probability to sample the optimal state |d∗〉 from the optimized trial
state |ψ∗〉 and (b) energy of |ψ∗〉 for warm-start and standard QAOA at different
depths for n = 6 assets and q = 2. The optimal discrete and continuous solutions are
d∗ = (0,0,1,1,1,0) and c∗ ' (0.17,0,0.97,0.73,1.0,0.14), respectively. QAOA is
run ten times with different initial random guesses for (β ,γ) chosen uniformly from
±2π . The thick lines show the median of the ten runs while the shaded areas indicate
the 25% and 75% quantiles. The gray dashed line shows E0.

that WS-QAOA tends to produce better solutions when the overlap d∗T c∗/B be-
tween the optimal solutions to the discrete and relaxed problems is closer to 1.

13.5 Asset Management and Monte Carlo Simulations

Derivative pricing using a quantum computer

What are derivatives and why one would be interested in using a quantum computer?

Short answer: derivatives are financial instruments that make some people rich and
quantum computers can do things (in principle) quadratically faster. Use this note-
book.

https://github.com/fabiosanches13/qmc_derivative_pricing/blob/main/quantum_derivative_pricing.ipynb
https://github.com/fabiosanches13/qmc_derivative_pricing/blob/main/quantum_derivative_pricing.ipynb

174 13 Applications in Financial Services

Fig. 13.3: Improvement of depth-one WS-QAOA over standard QAOA for 250 ran-
dom portfolio instances with q = 2 (q controls the risk-return trade-off).

Chapter 14

Applications in Security

The question of many people’s minds is whether and when “quantum computers
would kill RSA”? We will review some recent work in security applications:

• generating random strings

• quantum key distribution

• Shor factoring

• Grover-based factoring

• variational factoring.

While the first two happily live in “vendor-land”, the latter three are more involved.

14.1 Generating random strings

US authorities now recommend using random strings only from quantum effects,
rather than pseudorandom generators. In some cases [119, 120], quantum random
number generators (RNG) come with strong guarantees, but often, it seems an
overkill to utilize a quantum computer to generate random numbers. There are now
purpose-built devices [121] that can generate random strings at 17 Gbps, exceeding
what can be done with near-term quantum computers. The purpose-built devices
can be bought, e.g., from ID Quantique. This is hence one example of quantum
technologies being essential to security.

175

176 14 Applications in Security

14.2 Quantum key distribution

An important quantum technology in security is quantum key distribution, which
makes it possible to certify that the communication has not been intercepted. There
are two approaches:

• Prepare-and-measure: measuring an unknown quantum state changes it.

• Entanglement-based: measuring one of two entangled quantum systems affects
the other.

Either way, one can calculate the amount of information that has been intercepted
by measurement. ID Quantiq showcased quantum key distribution at 307 km, and
sells related devices. Toshiba demonstrated QKD at 100 km of fiber in 2004 and the
first with a continuous key rate exceeding 10 Mbit/second in 2017. (CTU has pur-
chased such devices from both ID Quantiq and Toshiba.) This is hence an example
of quantum technologies being readily available to improve security.

14.3 Factoring integers

Much of modern cryptoprimitives are built on factoring of large integers. A textbook
version of public-key cryptography, here cited from [122] in verbatim, is as follows:

1. Select two large prime numbers, p and q.

2. Compute the product n = pq.

3. Select at random a small odd integer, e, that is relatively prime to φ(n) = (p−
1)(q−1).

4. Compute d, the multiplicative inverse of e, modulo φ(n).

5. The RSA public key is the pair P = (e,n). The RSA secret key is the pair S =

(d,n).

The encryption of message M on logn bits involves Me mod n to obtain E(M),
while decryption requires E(M)d mod n.

What is the complexity of factoring n to p and q?

• poly(log(n)) is the runtime of factoring algorithms on a BSS machine. Testing
whether an integer is a prime is in P, but does not provide the factors, when the
number is not prime.

14.3 Factoring integers 177

• O(n1/4) is the runtime of the best deterministic factoring algorithms for factoring
an integer n with logn bits in length.

• O(exp(c(logn)1/3(log logn)2/3)) is the runtime of the best randomized algo-
rithms, for some constant c and integer n. The runtime is thus subexponential,
but not polynomial time: O(exp(

√
(logn)(logn)) = O(n). It is thus unlikely that

factoring is NP-Complete. The elliptic curve method (ECM, [123]) is the fastest
known algorithm for small numbers, e.g. within 100 digits. The the number field
sieve (NFS, [124]) is the best classical algorithm for large numbers, and has been
used to factor a 240-digit (795-bit) number in 900 core-years.

• O((logn)2(log logn)(log loglogn)) is the runtime of a quantum algorithm intro-
duced by Peter Shor [48], along with a polynomial-time (in logn) classical post-
processing algorithm.

14.3.1 Shor factoring

Peter Shor introduced an algorithm for factoring integers [48], which based on two
facts of number theory, makes it possible to reduce factoring to order finding, i.e.,
determining r in f (x+ r) = f (x) for f (x) = ax. When one receives a composite
number n, it uses O(log3 n) order-finding operations to produce a non-trivial factor
of n with a constant probability.

This is based on the following facts:

Theorem 5.2 in [122]: Suppose that n is an L-bit composite number, and x is a non-
trivial solution to the equation x2 = 1 mod n in the range 1≤ x≤ n, i.e., neither x =
1 mod N nor x = n.−1 =−1 mod n. Then at least gcd(x−1,n) and gcd(x+1,n)
is a non-trivial factor of n can be computed using O(L3) operations.

Theorem 5.3 in [122]: Suppose that n = pα1
1 pα2

2 · · · pαm
m is the prime factorization of

an odd composite positive integer. Let x be an integer chosen uniformly at random,
subject to the requirements that 1 ≤ x ≤ n− 1 and x is co-prime to n. Let r be the
order of x mod n. Then the probability r is even and xr/2 6=−1 mod n is greater or
equal to 1− 1

2m .

