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2.1.3 Eigenvectors ofg g c n{}’@ R =T d.d»?\: =/

"Let us now look at eigenvectors of R and let’s f1rst 1nvest1gate the situation
when all eigenvalues of R are real.

/\1 = /\2 = Ag = 1: Let/ll = Az = /\3 = 1. Thenp()\) = (A—l)?’ =
A—37% + 3A — 1. It means that 713 + 2 + 733 = 3 and since 111 < 1,
1 <1,r33 < 1 it leads to 11 = rp = r33 = 1, which implies R = I. Then
I —R = 0 and all non-zero vectors of IR” are eigenvectors of R. - Notice that
rank of R — I is zero in this case.
® Next, consider Ay = 1 and A, = A3 = —1. The eigenvectors U corre-
sponding to A, = A3 = —1 are solution57

RT = 3 (2.17)

There is always at least one one-dimensional space of such vectors. We
also see that there is a rotation matrix

To -

1 0 0 -1

R=|(0 -1 \/ |p\l-. 1 (218)
0 0 -1
i i < 0

with real e1get;j/ectors o 19% 2D ]vow( f
1 1 0 0 QAﬂyav\Mc 3
\/r O, 7r#0, and s |1|+t |0, s+ =0, (2.19)

0 ~ 10 1 5) telk

v \4

which means that there is a one-dimensional space of real eigenvectors
corresponding to 1 and a two-dimensional space of real eigenvectors cor-

responding to —1. Notice that rank of R — I is two here.
VADT —
Y.

A
14 !

A= —T12 —Tr13
p(A) = [(AI-R)[= —ryn A—rn -3 (2.12)
—131 —r32 A—r33
= A3 (r11 +rn +r33) A?
+(ri17 — 121712 + 111733 — 131713 + 10133 — 123 732) A (2.13)

4111 (ra3 32 — 122 133) — 121 (132713 — 112733) + 131 (113722 — 12 723)

= A —(”11+1’22+1’33)A +(rs3 + 12 +1r11) A — R (2.14)
— 2% traceR(A2 1) —1 (2.15)
= |(A=1)[A%+ (1 — traceR) A + 1) (2.16)
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l lAl = 1,1 = A3 = =1 How does the situation look for a general R
with eigenvaluesT, —1, —1? Consider an eigenvector _y_l_c_g)_ge_sp_(mch\ngig_l

and an WL They are linearly independent. — —
Otherwise there has to be s € R such that 7, = s7; # 0 and then D ’F MA ~ A L T
- - -2 — — =T
Up = SU 2.20) . - I 1
N L 2200 g 0 ~ -1 Roasg >00q pRedy
RUp = SRUj. (2.21)
~%h = st z/\m\ — — T T
| s R 2o = R
leading to s = —s and therefore s = 0 which contradicts 7> # 0. Now, let

us look at vectors @ € R® defined by

Soldinns do & bin S =-
[_] ﬂ[ﬂ}]vg 0 oyl (2.23)

The above linear system has a one -dimensional space of solutions sirt

— -~ _
v
1\ L1

the rows of its matrix are independent. Chose a fixed solution 73 # 0. ..L — | —

Then e N LS R /U;
. FTRT 1. _,_LJ“

A rite [»]r R U3—{+1r T 03—[_5ir]03=0 (2.24) ’(/7 L] /U':

—_——

We see that R' 73 and 75 are in the same one-dimensional space, i.e. they
are linearly dependent and we can write

2| 84
e
L_/—/
\]
0 =1
w1
\/

R T3 = sts (2.25)
—_—

for some non-zero s € C. Multiplying equation by R from the left and
dividing both sides by s gives _s T

lh—re Y 3 (2.26) \ i

° «Q/\W% : o%— © 5 P
Clearly, U3 is an eigenvector of R. Since it is not a multiple of 71, it must ) —
correspond to eigenvalue —1. Moreover, ) 73 = 0 and hence they are K Nj = g /\f‘}

e —————
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linearly independent. We have shown that if —1 is an eigenvalue of R, then
there are always at least two linearly independent vectors corresponding
to the eigenvalue —1, and therefore there is a two-dimensional space of
eigenvectors corresponding to —1. Notice that the rank of R — I is two in
this case since the two-dimensional subspace corresponding to —1 can be
complemented only by a one-dimensional subspace corresponding to 1 to
avoid intersecting the subspaces in a non-zero vector.

