
1 Rotation representation and
parameterization

We have seen Chapter ?? that rotation can be represented by an orthonor-
mal matrix R. Matrix R has nine elements and there are six constraints
RJR “ I and one constratint |R| “ 1. Hence, we can view the space of
all rotation matrices as a subset of R9. This subset1 is determined by
seven polynomial equations in nine variables. We will next investigate
how to describe, i.e. parameterize, this set with fewer parameters and fewer
constraints.

1.1 Angle-axis representation of rotation

We know, Paragraph ??, that every rotation is etermined by a rotation
axis and a rotation angle. Let us next give a classical construction of the
rotation matrix from an axis and angle.

Figure 1.1 shows how the vector !x rotates by angle θ around an axis
given by a unit vector !v into vector !y. To find the relationship between !x
and !y, we shall construct a special basis ofR3. Vector !x either is, or it is not
a multiple of !v. If it is, than !y “ !x and R “ I. Let us alternatively consider
!x, which is not a multiple of !v (an hence is not the zero vector!). Futher, let
us consider the standard basis σ of R3 and coordinates of vectors !xσ and

1It is often called algebraic variaty in specialized literature [1].
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!vσ. We construct three non-zero vectors

!x‖σ “ p!vJ
σ !xσq !vσ (1.1)

!xKσ “ !x ´ p!vJ
σ !xσq !vσ (1.2)

!xˆσ “ !vσ ˆ !xσ (1.3)

which are mutually orthogonal and hence form a basis of R3. We may
notice that cooridate vectors !x P R3, are actually equal to their coordinates
w.r.t. the standard basis σ. Hence we can drop σ index and write

!x‖ “ p!vJ!xq !v “ !v p!vJ!xq “ p!v !vJq !x “ r!vs‖ !x (1.4)

!xK “ !x ´ p!vJ!xq !v “ !x ´ p!v !vJq !x “ pI´ !v !vJq !x “ r!vsK !x (1.5)

!xˆ “ !v ˆ !x “ r!vsˆ !x (1.6)

We have introduced two new matrices

r!vs‖ “ !v !vJ and r!vsK “ I´ !v !vJ (1.7)

Let us next study how the three matrices r!vs‖, r!vsK, r!vsˆ behave under
the transposition and mutual multiplication. We see that the following
indentities

r!vsJ
‖ “ r!vs‖ , r!vs‖ r!vs‖ “ r!vs‖ , r!vs‖ r!vsK “ 0, r!vs‖ r!vsˆ “ 0,

r!vsJ
K “ r!vsK , r!vsK r!vs‖ “ 0, r!vsK r!vsK “ r!vsK , r!vsK r!vsˆ “ r!vsˆ ,

r!vsJ
ˆ “ ´ r!vsˆ , r!vsˆ r!vs‖ “ 0, r!vsˆ r!vsK “ r!vsˆ , r!vsˆ r!vsˆ “ ´ r!vsK

(1.8)

2



T Pajdla. Elements of Geometry for Computer Vision and Robotics 2020-11-1 (pajdla@cvut.cz)

hold true. The last identity is obtained as follows

r!vsˆ r!vsˆ “

»

–

0 ´v3 v2

v3 0 ´v1

´v2 v1 0

fi

fl

»

–

0 ´v3 v2

v3 0 ´v1

´v2 v1 0

fi

fl (1.9)

“

»

–

´v2
2 ´ v2

3 v1v2 v1v3

v1v2 ´v2
1 ´ v2

3 v2v3

v1v3 v2v3 ´v2
1 ´ v2

2

fi

fl (1.10)

“

»

–

v2
1 ´ 1 v1v2 v1v3

v1v2 v2
2 ´ 1 v2v3

v1v3 v2v3 v2
3 ´ 1

fi

fl “ r!vs‖ ´ I “ ´ r!vsK (1.11)