With these facts, we can formulate the Shor factoring algorithm:

1. If n is even, return 2.

2. If n = ab for a≥ 1 and b≥ 2, return a.

3. Choose x in [1, n-1]. If gcd(x,n)> 1, return gcd(x,n).

178 14 Applications in Security

4. Use order-finding to find the order r of x modulo n. If r is even and xr/2 6= −1
mod n and either of gcd(xr/2− 1,n) and gcd(xr/2 + 1,n) is non-trivial, return
the non-trivial factor.

5. Repeat from 3 otherwise.

Shor’s order-finding works as follows:

1. creates an initial, Q-qubit state |0〉⊗Q

2. apply Hadamard transform on it: 1√
Q ∑

Q−1
k=0 |k〉

3. apply the function f (x) = ax mod N using U f |x,0n〉= |x, f (x)〉 to obtain

U f
1√
Q

Q−1

∑
x=0
|x,0n〉= 1√

Q

Q−1

∑
x=0
|x, f (x)〉

such that the value we are looking for is in the phase

4. apply the quantum Fourier transform: 1
Q ∑

Q−1
x=0 ∑

Q−1
y=0 ωxy|y, f (x)〉

5. obtain y by measuring the first register. The probability of measuring |y,z〉 is

1
Q2

sin2(πmry
Q)

sin2(πry
Q)

.

Let us consider the example of n = 15

1. Let us consider n = 15 and a random number x coprime (having no non-trivial
common factors) with n, e.g., x = 7.

2. Compute the order r of x modulo n, as follows: apply Hadamard transform to
the first register of |0〉|0〉. Compute f (k) = xk mod n in the second register

1√
2t
[|0〉|1〉+ |1〉|7〉+ |2〉|4〉+ |3〉|13〉+ |4〉|1〉+ |5〉|7〉+ |6〉|4〉+ ·].

When inverse Fourier transform is applied to the first register (seen as 2t = 2048
frequencies) and the second register is measured, one obtains one of 1, 7, 4, or
13. Eventually, we obtain r = 4 as the order of x = 7.

3. Classically, we see r is even, and xr/2 mod n = 72 mod 15 = 4 6=−1 mod 15.
Again classically, we run gcd(x2−1,15) = 3 and gcd(x2 +1,15) = 5 to obtain
two factors.

14.3 Factoring integers 179

10
24

20
48

30
72

40
96

51
20

61
44

71
68

81
92

10
24

0

12
28

8

14
33

6

16
38

4

20
48

0

24
57

6

28
67

2

32
76

8

40
96

0

49
15

2

57
34

4

65
53

6

modulus length n (bits)

1

5

10

50

100

500

1000

5000

10000

50000

100000

ex
pe

ct
ed

 ti
m

e
(h

ou
rs

) a
nd

 p
hy

sic
al

 q
ub

it
co

un
t (

m
eg

aq
ub

its
)

RSA via Ekerå-Håstad, hours
RSA via Ekerå-Håstad, megaqubits
RSA via Ekerå-Håstad - 0.01% gate error instead of 0.1%, hours
RSA via Ekerå-Håstad - 0.01% gate error instead of 0.1%, megaqubits
Short DLP or Schnorr DLP via EH, hours
Short DLP or Schnorr DLP via EH, megaqubits
Schnorr DLP via Shor, hours
Schnorr DLP via Shor, megaqubits
General DLP via EH, hours
General DLP via EH, megaqubits
General DLP via Shor, hours
General DLP via Shor, megaqubits

Fig. 14.1: Scaling of Shor’s Factoring: Log-log plot of estimated space (in the mil-
lions of qubits) and expected-time costs (days required) with the number of bits of
RSA keys, cited from [125] in verbatim.

Shor’s factoring has been demonstrated for the number of 15 more than two decades
ago, and the scalability beyond is still very much a subject of lively discussion. The
key issue [126, 127] is that even miniscule amount of noise in the QFT can obliterate
the answer.

14.3.2 Quantum error correction

A possible counter-argument is to use quantum error correction. A Google team
[125] estimates that one could perform factoring of 2048-bit RSA integers in 8 hours
using 20 million noisy qubits. (See Figure 14.1.) The assumptions of a planar grid of
qubits with nearest-neighbor connectivity, physical gate error rate of 10−3, a surface
code cycle time of 1 microsecond, and the use of surface codes are all quite realistic.
Surface codes are textbook material [122, Chapter 10], although not covered by this
course. A French team [128] suggested that one could perform factoring of 2048-bit
RSA integers in 177 days with 13436 qubits, without being very explicit about the
requirement of 430 million memory qubits. Likewise, the use of 3D gauge color
codes is out of reach in current qubit technologies. Otherwise, the assumptions of

180 14 Applications in Security

physical gate error rate of 10−3, a processor cycle time of 1 microsecond are quite
realistic.

It is very important to stress that these estimates rely crucially on the assumptions on
the overhead of commonly used quantum error correcting (QEC) codes. In general,
any QEC code strikes a balance between:

• Overhead

• Complexity of decoding

• What ratio of bit flips to accurate operations you can protect against? (physical
error rate threshold)?

• What other “quantum errors” you can protect against?

• What operations can you perform on the protected qubits without decoding?

• What topology of the quantum system do you require? Is it 2D? 3D?

There are now hundreds of quantum error correcting codes. A website called
Error Correction Zoo allows for interesting visualizations of these (https://

errorcorrectionzoo.org/code_graph).

