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e Sampling-based planning relies on low-level routines
e Efficient implementation of these routines is necessary

1 initialize tree T with g
e Random numbers generator 2 fori=1,..., Imax do

. 3 Grand = generate randomly in C

* Metric a Ghear = find nearest node)iln T towards
* Nearest-neighbor search Grand

5 Ghew = localPlanner from Quear towards
e Collision-detection Grand

6 if canConnect(Quear, Guew) then

7 T .addNode(gnew)

8 T .addEdge(gnear; Gnew)

9 if Q(CIncvw qgm\]) < dgoa/ then

10 L return path from i 10 Ghew

These routines are required also in PRM, EST and all their variants
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Generating random samples P e
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Generation using standard rand ()

e Many variants of random number generator (RNG)

RNG is (usually) implemented as a Linear Congruent Generator (LCG)
Fast, easy for usage, provides “enough” number of samples

High dispersion (the largest empty ball according to the used metric)
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e Many variants of random number generator (RNG)

RNG is (usually) implemented as a Linear Congruent Generator (LCG)
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e Many variants of random number generator (RNG)

RNG is (usually) implemented as a Linear Congruent Generator (LCG)
Fast, easy for usage, provides “enough” number of samples

High dispersion (the largest empty ball according to the used metric)

Random samples in 2D C + dispersion



Generating random samples

Generation using standard rand ()

e Many variants of random number generator (RNG)

RNG is (usually) implemented as a Linear Congruent Generator (LCG)
Fast, easy for usage, provides “enough” number of samples

High dispersion (the largest empty ball according to the used metric)
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Generating random samples

Generation using standard rand ()

e Many variants of random number generator (RNG)

* RNG is (usually) implemented as a Linear Congruent Generator (LCG)
e Fast, easy for usage, provides “enough” number of samples

* High dispersion (the largest empty ball according to the used metric)

PRM roadmap, note the “holes”



Generating random samples

Generation using standard rand ()

e Many variants of random number generator (RNG)

* RNG is (usually) implemented as a Linear Congruent Generator (LCG)
e Fast, easy for usage, provides “enough” number of samples

* High dispersion (the largest empty ball according to the used metric)

po 8§ \
PRM roadmap, note the “holes” — due to the dispersion




Generating random samples

Alternatives to rand ()
® Many libraries provide various RNG
® e.g., Boost, GSL, numpy

¢ GSL — GNU Scientific library, offers tens of random generators
¢ Most of them are based on LCG

Does RNG influence the performance of sampling-based planners?
e Test scenario: square robot, 3D C-space, narrow passage
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Using low-discrepancy sequences
e Halton/Hammersley deterministic sequences
° Number of samples must be known in advance
¢ Slower computation in comparison to basic rand ()
e |ower dispersion than LCG-based rand ()

Halton points Hammersley points

@ J. M. Hammersley. Monte-Carlo methods for solving multivariable problems. Annals of the
New York Academy of Science, 86:844-874, 1960.

@ https://extremelearning.com.au/

unreasonable-effectiveness-of-quasirandom-sequences/
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Technical details

Random numbers generator
Metric

Nearest-neighbor search
Collision-detection

P Eimen | ks
VPN & racoe | OO

1 initialize tree T with gy
2 fori=1,...,Inax do

3
4
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Grand = generate randomly in C
Gnear = find nearest node in 7 towards
Qrand
Gnew = localPlanner from Quear towards
Qrand
if canConnect(Quear. Guew) then
T .addNode(ghew)
T.addEdge(Qnea.r, Qnew)
if Q(qnc\m ngal) < dgoal then
| return path from giit t0 Gnew
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Metric |

Sampling-based planners require a metric o(q1, @2), g1, G2 € C
Often used are L, metrics:

n 1/p
o (S0
i=1

L, is Euclidean metric
L is Manhattan metric
Metric for 1D rotation:

Q(91,92) = min (|91 — 92|,27T — |91 — 92|)

Metrics can be combined, let's assume that C = X x Y with gx and gy:

1/p
2(a.9) = (cxex(x. X'V + cyey(y.y'Y)
® where ¢, ¢, > 0 are weights

Remind that for a, b, ¢ € X in a metric space X and metric o: o(a, b) > 0; o(a, b) = 0 if and only
if a= b; o(a, b) = o(b, a); o(a, b) + o(b, c) > o(a, )



