1 Rotation representation and

e Tx3
parameterization Ler

We have seen Chapter ?? that rotation can be represented by an orthonor-
mal matrix R. Matrix R has nine elements and there are six constraints
R'R = I and one constratint |R| = T. Hence, we can view the space of
: . 7 19 . 1l - .
all rotation matrices as a subset of R?. This subsefllis determined by
. . . . \- . . .
seven polynomial equations in nine variables. We will next investigate
how to describe, i.e. parameterize, this set with fewer parameters and fewer
constraints.

1.1 Angle-axis representation of rotation

We know, Paragraph ??, that every rotation is etermined by a rotation
axis and a rotation angle. Let us next give a classical construction of the
rotation matrix from an axis and angle.

Figure [L.T]shows how the vector ¥ rotates by angle 6 around an axis
given by a unit vector 7 into vector i/. To find the relationship between ¥
and ¥, we shall construct a special basis of IR®. Vector ¥ either is, or it is not
amultiple of 7. If it is, than i/ = ¥and R = I. Let us alternatively consider
¥, which is not a multiple of 7 (an hence is not the zero vector!). Futher, let
us consider the standard basis ¢ of R3 and coordinates of vectors ¥, and

!Tt is often called algebraic variaty in specialized literature [1].
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Uy. We construct three non-zero vectors

JE)||a = (5)]7—3?0)5)0 (1-1)
X, = X—(31%,)7, (1.2)
Xxg = U5 XXy (1.3)

which are mutually orthogonal and hence form a basis of R®>. We may
notice that cooridate vectors ¥ € IR?, are actually equal to their coordinates
w.r.t. the standard basis 0. Hence we can drop o index and write

Y = (T90=3(") = (09) %= [0 ¥ (14
T - A @RI @) (0T Y- [, (15
¥ = UxX=[0],% . (1.6)
N g _ ( l ‘ el = 1
We have introduced two new matrices -
| e R
‘;-dw‘«e/&\»(_—> @zﬁ’ﬁj and EJ’L‘-:_I_—?_U?T (1.7) 6, ™ X,
Let us next study how the three matrices [0],, [0], [0], behave under Pl S (\r{; N Xy
. L I ) VUx X < v O 1
the transposition and mutual multiplication. We see that the following N~ A £
indentities N 49!'/!&2:. A ) L M4 @ >
4?_;\,\\;1. v, Xy -« M/
\-[77]ur = [, [9) [9, =[al, [o], [d]. =6, [7], [7]. =9, " Yo, K}] ALY
’[U+: [6)]J_/ [ﬁh_ [5]”:@/ [Zj)]J_ [5)]J_: [5]1_/. [5)]J_ [Zj)]x :[ﬂxr > L‘)H
.[ﬂx:_[ﬁ]xr [5]>< [5)]||:®r [77]>< [ﬂj_:[ﬁ]xl [Tj}]x [ﬂx:_[ﬁh_ (-"\\V
r (8)° — AR K AV Xy
- \ ~— ] N, T < AraXy = & Ky
\*J«S\é\m«M (ﬁ 6 ({ V] --/‘/\"ﬁ y
- N -Vt T PIVEN
q,\ﬂ) (I— N ,(;T) ~ T ~20 s o < g e
> = (l B (\{ N —_ T -~ L 3
= I~ v Wy =2
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hold true. The last identity is obtained as follows

—03 (%]
0 —m \/

0 —03 U2 0
—> [d, [F]« = vz 0 -oy (&
— | — 02 U1 0 —02
[ —v% — v% V102
- vy —VF — 03
( ( | 0103 0203 —ZJ%
‘ [ v% -1 v vos
~—~
2
= 0oy vs—1 UVoU3
iig N ':,\ 22
q '{ U WY V103 003 v% -1

~

(1.9)
(%]} 0
0103
0203 (1.10)
_ v%
=[d,-1= Z7h (1.11)

MRS

Itis also interesting to investigate the norms of vectors ¥ and ¥x. Consider

-

—\ ~ o\
1o B = TR =T T =T X7 = T, 7 (112)
12 X7
=7 HfLHZ = X% =¥ [d]7[0], ¥ = *5] Zﬂlx = 77]¢x 7 (1.13)
— —~—r———
Since norms are non—negalve, we conclude that Hx L = %]

We can now write i/ in the basis [X|, |, ¥x] as——

—————y
'v/'

7y o= x+ ||xi||c056H Al +||xl\|sm || || (1.14)