View

+ - center fit more…

Quantum Domain go to page →

Codes for quantum communication over

quantum channels

Kingdoms:

Qubit Kingdom

Modular-qudit Kingdom

Galois-qudit Kingdom

Bosonic Kingdom

Spin Kingdom

Group Kingdom

Category Kingdom

For (perhaps difficult to decode, but otherwise viable) codes with lower overhead,
these estimates of the numbers of qubits required would be radically lower. The
best lower bounds for the space overhead [129] of 2D codes are of the order of
Ω(
√

log(1/δ)) for δ error rate, and the bounds can be even lower for 3D codes.

https://errorcorrectionzoo.org/code_graph
https://errorcorrectionzoo.org/code_graph

14.3 Factoring integers 181

14.3.3 Grover-based factoring

[130] introduced another quantum algorithm for factoring, which they call GEECM
(Grover plus Edwards Elliptic Curve Method). To gain some intuition, consider the
trial division, where we would generate a small primes and perform Grover search
for those that divide the n. It reduces the number of operations of Edwards Elliptic
Curve Method from L

√
2+o(1) to L1+o(1) for L = exp(

√
log
√

n log log
√

n).

14.3.4 Variational factoring

In principle, you can use drastically fewer qubits in some cases, but with lesser
hopes of speed-up. Notably, the explicit, “schoolbook” binary multiplication of p
and q yields equations that have to be satisfied by bits pi and qi and carry bits zi, j.
One can formulate a “least-squares version” of the problem, which would minimise
the sum of residuals squared, across the equations (bits). Clearly, this would be a
QUBO, as in the previous lecture, and approached with, e.g., QAOA without any
guarantees of finding the solution. On the flipside, one can get lucky. For instance,
[131] report factoring 1099551473989, 3127, and 6557 with 3, 4, and 5 qubits,
respectively, using a QAOA.

In a very similar spirit, a Chinese team [132] got to the frontpages of many newspa-
pers announcing that 2048-bit semi-prime number can be factored on a NISQ level
computer with 372 physical qubits and a gate depth in the thousands. The same
paper has shown that a 48-bit number can be factored using the Schnorr factoring
and QAOA. Unfortunately, they did not analyze how many runs of the circuit this
would require in general. Our analyses [114] show would scale much worse than
the runtime of the Shor factoring.

14.3.5 A Rejoinder

In the US, Congress passed Quantum Computing Cybersecurity Preparedness Act1

in December 2022, which bars federal authorities from using cryptoprimitives based
on factoring. It is unlikely that this is based on the discovery of a new factoring
algorithm, but rather based on the risk of there being one. In many information
security standards, you need to be sure that if you encrypt today, no one will be
able to decrypt without knowing the key for the next 20+ years. In “Store Now,

1 https://www.congress.gov/bill/117th-congress/house-bill/7535/text

182 14 Applications in Security

Decrypt Later” attacks, nation states already gain access to large troves of encrypted
information, in the hope that they would be able to decrypt it in the near future.
Notice that for digital signatures (e.g., certificates on the web), the risk is much less:
you can wait until a new factoring algorithm appears.

References 183

References

[1] Yu Yang, Igor Kladarić, Maxwell Drimmer, Uwe von Lüpke, Daan Lenter-
man, Joost Bus, Stefano Marti, Matteo Fadel, and Yiwen Chu. A mechanical
qubit. Science, 386(6723):783–788, 2024.

[2] A. Einstein, B. Podolsky, and N. Rosen. Can quantum-mechanical descrip-
tion of physical reality be considered complete? Phys. Rev., 47:777–780,
May 1935.

[3] John S Bell. On the einstein podolsky rosen paradox. Physics Physique
Fizika, 1(3):195, 1964.

[4] John F. Clauser, Michael A. Horne, Abner Shimony, and Richard A. Holt.
Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett.,
23:880–884, Oct 1969.

[5] Daniel M Greenberger, Michael A Horne, and Anton Zeilinger. Going be-
yond bell’s theorem. Bell’s theorem, quantum theory and conceptions of the
universe, pages 69–72, 1989.

[6] Antonin Svoboda. Computing Mechanisms and Linkages. Boston Techni-
cal Publishers, 1948. Reprinted 1965 in Dover books on engineering and
engineering physics.

[7] Bernd Ulmann. Analog and hybrid computer programming. Walter de
Gruyter GmbH & Co KG, 2023.

[8] Bernd Ulmann, Sven Köppel, and Dirk Killat. Open hardware analog com-
puter for education – design and application. In 2021 Kleinheubach Confer-
ence, pages 1–2, 2021.

[9] Claude E. Shannon. Mathematical theory of the differential analyzer. Journal
of Mathematics and Physics, 20(1-4):337–354, 1941.

[10] Olivier Bournez, Daniel S Graça, and Amaury Pouly. Polynomial time cor-
responds to solutions of polynomial ordinary differential equations of poly-
nomial length. Journal of the ACM (JACM), 64(6):1–76, 2017.

[11] Olivier Bournez, Manuel L. Campagnolo, Daniel S. Graça, and Emmanuel
Hainry. Polynomial differential equations compute all real computable func-
tions on computable compact intervals. Journal of Complexity, 23(3):317–
335, 2007.

[12] Olivier Bournez, Daniel S. Graça, and Amaury Pouly. Polynomial Time
Corresponds to Solutions of Polynomial Ordinary Differential Equations of
Polynomial Length: The General Purpose Analog Computer and Computable
Analysis Are Two Efficiently Equivalent Models of Computations. In Ioan-
nis Chatzigiannakis, Michael Mitzenmacher, Yuval Rabani, and Davide San-
giorgi, editors, 43rd International Colloquium on Automata, Languages, and
Programming (ICALP 2016), volume 55 of Leibniz International Proceed-
ings in Informatics (LIPIcs), pages 109:1–109:15, Dagstuhl, Germany, 2016.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik.

184 14 Applications in Security

[13] Olivier Bournez and Amaury Pouly. A survey on analog models of com-
putation. In Handbook of Computability and Complexity in Analysis, pages
173–226. Springer, 2021.

[14] Olivier Bournez, Manuel L Campagnolo, Daniel S Graça, and Emmanuel
Hainry. Polynomial differential equations compute all real computable func-
tions on computable compact intervals. Journal of Complexity, 23(3):317–
335, 2007.