Metric Il

e 2D object, translation + rotation - g = (x,y,p) € C

2a.9) = \/ar((x — X2+ (y — y)2) + cao(0. ¢)

e where oq(y, ¢') is the metric for 1D rotation

* The weights for translation ¢y is “usually” bigger than ¢,
so the effect of the rotation is suppressed

* Wrong setting of weights can worse motion planning
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Nearest-neighbor search
Collision-detection
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1 initialize tree T with gy
2 fori=1,...,Inax do
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Grand = generate randomly in C
Gnear = find nearest node in 7 towards
Qrand
Gnew = localPlanner from Quear towards
Grand
if canConnect(Quear. Guew) then
T .addNode(ghew)
T.addEdge(Qnea.r, Qnew)
if Q(qnc\m ngal) < dgoal then
| return path from giit t0 Gnew
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Nearest-neighbor search

¢ Given a set S, find a nearest point towards a query q

e Alternatives:

® Find k nearest neighbors
¢ Find all neighbors in the range r

¢ Naive O(n) search is too slow!

Challenges

e Fast query time
e Consider arbitrary metrics
¢ Dimensionality of S

Fast preprocessing, low space
requirements




KD-trees: construction

e KD-tree is a binary tree, nodes represent a decision value
e Each level (of node) is for a different dimension
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e Search is O(log n) for n points in the KD-tree
e Construction O(dnlog n), nis number of points, d is dimension
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Construction of kd-trees

¢ Compute median in the given axis, make a new node (decision)
e Split points to two sets based on the decision

* Recursively build left and right subtrees, each subtree works with the
next dimension
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Construction of kd-trees

¢ Compute median in the given axis, make a new node (decision)
e Split points to two sets based on the decision

* Recursively build left and right subtrees, each subtree works with the
next dimension
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Construction of kd-trees

¢ Compute median in the given axis, make a new node (decision)
e Split points to two sets based on the decision

* Recursively build left and right subtrees, each subtree works with the
next dimension
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Construction of kd-trees

¢ Compute median in the given axis, make a new node (decision)
e Split points to two sets based on the decision

* Recursively build left and right subtrees, each subtree works with the
next dimension



, FACULTY

KD-Tree: construction St

CTU IN PRAGUE

[ ]
8
7
[ 6 L
4
[ 3
2
o 1
»
oS g2 1230 g6 T s
-2
_3 [}
—4
=5
-6
-7
-8
[ ] -9 o

Construction of kd-trees

¢ Compute median in the given axis, make a new node (decision)
e Split points to two sets based on the decision

* Recursively build left and right subtrees, each subtree works with the
next dimension
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Construction of kd-trees

¢ Compute median in the given axis, make a new node (decision)
e Split points to two sets based on the decision

* Recursively build left and right subtrees, each subtree works with the
next dimension
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Construction of kd-trees

¢ Compute median in the given axis, make a new node (decision)
e Split points to two sets based on the decision

* Recursively build left and right subtrees, each subtree works with the
next dimension
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Construction of kd-trees

¢ Compute median in the given axis, make a new node (decision)
e Split points to two sets based on the decision

* Recursively build left and right subtrees, each subtree works with the
next dimension
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Construction of kd-trees

¢ Compute median in the given axis, make a new node (decision)
e Split points to two sets based on the decision

* Recursively build left and right subtrees, each subtree works with the
next dimension
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Construction of kd-trees

¢ Compute median in the given axis, make a new node (decision)
e Split points to two sets based on the decision

* Recursively build left and right subtrees, each subtree works with the
next dimension



, FACULTY

KD-Tree: construction

®
*-
i 7
° 6 @
5
4
[ ] 3
2
[ 1
-9 -8 *‘*O - —4 -3 -2 7171 1 2 3 . 078=
-2
_3 o
—4
=5
—6
=7
8
° 9 °

Construction of kd-trees

¢ Compute median in the given axis, make a new node (decision)
e Split points to two sets based on the decision

* Recursively build left and right subtrees, each subtree works with the
next dimension
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Construction of kd-trees

¢ Compute median in the given axis, make a new node (decision)
e Split points to two sets based on the decision

* Recursively build left and right subtrees, each subtree works with the
next dimension
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Construction of kd-trees

¢ Compute median in the given axis, make a new node (decision)
e Split points to two sets based on the decision

* Recursively build left and right subtrees, each subtree works with the
next dimension
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Construction of kd-trees

¢ Compute median in the given axis, make a new node (decision)
e Split points to two sets based on the decision