i§3 General A4, A5, /\3:i Finally, let us look at arbitrary (even non—real!

eigenvalues. Assume A = x + yi for real x, y. Then we have

If y # 0, vector 7 myst be non-real since otherwise we would have
a real vector on the l¢ft and a non-real vector on the right. Further-
more, the eigenvalues gre pairwise distinct and hence there are three one-
dimensional subspaceq of eigenvectors (we now understand the space as
C3 over C). In particulpr, there is exactly one one-dimensional subspace
corresponding to eigenvtalue 1. The rank of R — I is two.

Let ¥ be an eigenvectok of a rotation matrix R. Then

( RO = (x+yi)d (2.28)
SR'RT = (x+yi)R'T (2.29)
1.7 = (x+y)R'T (2.30)

s s Tz €
> (x+yi)v = R'0 (2.31)
—> (x—yi)7 = R'T (2.32)

We see that the eigenvector 7 of R corresponding to eigenvalue x + yi is the

eigenvector of RT corresponding to eigenvalue x — yi and vice versa. Thus,

there is the following interesting correspondence between eigenvalues

and eigenvectors of R and R". Considering eigenvalue-eigenvector pairs
16
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(1,01), (x + yi, 02), (x — yi,U3) of Rwe have (1,71), (x — yi, 02), (x + yi, U3)
pairs of R', respectively.

§4 Orthogonality of eigenvectors The next question to ask is what are
the angles between eignevectors of R? We will considers pairs (A1 = 1,7),
(A2 = x + yi,¥2), (A3 = x — yi, U3) of eigenvectors associated with their
respective eigenvalues. For instance, vector 77 denotes an eigenvector
associated with egenvalue 1.

If all eigenvalues are equal to 1, i.e. R = I, then all non-zero vectors of
R? are eigenvectors of R and hence we can alway find two eignevectors
containing a given angle. In particular, we can choose three mutually
orthogonal eignevectors.

If Ay = 1and A; = A3 = —1, then we have seen that every 7} is perpen-
dicular to v, and v3 and that v, and 73 can be any two non-zero vectors in
a two-dimensional subspace of R3, which is orthogonal to U1. Therefore,
for every angle, there are 7> and U3 which contain it. In particular, it is
possible to choose U, to be orthogonal to 73 and hence there are three
mutually orthogonal eigenvectors.

Finally, if A5, A3 are non-real, i.e. y # 0, we have three mutually distinct
eigenvalues and hence there are exactly three one-dimensional subspaces
(each without the zero vector) of eigenvectors. If two eigenvectors are

from the same subspace, then they are linearly dependent and hence they |

contain the zero angle. ~— 7\7 -~ ()( & >
Let us now evaluate 771272 N a ~A ( 2 + a .
%/»-\‘L»T 2> _ STpT m e =T =
0= U,02 =0, U2 = le RO, = U, (x + yi)Th = (x—l—yz)vlvz (2.33)
T » s "(Y’OV e V

We conclude that either (x + yi) t 1 or[ﬁvz—o Since the lattercan’t be
the caseas y # 0, the must hold true We see that U1 is orthogonal
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Let us next consider the angle between eigenvectors v, and U3

Y
%o~ IRRE = RE)RE - (« B+ y)F (234
T = V3 (H i) (x+ yi) e (2.35)
6;52 = (@ +2xyi—y )27;772 (2.36)
We conclude that either ( x +@ =1 or’v;vz = (0. The former

implies xy = 0 and threfore x = 0 since y Z 0 but twhlch is,

for a real y, impossible. We see that ki 302 = 0, i.e. vectors ¥, are orthogonal
to vectors 3.