[15] C. Bennett and J. Gill. Relative to a random oracle A, pA 6= npA 6= co-npA

with probability 1. SIAM J. Comput., 10(1):96–113, 1981.
[16] L.G. Valiant. The complexity of computing the permanent. Theoretical Com-

puter Science, 8(2):189 – 201, 1979.
[17] A Yu Kitaev, AH Shen, and MN Vyalyi. Classical and Quantum Compu-

tation. American Mathematical Society, Providence, RI, 2002. Graduate
Studies in Mathematics vol. 47).

[18] Sanjeev Arora and Boaz Barak. Computational complexity: a modern ap-
proach. Cambridge University Press, 2009.

[19] Takashi Yamakawa and Mark Zhandry. Verifiable quantum advantage with-
out structure. In 2022 IEEE 63rd Annual Symposium on Foundations of Com-
puter Science (FOCS), pages 69–74, 2022.

[20] Amira Abbas, Andris Ambainis, Brandon Augustino, Andreas Bärtschi,
Harry Buhrman, Carleton Coffrin, Giorgio Cortiana, Vedran Dunjko, Daniel J
Egger, Bruce G Elmegreen, et al. Quantum optimization: Potential, chal-
lenges, and the path forward. arXiv preprint arXiv:2312.02279, 2023.

[21] Lance Fortnow. One complexity theorist’s view of quantum computing. The-
oretical Computer Science, 292(3):597–610, 2003. Algorithms in Quantum
Information Prcoessing.

[22] Leonard M Adleman, Jonathan Demarrais, and Ming-Deh A Huang. Quan-
tum computability. SIAM Journal on Computing, 26(5):1524–1540, 1997.

[23] David Deutsch. Quantum theory, the church-turing principle and the uni-
versal quantum computer. Proceedings of the Royal Society of London. A.
Mathematical and Physical Sciences, 400(1818):97–117, 1985.

[24] A Chi-Chih Yao. Quantum circuit complexity. In Proceedings of 1993 IEEE
34th Annual Foundations of Computer Science, pages 352–361. IEEE, 1993.

[25] Scott Aaronson. Quantum computing, postselection, and probabilistic
polynomial-time. Proceedings of the Royal Society A: Mathematical, Physi-
cal and Engineering Sciences, 461(2063):3473–3482, 2005.

[26] David Elieser Deutsch. Quantum computational networks. Proceedings
of the Royal Society of London. A. Mathematical and Physical Sciences,
425(1868):73–90, 1989.

[27] Jun Zhang, Jiri Vala, Shankar Sastry, and K Birgitta Whaley. Geometric
theory of nonlocal two-qubit operations. Physical Review A, 67(4):042313,
2003.

References 185

[28] Dorit Aharonov. A simple proof that toffoli and hadamard are quantum uni-
versal. arXiv preprint quant-ph/0301040, 2003.

[29] Maarten Van Den Nes. Classical simulation of quantum computation, the
gottesman-knill theorem, and slightly beyond. Quantum Info. Comput.,
10(3):258–271, mar 2010.

[30] Adriano Barenco, Charles H Bennett, Richard Cleve, David P DiVincenzo,
Norman Margolus, Peter Shor, Tycho Sleator, John A Smolin, and Harald
Weinfurter. Elementary gates for quantum computation. Physical review A,
52(5):3457, 1995.

[31] Yaoyun Shi. Both toffoli and controlled-not need little help to do univer-
sal quantum computing. Quantum Information & Computation, 3(1):84–92,
2003.

[32] Richard Jozsa and Noah Linden. On the role of entanglement in quantum-
computational speed-up. Proceedings of the Royal Society of London. Se-
ries A: Mathematical, Physical and Engineering Sciences, 459(2036):2011–
2032, 2003.

[33] Dorit Aharonov and Michael Ben-Or. Polynomial simulations of decohered
quantum computers. In Proceedings of 37th Conference on Foundations of
Computer Science, pages 46–55. IEEE, 1996.

[34] Daniel Gottesman. Stabilizer codes and quantum error correction. PhD
thesis, California Institute of Technology, 1997.

[35] Emanuel Knill. Quantum computing with realistically noisy devices. Nature,
434(7029):39–44, 2005.

[36] Scott Aaronson, Harry Buhrman, and William Kretschmer. A qubit, a coin,
and an advice string walk into a relational problem, 2023.

[37] Dan Boneh, Özgür Dagdelen, Marc Fischlin, Anja Lehmann, Christian
Schaffner, and Mark Zhandry. Random oracles in a quantum world. In Ad-
vances in Cryptology–ASIACRYPT 2011: 17th International Conference on
the Theory and Application of Cryptology and Information Security, Seoul,
South Korea, December 4-8, 2011. Proceedings 17, pages 41–69. Springer,
2011.

[38] Charles H Bennett, Ethan Bernstein, Gilles Brassard, and Umesh Vazirani.
Strengths and weaknesses of quantum computing. SIAM journal on Comput-
ing, 26(5):1510–1523, 1997.

[39] Takashi Yamakawa and Mark Zhandry. Verifiable quantum advantage with-
out structure. In 2022 IEEE 63rd Annual Symposium on Foundations of Com-
puter Science (FOCS), pages 69–74. IEEE, 2022.

[40] Daniel S Abrams and Seth Lloyd. Nonlinear quantum mechanics implies
polynomial-time solution for np-complete and #p problems. Physical Review
Letters, 81(18):3992, 1998.

[41] David Deutsch. Quantum theory, the church–turing principle and the uni-
versal quantum computer. Proceedings of the Royal Society of London. A.
Mathematical and Physical Sciences, 400(1818):97–117, 1985.