It is also interesting to investigate the norms of vectors!xK and!xˆ. Consider

}!xˆ}2 “ !xJ
ˆ!xˆ “ !xJ r!vsJ

ˆ r!vsˆ !x “ !xJp´ r!vs2
ˆq!x “ !xJ r!vsK !x (1.12)

}!xK}2 “ !xJ
K!xK “ !xJ r!vsJ

K r!vsK !x “ !xJ r!vs2
K !x “ !xJ r!vsK !x (1.13)

Since norms are non-negaive, we conclude that }!xK} “ }!xˆ}.
We can now write !y in the basis r!x‖, !xK, !xˆs as

!y “ !x‖ ` ||!xK|| cosθ
!xK

||!xK||
` ||!xK|| sinθ

!xˆ

||!xˆ||
(1.14)

“ !x‖ ` cosθ!xK ` sinθ!xˆ (1.15)

“ r!vs‖ !x ` cosθ r!vsK !x ` sinθ r!vsˆ !x (1.16)

“ pr!vs‖ ` cosθ r!vsK ` sinθ r!vsˆq !x “ R !x (1.17)

We obtained matrix

R “ r!vs‖ ` cosθ r!vsK ` sinθ r!vsˆ (1.18)

3



T Pajdla. Elements of Geometry for Computer Vision and Robotics 2020-11-1 (pajdla@cvut.cz)

Let us check that this indeed is a rotation matrix

RJR “
`

r!vs‖ ` cosθ r!vsK ` sinθ r!vsˆ

˘J `

r!vs‖ ` cosθ r!vsK ` sinθ r!vsˆ

˘

“
`

r!vs‖ ` cosθ r!vsK ´ sinθ r!vsˆ

˘ `

r!vs‖ ` cosθ r!vsK ` sinθ r!vsˆ

˘

“ r!vs‖ ` cos2 θ r!vsK ` sinθ cosθ r!vsˆ ´ sinθ cosθ r!vsˆ ` sin2 θ r!vsK

“ r!vs‖ ` r!vsK “ I (1.19)

R can be wrtten in many variations, which are useful in different situations
when simplifying formulas. Let us provide the most common of them
using r!vs‖ “ !v !vJ, r!vsK “ I´ r!vs‖ “ I´ !v !vJ and r!vsˆ

R “ r!vs‖ ` cosθ r!vsK ` sinθ r!vsˆ (1.20)

“ !v !vJ ` cosθ pI´ !v !vJq ` sinθ r!vsˆ (1.21)

“ cosθ I` p1 ´ cosθq !v !vJ ` sinθ r!vsˆ (1.22)

“ cosθ I` p1 ´ cosθq r!vs‖ ` sinθ r!vsˆ (1.23)

“ cosθ I` p1 ´ cosθq pI` r!vs2
ˆq ` sinθ r!vsˆ (1.24)

“ I` p1 ´ cosθq r!vs2
ˆ ` sinθ r!vsˆ (1.25)

1.1.1 Angle-axis parameterization

Let us write R in more detail

R “ cosθ I` p1 ´ cosθq !v !vJ ` sinθ r!vsˆ (1.26)

“ p1 ´ cosθq !v !vJ ` cosθ I` sinθ r!vsˆ (1.27)

“ p1 ´ cosθq

»

–

v1v1 v1v2 v1v3

v2v1 v2v2 v2v3

v3v1 v3v2 v3v3

fi

fl ` cosθ

»

–

1 0 0
0 1 0
0 0 1

fi

fl ` sinθ

»

–

0 ´v3 v2

v3 0 ´v1

´v2 v1 0

fi

fl

“

»

–

v1v1p1 ´ cosθq ` cosθ v1v2p1 ´ cosθq ´ v3 sinθ v1v3p1 ´ cosθq ` v2 sinθ
v2v1p1 ´ cosθq ` v3 sinθ v2v2p1 ´ cosθq ` cosθ v2v3p1 ´ cosθq ´ v1 sinθ
v3v1p1 ´ cosθq ´ v2 sinθ v3v2p1 ´ cosθq ` v1 sinθ v3v3p1 ´ cosθq ` cosθ

fi

fl

(1.28)
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which allows us to parameterize rotation by four numbers

“

θ v1 v2 v3
‰J

with v2
1 ` v2

2 ` v2
3 “ 1 (1.29)

The parameterization uses goniometric functions.