Clearly, it is always possible to choose three mutually orhogonal eigen-
vectors. We can further normalize them to unit legth and thus obtain an
orthonormal basis as non-zero orthogonal vectors are linearly indepen-
dent. Therefore 1

-
aw, L,

/\\ NE— PR - ¢
R[’('71 ’(’72 273] = [”('71 Z72 Zj)3][
[0 & G| R[T1 & B3] =7 Az (2.38),
_ A3 ?\S G L'LL
A

Let us further investigate the structure of eigenvectors v, 3. We shall
show that they are “conjugated”. Let’s write 0, = i + Wi with real vectors

il, @. There holds true er’ -
7N\
’\ sz = R+ Wi)=RU+RDBI ~_ = (2.39)
-’L- (x + yi) 0> (x + yi) (4 @i) = xil —y@ + (x@0 + yi)i (2.40)
—w —_~—— reee— T —_—
which implies L R l
” Ril = xil — y@ and R®=x@+ yil (2.41)
—_—— ———\——"'—‘\
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Now, let us compare two expressions: R (i — wi) and (x — yi) (il — i)

3( R(l—Wi) = RU—-RWi=xtdl—yw— (xw0+yu)i (242)
(x—yi)(@—Wi) = xd—yd— (x@+yi)i (2.43)

We see that
R (il — wi) = (x — yi) (il — wi)| (2.44)

which means that (x — yi, il — Wi) are an eigenvalue-eigenvector pair of
R. It is importatnt to understand what has been shown. We have shown

that if i + @i is an eigenvector of R corresponding to an eigenvalue A,

then the conjugated vector i — wi is an eignevector of R corresponding to

eigenvalue, which is conjugated to A (This does not mean that every two |

eigenvectors corresponding to x + yi and x — yi must be conjugated).

The conclusion from the previous analysis is that the both non-real
eigenvectors of R are generated by the same two real vectors i and @. Let
us look at the angle between i and @. Consider that

0= zfgaz = (@ - @) @+ D) = @ + BT+ D) (2.45)
T T —@"d) + (i B+ @ D) i (2.46)
= @'d—@'®) +20 i (2.47)
\ n
and therefore g ° ©
' =w"® and @W'i=0 (2.48)

which means that vectors i/ and @ are orthogonal.
Finally, let us consider

0=70,0, =0, il + 0, Wi (2.49)

and hence
3lif=0 and ¥ @=0 (2.50)

which means that i and @ are also orthogonal to 7.
19
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.. L -

2.1.4 Rotation axis A~ Cx o *=A o A
A A

A one-dimensional subspace generated by an eigenvector 7 of R corre- C\ 5 5

sponding to A = 1, is called the rotation axis (or axis of rotation) of R. If b 1 (3 V. M

R = I, then there is an infinite number of rotation axes, otherwise there is X

exactly one. Vectors v, which are in a rotation axis of rotation R, remain
unchanged by R, i.e. RU = 7.
Consider that the eigenvector of R corresponding to 1 is also an eigen- p

vector of RT since & AD an~ &W
(2.51) X M,‘,},,w\ A% dﬂef]ﬁ/

252 ~Mnse
. (2.53)

It implies R J/j Roto (}\‘0’1« aszg

N 1
R~ oy = @—RD)& = 0 (2.54) )
\/ Or ro—ra r3—r3;1 (O\W\' >
21 — 12 Ov rg—rp|d = 0 (2.55)
r31— 13 T3 — 123 0, |7~ 0 (9~

and we see that A=~ A

-—-\jw& =
@ 0 ra =1 riz—r31 ||| ra2 — 723 / 0 Lo W/ [\,A,@\J')o’\« a)éb\S

N R et 0 r3—rn [||rs—ra || = |0 (2.56)
e r r3 T —r 0 1 — 71 0 -
sYMRLE T T2 21 — 2 g ~ K\l o
Clearly, we have a nice formula for an eigenvector corresponding to A1 =