186 14 Applications in Security

[42] J. Abhijith, Adetokunbo Adedoyin, John Ambrosiano, Petr Anisimov,
William Casper, Gopinath Chennupati, Carleton Coffrin, Hristo Djidjev,
David Gunter, Satish Karra, Nathan Lemons, Shizeng Lin, Alexander Ma-
lyzhenkov, David Mascarenas, Susan Mniszewski, Balu Nadiga, Daniel
O’malley, Diane Oyen, Scott Pakin, Lakshman Prasad, Randy Roberts,
Phillip Romero, Nandakishore Santhi, Nikolai Sinitsyn, Pieter J. Swart,
James G. Wendelberger, Boram Yoon, Richard Zamora, Wei Zhu, Stephan
Eidenbenz, Andreas Bärtschi, Patrick J. Coles, Marc Vuffray, and Andrey Y.
Lokhov. Quantum algorithm implementations for beginners. ACM Transac-
tions on Quantum Computing, 3(4), jul 2022.

[43] David Harvey and Joris Van Der Hoeven. Integer multiplication in time
o(n logn). Annals of Mathematics, 193(2):563–617, 2021.

[44] David Harvey and Joris Van Der Hoeven. Polynomial multiplication over
finite fields in time o(n logn). Journal of the ACM (JACM), 69(2):1–40, 2022.

[45] Gabriel Peyré. The discrete algebra of the Fourier transform. 2020.
A draft textbook at https://mathematical-tours.github.io/
daft-sources/DAFT-EN.pdf.

[46] Pierre Duhamel and Martin Vetterli. Fast Fourier transforms: a tutorial review
and a state of the art. Signal processing, 19(4):259–299, 1990.

[47] Daan Camps, Roel Van Beeumen, and Chao Yang. Quantum fourier trans-
form revisited. Numerical Linear Algebra with Applications, 28(1):e2331,
2021.

[48] Peter W Shor. Algorithms for quantum computation: discrete logarithms and
factoring. In Proceedings 35th annual symposium on foundations of com-
puter science, pages 124–134. Ieee, 1994.

[49] A. Yu. Kitaev. Quantum measurements and the abelian stabilizer problem,
1995.

[50] R. Cleve and J. Watrous. Fast parallel circuits for the quantum Fourier trans-
form. In Proceedings 41st Annual Symposium on Foundations of Computer
Science, pages 526–536, 2000.

[51] Lisa Hales and Sean Hallgren. An improved quantum Fourier transform al-
gorithm and applications. In Proceedings 41st Annual Symposium on Foun-
dations of Computer Science, pages 515–525. IEEE, 2000.

[52] Neil Shenvi, Kenneth R Brown, and K Birgitta Whaley. Effects of a ran-
dom noisy oracle on search algorithm complexity. Physical Review A,
68(5):052313, 2003.

[53] Daniel Shapira, Shay Mozes, and Ofer Biham. Effect of unitary noise on
grover’s quantum search algorithm. Physical Review A, 67(4):042301, 2003.

[54] EM Stoudenmire and Xavier Waintal. Grover’s algorithm offers no quantum
advantage. arXiv preprint arXiv:2303.11317, 2023.

[55] Andris Ambainis, Kaspars Balodis, Jānis Iraids, Martins Kokainis, Krišjānis
Prūsis, and Jevgēnijs Vihrovs. Quantum speedups for exponential-time dy-
namic programming algorithms. In Proceedings of the Thirtieth Annual

https://mathematical-tours.github.io/daft-sources/DAFT-EN.pdf
https://mathematical-tours.github.io/daft-sources/DAFT-EN.pdf

References 187

ACM-SIAM Symposium on Discrete Algorithms, pages 1783–1793. SIAM,
2019.

[56] Lov K Grover. Quantum search on structured problems. In Quantum Com-
puting and Quantum Communications: First NASA International Conference,
QCQC’98 Palm Springs, California, USA February 17–20, 1998 Selected Pa-
pers, pages 126–139. Springer, 1999.

[57] Christof Zalka. Grover’s quantum searching algorithm is optimal. Physical
Review A, 60(4):2746, 1999.

[58] Jozef Gruska. Quantum computing, volume 2005. McGraw-Hill, London,
1999.

[59] Gilles Brassard, Peter Hoyer, Michele Mosca, and Alain Tapp. Quantum am-
plitude amplification and estimation. Contemporary Mathematics, 305:53–
74, 2002.

[60] Lov K Grover and Anirvan M Sengupta. Classical analog of quantum search.
Physical Review A, 65(3):032319, 2002.

[61] David Sutter, Giacomo Nannicini, Tobias Sutter, and Stefan Woerner.
Quantum speedups for convex dynamic programming. arXiv preprint
arXiv:2011.11654, 2020.

[62] Andrew M. Childs and Jeffrey Goldstone. Spatial search by quantum walk.
Phys. Rev. A, 70:022314, Aug 2004.

[63] Andrew M Childs, Richard Cleve, Enrico Deotto, Edward Farhi, Sam Gut-
mann, and Daniel A Spielman. Exponential algorithmic speedup by a quan-
tum walk. In Proceedings of the thirty-fifth annual ACM symposium on The-
ory of computing, pages 59–68, 2003.

[64] Andrew M Childs. Universal computation by quantum walk. Physical review
letters, 102(18):180501, 2009.

[65] Andrew M Childs, David Gosset, and Zak Webb. Universal computation by
multiparticle quantum walk. Science, 339(6121):791–794, 2013.

[66] Julia Kempe. Quantum random walks: an introductory overview. Contempo-
rary Physics, 44(4):307–327, 2003.

[67] Renato Portugal. Quantum walks and search algorithms, volume 19.
Springer, 2013.

[68] Peter W Shor. Polynomial-time algorithms for prime factorization and dis-
crete logarithms on a quantum computer. SIAM review, 41(2):303–332, 1999.

[69] Y. Aharonov, L. Davidovich, and N. Zagury. Quantum random walks. Phys.
Rev. A, 48:1687–1690, Aug 1993.

[70] Andrew M Childs, Edward Farhi, and Sam Gutmann. An example of the dif-
ference between quantum and classical random walks. Quantum Information
Processing, 1:35–43, 2002.

[71] Raqueline Azevedo Medeiros Santos and Renato Portugal. Quantum hitting
time on the complete graph. International Journal of Quantum Information,
8(05):881–894, 2010.