- "'—: > X
o = Xj+cosOX| +sinOx, (1.15)
. = WJr cos 6 [7] | ¥+ sin6 [1 (1.16)
= ([9]) +cos@ [0], +sin6 [7],)X=R¥ (1.17)

N~ ~
We obtained matrix 1

l R = [0], + cos O [3], +sin0O [7], (1.18)

=y

A
[

v

2
g

<y

sin 6 X'
o d - o d
« =0V XX
——
—
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Let us check that this indeed is a rotation matrix
R'R ([77]”+c056[z?]LJrsinQ[ﬁ]X)T ([9]) + cos 6 [7] | +sin6 [7],) WW ;Lu,o-t""‘:”
([@] + cos 0 [7], —sin0 [d],) ([7]; + cos O [7], +sin6 [7],)

= [0l + cos® O [7], +sin6 cos O [7], —sin 6 cos O [7], + sin® O [7],

— )+ 8], =1 (1.19)

R can be wrtten in many variations, which are useful in different situations
when simplifying formulas. Let us provide the most common of them
using [7], = 77", [0], =1 —[d]; = I— 77" and [7],

R = ?7]||+C059 [7], +sin0 [7], '} (1.20)
= 77" +cosO(I—-77") +sinb [7], (1.21) . (}1‘
— = cosOI + (1 —cos0)37' +sinb [7],: (1.22) AV 0 prS
= c0sOI+ (1—cosB) []; +sin0 [7], (1.23) I —
= c0osOI+ (1—cosO)(I+[F]%)+sin6 [Zﬂy (1.24)
= I+ (1—cos6)[d]> +sin6[d], 125 L
1.1.1 Angle-axis parameterization T
Let us write R in more detail
R = cosOI+ (1—cosB)Td +sin0 [7], & (1.26)
= (1-cos0)T7' +cosOTI + sinO [z?]xﬁ (1.27) Q/XP&‘ 4-
V101 U102 010 1 00 -0 1%
= (1—cosb) [v;vi v;vz vlvi] + cos 6 [O 1 0] +sin@ [ X —vi WW
U3U1 U3V2 V303 |, 00 1], 01|/
v101(1 —cos0) + cosO v1vp(1 —cosB) —v3sin@ vv3(1 — cos 9) + vpsin O
= [0201(1 —cos0) + v3 s%n@ v02(1 — cos 0) + cos 6  vyu3(l —cosb) — vy sin@] \\7
133_01(1 —g@) _vzf_l_rl? v302(1 — cos 0) +v1sin@ v3v3(1 —cosB) + cos b

, -~ (1.28)
4
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which allows us to parameterize rotation by four numbers

[0 v v v] with P+ 4+ =1 (1.29) SO(%).. S\ae-c(oi- dr*‘mavw«f( Qrep

— m
The parameterization uses goniometric functions. 1\
sk A1 22 NReT
1.1.2 Computing the axis and the angle of rotation fromR _ %f R "Z‘/
Let us now discuss how to get a unit vector 7 of the axis and the corre-

spondmg angle 0 of rotation from a rotation matrix R, such that the pair ol ) 'Ka + :,L re euof\rfu_?
[6,7] gives R by Equation[1.28] To avoid multiple representations due to

per10d1c1ty of 6, we will confine 6 to real interval (—m, 7t]. " _ - 9~
We can get cos(0) from Equation ??. 3D 2
If cos® =1, then sin® = 0, and thus 6 = 0. Then, R = I and any unit 3y

veéctor can be taken as 7, i.e. all paris [0, ] for unit vector 7 € IR3 represent A%(é S& =1

I.
If cosO = —1, thensin@ = 0, and thus 6 = . ThenRis a symmetr1ca1
matrix and we use Equation ?? to get 7, a non-zero multlple of U, i.e. di - "l
7 = a U1, with real non-zero a, and therefore 7, /||7}|| = s with s = +1.
We are getting A(j: XN Lo + F "‘VZS (a.)ba)
g g —) \
R = 2[0],—-1=207 —I1=2500" —1=2(s7)(s?) —I1(1.30)
N T

N/
3 k. T —)
-2 (B2 cr-2 (<)) -1 as
lo1ll/ \[o1] |51 |71 —

. . \
Cordumm % plaun T 1 red (ﬂ./(.,g .)
L — o0 [—O \ ;J lﬂ/?f“ =1

I

from Equation|1.27|and hence we can form two pairs

171 '(71 Py
el I TS 1.32
B |v1] = Hvll] 3 g0 = I eps.