* Recursively build left and right subtrees, each subtree works with the
next dimension
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Construction of kd-trees

¢ Compute median in the given axis, make a new node (decision)
e Split points to two sets based on the decision

* Recursively build left and right subtrees, each subtree works with the
next dimension
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Construction of kd-trees

¢ Compute median in the given axis, make a new node (decision)
e Split points to two sets based on the decision

* Recursively build left and right subtrees, each subtree works with the
next dimension



SACULTY

KD-Tree: construction g Srhtemen

CTU IN PRAGUE

e @
H
P
[ . ®
5
4
[ YT - 3
2
[ ] 1
»
e T e T VeSO
-2
3 )
—4
-5
-6
-7
-8
(] -9 @

Construction of kd-trees

¢ Compute median in the given axis, make a new node (decision)
e Split points to two sets based on the decision

* Recursively build left and right subtrees, each subtree works with the
next dimension
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Construction of kd-trees

¢ Compute median in the given axis, make a new node (decision)
e Split points to two sets based on the decision

* Recursively build left and right subtrees, each subtree works with the
next dimension
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Construction of kd-trees

¢ Compute median in the given axis, make a new node (decision)
e Split points to two sets based on the decision

* Recursively build left and right subtrees, each subtree works with the
next dimension
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Construction of kd-trees

¢ Compute median in the given axis, make a new node (decision)
e Split points to two sets based on the decision

* Recursively build left and right subtrees, each subtree works with the
next dimension
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Construction of kd-trees

¢ Compute median in the given axis, make a new node (decision)
e Split points to two sets based on the decision

* Recursively build left and right subtrees, each subtree works with the
next dimension
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Construction of kd-trees

¢ Compute median in the given axis, make a new node (decision)
e Split points to two sets based on the decision

* Recursively build left and right subtrees, each subtree works with the
next dimension
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Construction of kd-trees

¢ Compute median in the given axis, make a new node (decision)
e Split points to two sets based on the decision

* Recursively build left and right subtrees, each subtree works with the
next dimension
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Construction of kd-trees

¢ Compute median in the given axis, make a new node (decision)
e Split points to two sets based on the decision

¢ Recursively build left and right subtrees, each subtree works with the
next dimension
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Principle of nearest-neighbor search
® Input is a point
¢ Traverse the nodes till the leaf (based on decision in each node)
* This locates a region that may contain the nearest neighbor

e Search also all surrounding regions to ensure finding the nearest
neighbor
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Usefull operations

* Inserting new item in O(log n)

® Removing existing item in O(log n)
KD-Tree issues

Not suitable for other than Euclidean metrics
Ineffective for large dimensions k

It needs n > 2% data to achieve O(log n) performance, otherwise it
performs almost linear search

Ineffective for non-uniform data
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Geometric Nearest-neighbor Access Tree /& &
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Construction of GNAT

e Select mpivots ¢y,...cn € S
® Assign each point in S to the nearest pivot, D, (clusters)
® For each cluster Dg;:
d R,"/' = [minxex Q(C,‘,X)7 MaXyex Q(C,',X)], X= ch @] {C]}
® R;; = [low, high] are ranges of distances between c; and data points
of other clusters

¢ Build recursively the children ¢; with its points D,

®
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e Select mpivots ¢y,...cn € S
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Geometric Nearest-neighbor Access Tree /& &
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Construction of GNAT

e Select mpivots ¢y,...cn € S
® Assign each point in S to the nearest pivot, D, (clusters)
® For each cluster Dg;:
L4 R,"/' = [minxex Q(C,‘,X)7 MaXyex Q(C,',X)], X = ch U {C]}
® R;; = [low, high] are ranges of distances between c; and data points
of other clusters

¢ Build recursively the children ¢; with its points D,
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Construction of GNAT

Select mpivots ¢q,...cpm € S
® Assign each point in S to the nearest pivot, D, (clusters)
For each cluster D:
R,"/' = [minxex Q(C,‘, X)7 MaXyex Q(C,'7 X)], X = ch U {C]}
® R;; = [low, high] are ranges of distances between c; and data points
of other clusters

Build recursively the children c; with its points D,
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Geometric Nearest-neighbor Access Tree /& &
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Construction of GNAT

e Select mpivots ¢y,...cn € S
® Assign each point in S to the nearest pivot, D, (clusters)
® For each cluster Dg;:
d R,"/' = [minxex Q(C,‘,X)7 MaXyex Q(C,',X)], X= ch @] {C]}
® R;; = [low, high] are ranges of distances between c; and data points
of other clusters