1.1.2 Computing the axis and the angle of rotation from R

Let us now discuss how to get a unit vector !v of the axis and the corre-
sponding angle θ of rotation from a rotation matrix R, such that the pair
rθ, !vs gives R by Equation 1.28. To avoid multiple representations due to
periodicity of θ, we will confine θ to real interval p´π,πs.

We can get cospθq from Equation ??.
If cosθ “ 1, then sinθ “ 0, and thus θ “ 0. Then, R “ I and any unit

vector can be taken as !v, i.e. all paris r0, !vs for unit vector !v P R3 represent
I.

If cosθ “ ´1, then sinθ “ 0, and thus θ “ π. Then R is a symmetrical
matrix and we use Equation ?? to get !v1, a non-zero multiple of !v, i.e.
!v “ α!v1, with real non-zero α, and therefore !v1{||!v1|| “ s !v with s “ ˘1.
We are getting

R “ 2 r!vs‖ ´ I “ 2 !v !vJ ´ I “ 2 s2!v !vJ ´ I “ 2 ps !v q ps !v qJ ´ I(1.30)

“ 2

ˆ

!v1

}!v1}

˙ ˆ

!v1

}!v1}

˙J

´ I “ 2

ˆ

´
!v1

}!v1}

˙ ˆ

´
!v1

}!v1}

˙J

´ I (1.31)

from Equation 1.27 and hence we can form two pairs

„

π,`
!v1

}!v1}



,

„

π,´
!v1

}!v1}



(1.32)

representing this rotation.
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Let’s now move to ´1 ă cosθ ă 1. We construct matrix

R´ RJ “ p1 ´ cosθq r!vs‖ ` cosθ I` sinθ r!vsˆ

´
`

p1 ´ cosθq r!vs‖ ` cosθ I` sinθ r!vsˆ

˘J
(1.33)

“ p1 ´ cosθq r!vs‖ ` cosθ I` sinθ r!vsˆ

´
`

p1 ´ cosθq r!vs‖ ` cosθ I´ sinθ r!vsˆ

˘

(1.34)

“ 2 sinθ r!vsˆ (1.35)

which gives
»

–

0 r12 ´ r21 r13 ´ r31

r21 ´ r12 0 r23 ´ r32

r31 ´ r13 r32 ´ r23 0

fi

fl “ 2 sinθ

»

–

0 ´v3 v2

v3 0 ´v1

´v2 v1 0

fi

fl (1.36)

and thus

sinθ!v “
1

2

»

–

r32 ´ r23

r13 ´ r31

r21 ´ r12

fi

fl (1.37)

We thus get

| sinθ| ||!v|| “ | sinθ| “
1

2

b

pr23 ´ r32q2 ` pr31 ´ r13q2 ` pr12 ´ r21q2 (1.38)

There holds
sinθ!v “ sinp´θq p´!vq (1.39)

true and hence we define

θ “ arccos

ˆ

1

2
ptrace pRq ´ 1q

˙

, !r “
1

2

»

–

r32 ´ r23

r13 ´ r31

r21 ´ r12

fi

fl (1.40)

and write two pairs
„

`θ,`
!r

sinθ



,

„

´θ,´
!r

sinθ



(1.41)
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representing rotation R.
We see that all rotations are represented by two pairs of rθ, !vs except for

the identity, which is represented by an infinite number of pairs.

1.2 Euler vector representation and the exponential
map

Let us now discuss another classical and natural representation of rota-
tions. It may seem as only a slight variation of the angle-axis representa-
tion but it leads to several interesting connections and properties.

Let us consider the euler vector defined as

!e “ θ!v (1.42)

where θ is the rotation angle and !v is the unit vector representing the
rotation axis in the angle-axis representation as in Equation 1.27.