188 14 Applications in Security

[72] Andrew M Childs, Leonard J Schulman, and Umesh V Vazirani. Quantum al-
gorithms for hidden nonlinear structures. In 48th Annual IEEE Symposium on
Foundations of Computer Science (FOCS’07), pages 395–404. IEEE, 2007.

[73] Andrew M Childs and Wim Van Dam. Quantum algorithms for algebraic
problems. Reviews of Modern Physics, 82(1):1, 2010.

[74] Ashley Montanaro. Quantum speedup of monte carlo methods. Proceedings
of the Royal Society A: Mathematical, Physical and Engineering Sciences,
471(2181):20150301, 2015.

[75] M. Born and V. Fock. Beweis des adiabatensatzes. Zeitschrift fur Physik,
51(3–4):165–180, March 1928.

[76] Edward Farhi, Jeffrey Goldstone, Sam Gutmann, and Michael Sipser. Quan-
tum computation by adiabatic evolution. arXiv preprint quant-ph/0001106,
2000.

[77] Dorit Aharonov, Wim Van Dam, Julia Kempe, Zeph Landau, Seth Lloyd,
and Oded Regev. Adiabatic quantum computation is equivalent to standard
quantum computation. SIAM review, 50(4):755–787, 2008.

[78] Sabine Jansen, Mary-Beth Ruskai, and Ruedi Seiler. Bounds for the adiabatic
approximation with applications to quantum computation. J. Math. Phys.,
48(10):102111, October 2007.

[79] Alexander Elgart and George A Hagedorn. A note on the switching adiabatic
theorem. Journal of Mathematical Physics, 53(10), 2012.

[80] Toby S. Cubitt, David Perez-Garcia, and Michael M. Wolf. Undecidability
of the spectral gap. Nature, 528(7581):207–211, December 2015.

[81] Jérémie Roland and Nicolas J. Cerf. Quantum search by local adiabatic evo-
lution. Phys. Rev. A, 65:042308, Mar 2002.

[82] Ian Affleck, Tom Kennedy, Elliott H. Lieb, and Hal Tasaki. Valence bond
ground states in isotropic quantum antiferromagnets. Communications in
Mathematical Physics, 115(3):477–528, September 1988.

[83] Sergey Bravyi and David Gosset. Gapped and gapless phases of frustration-
free spin-1 2 chains. Journal of Mathematical Physics, 56(6), 2015.

[84] Ramis Movassagh. Generic local hamiltonians are gapless. Phys. Rev. Lett.,
119:220504, Nov 2017.

[85] Marius Lemm. Gaplessness is not generic for translation-invariant spin
chains. Phys. Rev. B, 100:035113, Jul 2019.

[86] Andris Ambainis and Oded Regev. An elementary proof of the quantum
adiabatic theorem. arXiv preprint quant-ph/0411152, 2004.

[87] S. Bachmann, W. De Roeck, and M. Fraas. Adiabatic theorem for quantum
spin systems. Phys. Rev. Lett., 119:060201, Aug 2017.

[88] Julia Kempe, Alexei Kitaev, and Oded Regev. The complexity of the local
hamiltonian problem, 2005.

[89] A. Kitaev, A. Shen, and M. Vyalyi. Classical and Quantum Computation.
American Mathematical Society, May 2002.

References 189

[90] B. Apolloni, C. Carvalho, and D. de Falco. Quantum stochastic optimiza-
tion. Stochastic Processes and their Applications, 33(2):233–244, December
1989.

[91] B. Apolloni, N. Cesa-Bianchi, and D. De Falco. A Numerical Implementa-
tion of ”quantum Annealing”. Rapporto interno. Univ., Forschungszentrum
BiBoS Bielefeld-Bochum Stochastik, 1988.

[92] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated
annealing. Science, 220(4598):671–680, May 1983.

[93] Rolando D. Somma, Daniel Nagaj, and Mária Kieferová. Quantum speedup
by quantum annealing. Phys. Rev. Lett., 109:050501, Jul 2012.

[94] M. W. Johnson, M. H. S. Amin, S. Gildert, T. Lanting, F. Hamze, N. Dickson,
R. Harris, A. J. Berkley, J. Johansson, P. Bunyk, E. M. Chapple, C. Enderud,
J. P. Hilton, K. Karimi, E. Ladizinsky, N. Ladizinsky, T. Oh, I. Perminov,
C. Rich, M. C. Thom, E. Tolkacheva, C. J. S. Truncik, S. Uchaikin, J. Wang,
B. Wilson, and G. Rose. Quantum annealing with manufactured spins. Na-
ture, 473(7346):194–198, May 2011.

[95] Xi Chen, A. Ruschhaupt, S. Schmidt, A. del Campo, D. Guéry-Odelin, and
J. G. Muga. Fast optimal frictionless atom cooling in harmonic traps: Short-
cut to adiabaticity. Phys. Rev. Lett., 104:063002, Feb 2010.

[96] D. Guery-Odelin, A. Ruschhaupt, A. Kiely, E. Torrontegui, S. Martinez-
Garaot, and J. G. Muga. Shortcuts to adiabaticity: Concepts, methods, and
applications. Rev. Mod. Phys., 91:045001, Oct 2019.

[97] Mustafa Demirplak and Stuart A. Rice. Adiabatic population transfer with
control fields. The Journal of Physical Chemistry A, 107(46):9937–9945,
October 2003.

[98] Mustafa Demirplak and Stuart A. Rice. Assisted adiabatic passage revisited.
The Journal of Physical Chemistry B, 109(14):6838–6844, February 2005.

[99] Mustafa Demirplak and Stuart A. Rice. On the consistency, extremal, and
global properties of counterdiabatic fields. The Journal of Chemical Physics,
129(15), October 2008.

[100] M V Berry. Transitionless quantum driving. Journal of Physics A: Mathe-
matical and Theoretical, 42(36):365303, August 2009.