T. .
1, when vector [1’32 — T3 Fi3—7V31 To| — rlz] is non-zero. That is when

E___RTlsarwn—_’_—____w which is exactly when R is not symmetric. N — \
Let us now investigate the situation when R is symmetric. Then, R = & = (L K ( Q\ + l ) = ( +1
R" = R~! and therefore T ’\ \__‘—’@ ‘-’-—\—\.—“J ~>
~ O\ _ o (111) =a-(]
R(R+I)=RR+R=I+R=R+1 2.57
RarD-RsRI esn BN
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which shows that the non-zero columns of the matrix R+1I are eigenvectors
corresponding to the unit eigenvalue. Clearly, at least one of the columns ) R);.z
must be non-zero since otherwise, R = —I and |R| would be minus one,

which is impossible for a rotation.

2.1.5 Rotation angle > O voladon aA—-AﬂL—

Rotation angle O of rotation R is the angle between a non-zero real vector

¥ which is orthogonal to 7; and its image R . There holds ( ;; 7 3 )
X'R¥
0 = < 2.58 Y
cos 77 (2.58) H X n
Let us set

X=u+w (2.59)

L
|

)

L

Clearly, ¥'is a real vector which is orthogonal to 7 since both i/ and @ are.

Let’s see that it is non-zero. Vector o5 is an eig>envector and thus J\} 0
> 02 da >o —>T—)\/ 2.60) (6)’: |QO
— A0 =0 i+ D .
2o 2T =1 (#2)

and therefore i # 0 or @ # 0. Vectors iZ, @ are orthogonal and therefore

uw ——o - — . - - —
their sum can be zero only if they both are zero since otherwise for, e.g., a ' NJ_= w4 s '\f3 VL Wy
non-zero i we get the following contradiction \ 7 \
5 = ~> - —
0=i'0=il (il +7) =il u+*Tz7—1ZT9¢O\/ (2.61) spl A (\f/\..\./\)d‘"
— )
X -
Let us now evaluate (X t 9t > = ?‘2 \% - -
— - - —)/T '>‘ —)/\i NT —)/ /Lrlf 'y + fl/\r
IRY @+ @) R+ D) (I + D) (il —yd+xd+yid) & 3
cosf = > T TS o SN S
XX (il + @) T (& + D) Wi+ w'w ¢
—T > =T .2 —T > ST = - 7 s
+ + - -1 = -
_ it a D y@ i v D) (2.62) 270 Az Xty =1
Wi+ W' w — 2 n
N x - 263) L A
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We have used equation 2.41] and equation We see that the rotation
angle is given by the real part of A, (or A3). Consider the characteristic
equation of R, Equation[2.13]

>0 -

D
A3 — traceRA? + (Ri1 + R +R33) A

—> = A-DA—x—yi)A—x+yi) (2.65)
—> = A-2x+ DA+ (P 2x+ ) - (P + ) (2.66)

We see that traceR = 2x + 1 and thus

% x =|cosO = %(traceR -1) (2.67)
. A
2.1.6 Matrix (R — I).
We have seen that rank (R — I) = 0 for R = I and rank (R — I) = 2 for all

rotation matrices R # I.
Let us next investigate the relationship between the range and the null
space of (R — I). The null space of (R — I) is generated by eigenvectors

e

corresponding to 1 since (R — I) 7 = 0 implies R7 = .
Now assume that vector 7'is also in the range of (R —
a vector @ € R3 such that 7 = (R — I)d. Let us evaluat

length of 7

. Then, there is

the square of the

73 = TR-I)7=

which implies 7 = 0. We have used result withx = 1T and y = 0.
Hence, the range of R — I intersects the null space of R — I in the zero

W
vector.

(T R—7")d = (2.68)

2.1.7 Tangent space to rotations
The set of rotation matrices

R ={Re R*?|R'R R| =1}

22 Sh s ,/}%%

Simple ol o

R ¥ ca— roracdn ' ng*l \f’EL
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4
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can be understood as a subset of R? with

1 ri2 13

T .
r= [r11 o1 T31 T2 Yo 32 T2 123 r3] representing R = | 71 122 723
31 132 133
(2.70)

Rotation constraints in definition[2.69]are algebraic and thus R is a an affine
varietyﬁ. Let us investigate how does look the tangent space to R.