¢ Build recursively the children ¢; with its points D,




GNAT: search

Nearest neighbor search towards a query point q

@ Start at root

@ Select a pivot ¢

Q Ife=0(q,c) <r, report ¢

Q lf[e—r,e+r]N Ri; =0, we can prune node of cluster ¢;

© Repeat steps 2—4 for all clusters i = 1, ..., m at the current level
@ For each non-pruned cluster ¢;, search its corresponding subtree
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Nearest neighbor search towards a query point q

@ Start at root
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@ For each non-pruned cluster ¢;, search its corresponding subtree
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GNAT: search

Nearest neighbor search towards a query point q

@ Start at root

@ Select a pivot ¢

Q Ife=0(q,c) <r, report ¢

Q lf[e—r,e+r]N Ri; =0, we can prune node of cluster ¢;

© Repeat steps 2—4 for all clusters i = 1, ..., m at the current level
@ For each non-pruned cluster ¢;, search its corresponding subtree




GNAT: properties

Nearest neighbor search towards a query point q

Assume m clusters at each node
Construction (average) O(nm/log,, n), worst case O(n?)
Space complexity O(mn)

Search: time complexity is hard to analyze, experiments show that it's ~
logarithmic

Practically, GNAT performs better for larger d than KD-trees
GNAT works with arbitrary metric
GNAT does not degenerate with non-uniform distributions



Technical details

Random numbers generator
Metric

Nearest-neighbor search
Collision-detection

P Eimen | ks
VPN & racoe | OO

1 initialize tree T with gy
2 fori=1,...,Inax do

3
4

(8]

© o N O

Grand = generate randomly in C
Gnear = find nearest node in 7 towards
Qrand
Gnew = localPlanner from Quear towards
Qrand
if canConnect(Quear. Guew) then
T .addNode(ghew)
T.addEdge(Qnea.r, Qnew)
if Q(qnc\m ngal) < dgoal then
| return path from giit t0 Gnew

MULTI-ROBOT
STEMS

sYs’
GROUP



Collision detection

¢ Determines if/how objects collide/overlap/intersect/touch
¢ “Collision detection” covers two different techniques:

Collision-detection:

e True/False answer
e Fast, suitable for sampling-based planners

Collision-determination:

¢ Report details about collisions
¢ |dentify which objects intersect
e Enumerate involved primitives

Optionally computes the “penetration vector”, or
point of intersection

Slower than collision-detection




Collision detection oS imen

CTU IN PRAGUE

Consider the manipulator at collision

¢ How can you react with collision-detection?
* How collision-determination helps to overcome the problem?




Collision detection (CD)

Geometric primitives

Points, Lines, Circles, Triangles, Spheres, Cylinders, Rectangles
Objects are constructed from these primitives

The primitives determines which CD algorithm can be chosen
CD relies on intersection tests between the primitives

e Convex shapes are always better, CD is faster with them

Collision detection between nand m primitives
* Naive CD: O(mn)
¢ This can be too slow!
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Bounding volume Folo e

G
CTU IN PRAGUE

* Reduce complexity of CD by replacing the original object by a simpler
object that contains the original one

* Represent an object by a Bounding Box (BB)
¢ |f two BBs do not overlap, object inside cannot collide (fast test)
¢ |f two BBs collide, further test is made using internal objects (slow test)

= I

¢ BB should be geometrically simple to enable fast BB-vs-BB tests
e Spheres/circles, ellipses, rectangles
e BB should be as tight as possible to minimize false-positives



FACULTY

Rectangles as bounding boxes Fo s

e AABB — Axis Aligend Bounding Box

® Faces of bounding box are parallel to the coordinated system
® Very fast detection of overlap of two BBs
¢ Not suitable for rotated’ objects that lead to large BB

e OBB — Oriented Bounding Box

® Faces of BB are oriented according to the object
* |ower volume of BB, less false-positives
* Slower detection of BBs overlap than for AABB

e k-DOP — k Discrete Oriented Polytope

* Boolean intersection along k directions
® Axes of DOPs do not have to be orthogonal
* Generalization of AABB/OBB (e.g., AABB in 2D is 4-DOP)

&j&iﬁﬁ

AABB k-DOP



Separation axis theorem P B

® |s used to determine overlap of two convex objects

¢ Two convex polytopes do not overlap if there exists a line onto which the
projection of the two objects do not overlap

e Separating line can be determined by testing all combinations of
lines/faces of both objects

e Convex objects!