[101] Richard M. Karp. An introduction to randomized algorithms. Discrete Ap-
plied Mathematics, 34(1–3):165–201, November 1991.

[102] Alberto Peruzzo, Jarrod McClean, Peter Shadbolt, Man-Hong Yung, Xiao-Qi
Zhou, Peter J Love, Alán Aspuru-Guzik, and Jeremy L O’brien. A variational
eigenvalue solver on a photonic quantum processor. Nature communications,
5(1):4213, 2014.

[103] Marco Cerezo, Andrew Arrasmith, Ryan Babbush, Simon C Benjamin, Sug-
uru Endo, Keisuke Fujii, Jarrod R McClean, Kosuke Mitarai, Xiao Yuan,
Lukasz Cincio, et al. Variational quantum algorithms. Nature Reviews
Physics, 3(9):625–644, 2021.

190 14 Applications in Security

[104] Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. A quantum approxi-
mate optimization algorithm. arXiv preprint arXiv:1411.4028, 2014.

[105] M.R. Garey, D.S. Johnson, and L. Stockmeyer. Some simplified np-complete
graph problems. Theoretical Computer Science, 1(3):237–267, February
1976.

[106] Arthur Lee and Bruce Xu. Classifying approximation algorithms: Under-
standing the apx complexity class, 2021.

[107] Michel X. Goemans and David P. Williamson. Improved approximation al-
gorithms for maximum cut and satisfiability problems using semidefinite pro-
gramming. Journal of the ACM, 42(6):1115–1145, November 1995.

[108] Johan Hastad. Some optimal inapproximability results. Journal of the ACM,
48(4):798–859, July 2001.

[109] Lennart Bittel and Martin Kliesch. Training variational quantum algorithms
is np-hard. Physical review letters, 127(12):120502, 2021.

[110] Daniel J Egger, Jakub Mareček, and Stefan Woerner. Warm-starting quantum
optimization. Quantum, 5:479, 2021.

[111] Felix Truger, Johanna Barzen, Marvin Bechtold, Martin Beisel, Frank
Leymann, Alexander Mandl, and Vladimir Yussupov. Warm-starting
and quantum computing: A systematic mapping study. arXiv preprint
arXiv:2303.06133, 2023.

[112] Reuben Tate, Majid Farhadi, Creston Herold, Greg Mohler, and Swati Gupta.
Bridging classical and quantum with sdp initialized warm-starts for qaoa.
ACM Transactions on Quantum Computing, 4(2):1–39, 2023.

[113] Madelyn Cain, Edward Farhi, Sam Gutmann, Daniel Ranard, and Eugene
Tang. The qaoa gets stuck starting from a good classical string. arXiv preprint
arXiv:2207.05089, 2022.

[114] Vyacheslav Kungurtsev, Georgios Korpas, Jakub Marecek, and Elton Yechao
Zhu. Iteration complexity of variational quantum algorithms. Quantum,
arXiv preprint arXiv:2209.10615, 2022.

[115] Naphan Benchasattabuse, Andreas Bärtschi, Luis Pedro Garcia-Pintos, John
Golden, Nathan Lemons, and Stephan Eidenbenz. Lower bounds on number
of qaoa rounds required for guaranteed approximation ratios. arXiv preprint
arXiv:2308.15442, 2023.

[116] Daniel Mastropietro, Georgios Korpas, Vyacheslav Kungurtsev, and Jakub
Marecek. Fleming-viot helps speed up variational quantum algorithms in the
presence of barren plateaus. arXiv preprint arXiv:2311.18090, 2023.

[117] Andrew D King, Jack Raymond, Trevor Lanting, Richard Harris, Alex Zucca,
Fabio Altomare, Andrew J Berkley, Kelly Boothby, Sara Ejtemaee, Colin En-
derud, et al. Quantum critical dynamics in a 5,000-qubit programmable spin
glass. Nature, pages 1–6, 2023.

[118] Jacek Gondzio. Warm start of the primal-dual method applied in the cutting-
plane scheme. Mathematical Programming, 83(1-3):125–143, January 1998.

References 191

[119] Peter Bierhorst, Emanuel Knill, Scott Glancy, Yanbao Zhang, Alan Mink,
Stephen Jordan, Andrea Rommal, Yi-Kai Liu, Bradley Christensen, Sae Woo
Nam, et al. Experimentally generated randomness certified by the impossi-
bility of superluminal signals. Nature, 556(7700):223–226, 2018.

[120] Yanbao Zhang, Hsin-Pin Lo, Alan Mink, Takuya Ikuta, Toshimori Honjo,
Hiroki Takesue, and William J Munro. A simple low-latency real-time
certifiable quantum random number generator. Nature communications,
12(1):1056, 2021.

[121] Marco Avesani, Davide G Marangon, Giuseppe Vallone, and Paolo Villoresi.
Source-device-independent heterodyne-based quantum random number gen-
erator at 17 gbps. Nature communications, 9(1):5365, 2018.

[122] Michael A Nielsen and Isaac Chuang. Quantum computation and quantum
information. Cambridge University Press, 2002.

[123] Hendrik W Lenstra Jr. Factoring integers with elliptic curves. Annals of
mathematics, pages 649–673, 1987.

[124] Arjen K Lenstra, Hendrik W Lenstra Jr, Mark S Manasse, and John M Pol-
lard. The number field sieve. In Proceedings of the twenty-second annual
ACM symposium on Theory of computing, pages 564–572, 1990.

[125] Craig Gidney and Martin Ekera. How to factor 2048 bit rsa integers in 8
hours using 20 million noisy qubits. Quantum, 5:433, 2021.

[126] Jin-Yi Cai and Ben Young. Quantum algorithms for discrete log require pre-
cise rotations. arXiv preprint arXiv:2412.17269, 2024.

[127] Jin-Yi Cai. Shor’s algorithm does not factor large integers in the presence of
noise. Science China Information Sciences, 67(7):173501, 2024.