—

representing this rotation.
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Let’'s now move to —1 < cos 6 < 1. We construct matrix
e e————

R—liT = (1-cosb) [z?]||+c059.1+siné [117]X &
\ — ((1—cos ) [d]+ cosOT + sin O [z?]xﬁ.&’i)
= (1—cos0) [d];+ cosOT +sin O [7],

—((1 —cos0) [7]; + cos O T —sin O [7],, X1.34)
= 2sin0 [7], (1.35)

whicl] gives “/‘w
/

0 T2 — 7121 113 — 7131 0 —v3
721 — *12 0 T3 —t3p | =2sinB U3 0 —n (1.36)

r31 — 7113 132 — 123 0 (%I 0

\\/ (1.37)

. . 1
[sin ][] = [sin6] - 5 Vr = )2 + (731 — r13)? + (ri2 — )2 (1.38)

There holds

and thus -

132 — 123
P |
sinfv = E r13 — 131

21 — 112

We thus get

sin 67 = sin(—0) (—7) (1.39)

true and hence we define

1 1 r32 — 123
6 = arccos (E(trace R)—-1)), 7= 5|3 (1.40)

21 — 112

and write two pairs 2
i v
o, }

—

(1.41)
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representing rotation R.
We see that all rotations are represented by two pairs of [0, U] except for
the identity, which is represented by an infinite number of pairs.

1.2 Euler vector representation and the exponential
map

Let us now discuss another classical and natural representation of rota-
tions. It may seem as only a slight variation of the angle-axis representa-
tion but it leads to several interesting connections and properties.

Let us consider the euler vector defined as

€=07 (1.42)
where 6 is the rotation angle and 7 is the unit vector representing the
rotation axis in the angle-axis representation as in Equation[1.27]

Next, let us recall the very fundamental real functions [2] and their
related power series

OOX
[expx= Zﬁ

sinx = Z_:m/‘“ (1.44)

cosx = i ((_1)nx2

(1.43)

(1.45)

It makes sense to define the exponential functigrf of an m x m real matrix
AeR™™ as

expA = Z — (1.46)

e — &
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We will now show that the rotation matrix R corresponding to the angle-
axis parameterization [0, U] can be obtained as

l ,7]) = exp el =exp 61@ \/ (1.47)

The basic tool we have to employ is the relationship between eji and [¢]..
It will allow us to pass form the ifinite summantion of matrix powers to
the infinite summation of the powers of the 6 and hence to sin 0 and cos 0,
whichwill, at the end, give the rodrigues formula. We write, Equation[1.11]

— 07 = 6% (37" — 1)

>[6z7@ —

— [0 *@ = & [917@ (1.48)
&) = ot [0
CE

and substitute into Equation to get

© 19 n
—> exp[07], = HZ_O[j!]X (1.49)
g [eﬁ@ 62’ 1
- nz::o (2n)! L (2n +1)! (1.50)

Let us notice the identities, which are obtained by generalizing Equa-
tions|1.48|to an arbitrary power n

S0 - 1 (1.51)

4
[g = (—1)”:/62("1) [eﬂ@forn =1,... (1.52)

[0 = (-1)"0* [0}, forn=0,... (1.53)
8

€:=8%n — ®-T
o © =0
IE Il =% L 7
o ~e7 O =D
N —._,_;—
he |



T Pajdla. Elements of Geometry for Computer Vision and Robotics 2020-11-1 (pajdla@cvut.cz)

and substitute them into Equation[1.50]to get S /I/VU\OV‘/\A-?’W‘M "[0 2/& e / o

exp [07], =

_1\nQ2n
_ I_<Z%_l> [77]2X+sir1l/6[z7]X
’E‘/~—~/
= I-|—s1n6'l7] 1—C059)[_’]2

~ o (1.54)

by the comparison with Equation[1.25]

1.3 Quaternion representation of rotation

—

1.3.1 Quaternion parameterization

We shall now introdude another parameterization of R by four numbers
but this time we will not use goniometric functions but polynomials only.
We shall see later that this parameterization has other useful properties.
This paramterization is known as unit quaternion parameterization of
rotations since rotations are represented by unit vectors from RY. In
general, it may sense to talk even about non-unit quaternions and we will
see how to use them later when applying rotations represented by unit
quaternions on points represented by non-unit quaternions. To simplify

9

r < 0
O P
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