o=



Bounding volume hierarchy

Bounding Volume Hierarchy (BVH)

¢ Original objects are recursively split to subsets
e BVH is a tree structure of bounding-boxes (BB) for each subset
* A Node in BVH is either a BB or a geometric object

A
AN

AQ A A‘ZBNO CNA



BVH using eIIipsoidS RS shezmen 8@ g sor

CTU IN PRAGUE GROUP

1181414

@ S Liu, C. C. L. Wang, K. Hui, X. Jin, H. Zhao. Ellipsoid-tree construction for solid objects.
ACM symposium on Solid and physical modeling, 2007.



Collision detection using BVH
* Broad phase

Traverse BVH from theroot .. ‘

At each level, evaluate overlaps between BBs AOA
If BBs do not overlap, return no-collision ; :

If BBs overlap, continue to child nodes i 4

e Narrow phase

e for two overlapping BBs, perform collision detection
of their internal objects

e Hierarchical CD: O(log n) for n geometric primitives
e Building of BVH (depends on its type) takes at least O(n)

A

LA A
SRSVAN AN BIZNC

‘B C B C"
A SR \4 2% M

(BB vs BB) (BB vs BB) (Circle vs Triangle)



Notes on collision detection |
e Usual representation for 2D objects:

e Combination of boxes/spheres, polygons, triangulated polygons
e Usual representation for 3D objects:

® Combination of 3D geometric primitives (boxes,spheres,cylinders),
triangle mesh

* Note: triangle meshes are hollow — detection of ‘object inside object’ is
not possible

% I

No collision Collision No collision
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Notes on collision detection Il oS B

CTU IN PRAGUE

e CD between objects of the same type is usually faster than between
objects of different types

® |t’'s a good practice to represent the robot by a combination of basic
primitives than using a full CAD model

Collision-detection Visualization, from CAD
~ 100 triangles/robot ~ 10k triangles + textures/robot



ICAL

Local planners fe i

e Sampling-based planners rely on a “local planner

q

¢ Given configurations g5 € Cgee and gp € Criee, local * b
planner attempts to find a path r: v

da
7:[0,1] = Ciree Exact local planner

q

such that 7(0) = g, and 7(1) = gp, and 7 must be i
collision free! v

* Two-point boundary value problem (BVP) da

Types of local planners (revision) Approximate
L BN

e Exact: analytic solution to BVP, e.g., Dubins or Reeds qgw
Shepp, straight-line (sometimes) M
* Approximate: 7 from g, with gy that is near-enough
from g, €.9., straight-line Straight-line
¢ Black-box models: physical simulation, e.g., for situations
that cannot be solved analytically

qda
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Local planner: System simulator oS B

CTU IN PRAGU

e |et's assume a non-trivial scenario, e.g., x(0)
) ) i . iy 2| Physical x(1)
® mobile robot moving on a undulating terrain e ibior =

® or a legged robot walking on stones t

¢ Analytic motion model is not easy to derive
* Instead, we can use a (physical) simulation
e Simulation is used as a “black-box”




Physical simulation

Motion model of objects based on Newton physics u()t()((i Physical | X()
Complex objects (robots) are composed of basic i simulator

primitives my
e Spheres, Boxes, Cylinders <.
J Aﬁalytic collision dgtermination o 4%
Each object has shape, mass and mass-density \
Objects are connected using static/movable joints =
Each join has limits/maximal moments, speed (+
internal states)

Internal state s; of object i: position, rotation, velocity,
angular velocity

F-dir 2

Body 2

~

W
W
-



Physical simulation

Particle Fl
® Position x(t), velocity v(t), and mass m F—w
* Various forces F; lied on the partic 27 o E
Various forces F; are applied on the particle x(t) 15
® Particle movement is not constrained L

e F =) F;is the total (net) force

v(t)
* F = ma(t), a(t) = v(t), v(t) = x(t) F\./

e Simulator computes a(t) — v(t) — x(t) x(t)
¢ Integration over time-step ¢ (resolution of the ——
simulation)

* Requires integration (Euler method, Midpoint,
Runge-Kutta,.. .)