Next, let us recall the very fundamental real functions [2] and their
related power series

exp x “
8
ÿ

n“0

xn

n!
(1.43)

sin x “
8
ÿ

n“0

p´1qn

p2n ` 1q!
x2n`1 (1.44)

cos x “
8
ÿ

n“0

p´1qn

p2nq!
x2n (1.45)

It makes sense to define the exponential function of an m ˆ m real matrix
A P Rmˆm as

exp A “
8
ÿ

n“0

An

n!
(1.46)
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We will now show that the rotation matrix R corresponding to the angle-
axis parameterization rθ, !vs can be obtained as

Rprθ, !vsq “ exp r!esˆ “ exp rθ!vsˆ (1.47)

The basic tool we have to employ is the relationship between r!es3
ˆ and r!esˆ.

It will allow us to pass form the ifinite summantion of matrix powers to
the infinite summation of the powers of the θ and hence to sinθ and cosθ,
which will, at the end, give the rodrigues formula. We write, Equation 1.11,

rθ!vs2
ˆ “ θ2 p!v !vJ ´ Iq

rθ!vs3
ˆ “ ´θ2 rθ!vsˆ

rθ!vs4
ˆ “ ´θ2 rθ!vs2

ˆ (1.48)

rθ!vs5
ˆ “ θ4 rθ!vsˆ

rθ!vs6
ˆ “ θ4 rθ!vs2

ˆ

...

and substitute into Equation 1.46 to get

exp rθ!vsˆ “
8
ÿ

n“0

rθ!vsn
ˆ

n!
(1.49)

“
8
ÿ

n“0

rθ!vs2n
ˆ

p2nq!
`

8
ÿ

n“0

rθ!vs2n`1
ˆ

p2n ` 1q!
(1.50)

Let us notice the identities, which are obtained by generalizing Equa-
tions 1.48 to an arbitrary power n

rθ!vs0
ˆ “ I (1.51)

rθ!vs2n
ˆ “ p´1qn´1 θ2pn´1q rθ!vs2

ˆ for n “ 1, . . . (1.52)

rθ!vs2n`1
ˆ “ p´1qn θ2n rθ!vsˆ for n “ 0, . . . (1.53)
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and substitute them into Equation 1.50 to get

exp rθ!vsˆ “ I`

˜

8
ÿ

n“1

p´1qn´1θ2pn´1q

p2nq!

¸

rθ!vs2
ˆ `

˜

8
ÿ

n“0

p´1qnθ2n

p2n ` 1q!

¸

rθ!vsˆ

“ I`

˜

8
ÿ

n“1

p´1qn´1θ2n

p2nq!

¸

r!vs2
ˆ `

˜

8
ÿ

n“0

p´1qnθ2n`1

p2n ` 1q!

¸

r!vsˆ

“ I´

˜

8
ÿ

n“0

p´1qnθ2n

p2nq!
´ 1

¸

r!vs2
ˆ ` sinθ r!vsˆ

“ I´ pcosθ´ 1q r!vs2
ˆ ` sinθ r!vsˆ

“ I` sinθ r!vsˆ ` p1 ´ cosθq r!vs2
ˆ

“ I` sin }!e}
„

!e

}!e}



ˆ

` p1 ´ cos }!e}q
„

!e

}!e}

2

ˆ

“ Rprθ, !vsq (1.54)

by the comparison with Equation 1.25.

1.3 Quaternion representation of rotation

1.3.1 Quaternion parameterization

We shall now introdude another parameterization of R by four numbers
but this time we will not use goniometric functions but polynomials only.
We shall see later that this parameterization has other useful properties.

This paramterization is known as unit quaternion parameterization of
rotations since rotations are represented by unit vectors from R4. In
general, it may sense to talk even about non-unit quaternions and we will
see how to use them later when applying rotations represented by unit
quaternions on points represented by non-unit quaternions. To simplify
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