[128] Élie Gouzien and Nicolas Sangouard. Factoring 2048-bit rsa integers in
177 days with 13 436 qubits and a multimode memory. Phys. Rev. Lett.,
127:140503, Sep 2021.

[129] Nouédyn Baspin, Omar Fawzi, and Ala Shayeghi. A lower bound on the
overhead of quantum error correction in low dimensions. arXiv preprint
arXiv:2302.04317, 2023.

[130] Daniel J Bernstein, Nadia Heninger, Paul Lou, and Luke Valenta. Post-
quantum rsa. In Post-Quantum Cryptography: 8th International Workshop,
PQCrypto 2017, Utrecht, The Netherlands, June 26-28, 2017, Proceedings 8,
pages 311–329. Springer, 2017.

[131] Amir H. Karamlou, William A. Simon, Amara Katabarwa, Travis L.
Scholten, Borja Peropadre, and Yudong Cao. Analyzing the performance
of variational quantum factoring on a superconducting quantum processor.
npj Quantum Information, 7(1):156, 2021.

[132] Bao Yan, Ziqi Tan, Shijie Wei, Haocong Jiang, Weilong Wang, Hong Wang,
Lan Luo, Qianheng Duan, Yiting Liu, Wenhao Shi, Yangyang Fei, Xiangdong
Meng, Yu Han, Zheng Shan, Jiachen Chen, Xuhao Zhu, Chuanyu Zhang,
Feitong Jin, Hekang Li, Chao Song, Zhen Wang, Zhi Ma, H. Wang, and Gui-

192 14 Applications in Security

Lu Long. Factoring integers with sublinear resources on a superconducting
quantum processor, 2022.

	Part I The Fundamentals
	Quantum Mechanics 101
	Quantum states
	States, probability and measurements in a classical world
	Quantum states
	The dual space and inner product
	Composite systems

	Measurements and probability
	Linear operators
	The wave function
	Measurements

	Evolution
	Unitary operators
	The Schrödinger equation
	A note on (in)determinism

	What actually is the quantum state?

	Quantum Engineering
	The qubit
	The Bloch sphere
	Several qubits
	Physical implementations

	The harmonic oscillator
	The classical harmonic oscillator
	The quantum harmonic oscillator
	The transmon qubit

	Quantum Information Theory
	Entanglement
	Product states
	Non-locality
	Bell inequalities and CHSH
	The GHZ paradox
	Bell basis and measurements

	Teleportation
	The density operator

	Quantum Engineering 102
	General-Purpose Analog Computing
	Analog Computing via Classical Oscillators
	The Power of Analog Computing
	Optimal Control (*)
	Digital to Analog Conversion via Quantum Optimal Control
	Analog to Digital via Quantum State Tomography
	The Key Takeways
	Loading the Input is Impossible, Exactly
	Loading the Input is as Hard as Executing any Algorithm
	Reading the Output is Impossible, Exactly
	Reading the Output is Very Hard, in terms of Sample Complexity

	Theoretical Computer Science 101
	Traditional Computer Science
	Turing Machines
	Computability
	Analog computing and computability (*)

	Complexity theory
	Computational Complexity of Discrete Algorithms
	The Bachmann–Landau Notation
	P and NP

	Analog Computing and P (*)
	Randomized Algorithms
	Definitions

	Quantum Algorithms

	Quantum Computing 101
	What we have seen so far?
	Qubits
	Superposition
	Entanglement
	BQP

	An Alternative Model of Fortnow
	Quantum Turing Machines
	Quantum Circuits
	Building our first quantum circuits

	Looking beyond the Basics (*)

	Foundamental Quantum Algorithms I
	What we have seen so far?
	Introduction
	A View from Theoretical Computer Science
	Definitions
	Results

	Our first Quantum Algorithm: Deutsch–Jozsa
	First Few Tricks
	Artihmetics modulo 2
	The Oracle
	Amplitude Amplification
	The Hadamard Transform
	Phase Kickback

	The Proof (Sketch) of our first Oracle Separation
	Going beyond our first Oracle Separation

	Harmonic Analysis 101
	Discrete Fourier Transform
	The Hadamard Transform
	The z-Transform
	Examples of Discrete Fourier Transform

	Fast Fourier Transform
	The Many Fast Fourier Transforms
	Fast Fourier Transform as a Factorization

	Quantum Fourier Transform
	Even Faster QFT

	Part II Beyond the Basics
	Grover Search and Dynamic Programming
	Grover Algorithm
	Dynamic Programming

	Quantum Walks and Quantum Replacements of Monte Carlo Sampling
	Quantum Walks
	Basics of Quantum Walks
	Coin Space
	Quantum walk on a subset of Z
	Quantum Walk on a Complete Graph
	Szegedy Walks
	Continuous-time Quantum Walks
	Exponential speedups using Quantum Walks
	Universality of Quantum Walks

	Quantum Amplitude Estimation and Monte Carlo Sampling

	Adiabatic Quantum Computing and Practical Implementations
	Adiabatic Quantum Computing
	The Adiabatic Theorem
	Adiabatic Quantum Computation is Universal
	Stoquastic Hamiltonians and Quantum Annealing
	Counterdiabatic Driving
	Universality and Controllability

	Variational Quantum Algorithms
	Randomized Algorithms
	Variational Quantum Algorithms
	Quantum Approximate Optimization Algorithm
	VQAs are NP-hard to train
	Research Topics in Variational Quantum Algorithms

	Part III Applications
	Applications in Financial Services
	Practical aspects of quantum annealers
	Focus: D-Wave

	More on QUBO
	Graph Partitioning
	Binary Integer Linear Programming
	Portfolio optimization

	Quantum Boost
	Warm-starting QAOA
	Asset Management and Monte Carlo Simulations

	Applications in Security
	Generating random strings
	Quantum key distribution
	Factoring integers
	Shor factoring
	Quantum error correction
	Grover-based factoring
	Variational factoring
	A Rejoinder

	References