To get the tangent space to R, we will first find the normal Ny to R at
rotation R and then take its orthogonal complement Ty, which is tangent
to R atR. In the end, we will write it all down in a convenient matrix form.

The space Ng, normal to R, is generated by columns of the Jacobian
matrix [?] of constraints in[2.69] written in a matrix form as

[ 711712 + 121722 + 131732
711713 + 721723 + 731733
Vlz 713 -% rzz 723 + 732733

C= -1 2.71)
P %1 31
+r5, + 15 —1
2 22 2
PIEIED

_7’11 722 733 - 711 1237132 — 2121133 + 1121237131 + 1137121732 — r13tn131 — 1 |

3 Affine variety is a subset of a linear space defined by algebraic constraints

23
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The Jacobian matrix of C is obtained as

[ r2 r r32 rin rmm ot O 0 0
r3 13 1 0 0 0 rm 1
ac; 0 0 0 r3 13 13 T2t I3
Ji]'=$, J=|2r1 2rn 2r; 0 0 0 0 0 0
/ 0 0 0 21’12 21’22 21’32 0 0 0
0 0 0 0 0 0 27’13 21"23 21’33
| I I s Ju I Jwe Jm Jis T |
with
Jn = ror—rare
J72 = —riar+rizra
J7;3 = riarp—rira
J7a = —rarsz +rasran
J7s = rirs —ri3ran
J7e = —riirs +riz3ra
J7z = rarm—rnra
J7s = —rira +r2rs
Jro = rmirn—rorm

Jacobian matrix J is a 7 x 9 matrix. The first three rows of J contain the
elements of two columns of R. The next three rows contain one column
of R. It suggests to construct a basis T of the tangent space Tr to R from

24
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columns of R. We can check that

0 —rz 1o

0 —r3 12

0 —r3 132

13 0 —m

JT=0 with T= 723 0 —m|. (2.72)

733 0 —ry

—r2 0

—rn I 0

| —T32 131 0

Next, we can see that each column of T contains two different columns of
R and hence Tx = 0 for a non-zero x implies that every two columns of R
are linearly dependent, which is impossible. Therefore, T has rank equal
to three at least.

Finally, the first six rows of ] contain columns of R. We see that
[xT 0]3 = 0 for a non-zero x implies that columns of R are linearly
dependent, which is impossible. Therefore, the rank of Ny is not smaller
than six. Hence, the dimension of the tangent space T is exactly three at
every R € Rand T is indeed a basis of Tk.

Let us now rewrite the above back into a matrix form by inverting the
matrix vectorization used in We rewrite columns of T into three
matrices

0 rs —ro —r3 0 r2 —rn 0
Ti=10 r3 —rn|, To=|~-13 0 1|, Ta= |12 —121 O
0 1 —ra —r33 0 73 r2 —r31 0

(2.73)

25
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and then can write the reformated tangent space of rotations at R for some
real vector s = [51 Sy 53] as

Tr(s) = Tys1+Tasy+ T3s3
13 r12 713 11 112
= —Sp |13 | +S3| T2 ]|, St |13 | —S3|[Ta ]|, —S1|T2]|+s2
| r33 732 733 31 32
1 T2 13 0 —s3 s
= |1 T2 123 3 0 —s5
| 731 732 733 —S2 81 0
= R [S] X

The first order approximation of rotations around R is then obtained as
R+ Tr(s) =R+R([s], =R(I+[s],) (2.77)

In particular, vectors in the tangent spaces to the space of rotations at the
identity, which are called infinitesimal rotations, are

Ti(s) = [s], (2.78)
and the first order approximation of rotations at identity is

I+Ti(s)=1+][s], (2.79)

END
26
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(2.75)

(2.76)