* Particle has no rotation

parile poton, —— NG 10,
time—step t —| _ simulator position




Simulating collisions

Colliding contact

e Particle is falling to a table \-Qt
® Integration goes by step At: ty, Iy + At, fh + 2At, ... (AL
¢ Integration is terminated if collision happens

® The time of collision t, is estimated

e Change of velocities of colliding bodies is computed

e Simulation is started from t, with new velocities

* This ensures instant change of velocities after the
collision

Detection of f; assuming fy < t; < fo + At ™
0
¢ Integration by intervals determined by the bisection §—T—.5v.-t° -----
method e \'to'?A_t’
¢ Alternatively, obtain collision depth from CD and
accept {; if the penetration depth is less than ¢




Contacts

e Vertex/face

® Vertex of one object is in contact with face of the other one
* The Normal vector of the face determine the ‘normal of the contact’
h

e Edge/Edge

* Two edges ea and eb (each from different object) are in collision
® 1= eax eb (eaand ev are unit vectors)

pa(t d‘Pb(t a

?

e Contacts p,(ty) and py(ty), their velocity is pa(f) and pp(t)

® Vie) = N(t) - (Pa(to) — Po(to))
e Value of v, determines the type of collision



e (e

Contacts Fo Haies | 0O s

pa(t a_pb(t (}

Separating
® v > 0: bodies moving apart
¢ No reaction is needed fi
Contact/resting Pa(tg=Pyt4
® V=0
* No reaction is needed

=>

Colliding

® Vig < 0

e Compute the separating (penetration) vector,
apply force to separate the objects

® Penetration vectors are not unique for f
non-convex objects

* The possible source of unstable simulation

pa(t a _pb(t (}



Main loop of simulator p e

G
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Particle

@ Create objects, create joints, ...

@ User callback (read/set variables, display, .. .)
© Apply forces

© Update velocities and positions

@ Detect collisions

@ Solve constraints

@ Goto 2

Physical engines (sw. libraries)

¢ Box2D, Chimpunk physics engine (2D)
¢ ODE, Bullet, Newton Game Physics (3D)
Robotic simulators (usually with GUI)

* They use physical engine inside, but offer more functionalities:

¢ Visualization, tools for interactive design of robots, import/export from
URDF, sensors

e Gazebo, V-Rep (now CoppeliaSim), Webots, Player/Stage
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Common issues of physical simulation o e

e |f wrongly set up, it can “explode” or “freeze”
e Wrongly set up hinges, unrealistic masses, no gravity

* Too complex geometries — too complex (slow)
collision detection

e Wrong friction parameters

e |t's better to prefer convex shapes (or composition of
them) if possible



Physical simulation in other fields Jo§ He

CTU IN PRAGUE

¢ 3D design/CAD simulation — design a machine and
see how it works

e Virtual reality — e.g. for realistic object manipulation

e Computer games — realistic behavior of objects
(without programming it)

¢ Evolving robots — evolutionary approaches to
design robots or their parts, simulation serves as the
fitness function evaluator
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Physical simulation in other fields e | S s

CTU IN PRAGUE houp

In 2013, we saw simulated robots made of
soft voxel cells evolve the ability to run.

Cheney, N., MacCurdy, R, Clune, J., & Lipson, H. (2013). Unshackling evolution: evolving soft robots with multiple materials and a powerful generative encoding.
In Proceeding of the fifteenth annual conference on genetic and evolutionary computation (pp. 167-174). ACM.



Physical simulation as local planner F e

CTU IN PRAGUE

* Most of physical simulators (ODE, Bullet and their ) o
. . . . . . ~ Physical x(t
derlvatllves) asslume time-linear 3|ml.JIat|on | . i :
¢ In motion planning, we need a non-linear simulation
* We need to “restart” simulation for each tree expansion x(t)
RRT with system simulator U

e Each node contains: x = (s;),i = 1,...n (simulator
state)

* Tree expansion from node X, = x(0) using input u

e Set simulator to state X, (restart)
® Apply control inputs u (usually joint moments)
® Run simulation for time At No restarts
® Read simulator state x
¢ Add node x to the tree ux(t)
e Usually several control inputs u € U is tested g
@—771x(0)

With restarts



Physical simulation: tricks

¢ Try to minimize number of objects/joints
Avoid using triangle mesh for collision-detection

® Physical simulation needs collision determination (penetration
vector)

® CD may be unstable on (non-convex) meshes, simulation can
“explode”

If possible, approximate robots by boxes/spheres/cylinders — fast and
stable collision detection

Use separate models for physics and visualization

Mass Collision-detection Visualization
10 boxes/robot ~ 100 triangles/robot ~ 10k triangles + textures/robot






