1 Motion

Letusintroduce amathematical model of rigid motion in three-dimensional

Euclidean space. The important property of rigid motion is that it only
relocates objects without changing their shape. Distances between points
on rigidly moving objects remain unchanged. For brevity, we will use
“motion” for “rigid motion”.

I

1.1 Change of position vector coordinates induced
by motion

§1 Alias representation of motio. Figure [L.1[a) illustrates a model
of motion using coordinate systems, points and their position vectors. A
coordinate s§<stem (O, B) with origin O and basis f is attached to a moving
rigid body. As the body moves to a new position, a new coordinate system
(O’,B’) is constructed. Assume a point X in a general position w.r.t. the
ody, which is represented in the coordinate system (O, ) by its position
vector ¥. The same point X is represented in the coordinate system (O’, ')
by its position vector ¥’. The motion induces a mapping J?/;, — ¥g. Such
a mapping also determines the motion itself and provides its convenient
mathematical model.
Let us derive the formula for the mapping ¥}, — X3 between the co-

ordinates 3?/;, of vector ¥’ and coordinates Xg of vector X. Consider the

IThe terms alias and alibi were introduced in the classical monograph [?].
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following equations:

J o= #4d - -/ (1.1)
- >/ »/2/5 X = R)x/ /
¥ = Xg+og /> /Y (1.2)
% o= b B B+ (1.3)
lxﬁ = Rflg,JrJﬁ’ (1.4)

Vector ¥ is the sum of vectors ¥’ and ¢”, Equation [I.1] We can express
all vectors in (the same) basis , Equation[1.2]\To pass to the basis g’ we

introduce matrix R = [b{ﬁ béﬁ béﬁ ], which transforms the coordinates
of vectors from B’ to 8, Equation[L.4] Columns of matrix R are coordinates
2 . I WIRN] sl .

blﬁ, bZﬁ’ baﬁ of basic vectors bl, bz, b3 of basis p’ in basis f8.

§2 Alibi representation of motion. An alternative model of motion
can be developed from the relationship between the points X and Y and
their position vectors in Figure[L.I[b). The point Y is obtained by moving
point X altogether with the moving object. It means that the coordinates
ﬁé, of the position vector i/’ of Y in the coordinate system (O’, ') equal

the coordinates xg of the position vector ¥ of X in the coordinate system

(O,B),ie.
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Equation describes how is the point X moved to point Y w.r.t. the
coordinate system (O, f).

§1 Alias representation of motion'.
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§2 Alibi representation of motion.
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1.2 Rotation matrix

Motion that leaves at least one point fixed is called rotation. Choosing
such a fixed point as the origin leads to O = O’ and hence to ¢ = 0. The
motion is then fully described by matrix R, which is called rotation matrix.

§1 Two-dimensional rotation. To understand the matrix R, we shall
start with an experiment in two-dimensional plane. Imagine a right-
angled triangle ruler as shown in Figure[1.2(a) with arms of equal length
and let us define a coordinate system as in the figure. Next, rotate the
triangle ruler around its tip, i.e. around the origin O of the coordinate
system. We know, and we can verify it by direct physical measurement,
that, thanks to the symmetry of the situation, the parallelograms through
the tips of 5{ and l;é and along b1 and b, will be rotated by 90 degrees. We
see that

by = an by + ax by (1.6)
bé = —d7 51 + 411 E)z 1.7)

for some real numbers a11 and ap1. By comparing it with Equation[1.3} we !

conclude that _
— =2 -/
R {an 6121] _ [b/ L (1.8)
az1 aii 1 /> L /b j

We immediately see that

T [ a1 g][ﬂ? —@1} [az + a2 0 (1
R'R = =| 1 21 ]: %}9) = [
4 0 a3, +ak 0

—daz1 411 [ 421 an 11

since (a%l + ”%1) is the squared length of the basic vector of by, which is
one. We derived an interesting result
R! = R' (1.10)
R = R T (1.11)
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Next important observation is that for coordinates 3?5 and x7,, related by a
\ /X%
rotation, there holds true (*' % \(3- )
—_—

T\
() +(y)? =2 %, = (R¥p) ' Ry = ] (RTR) = 71 = x> +3 (112)

Now, if the basis g was constructed as in Figure[1.2] in which case it is called
an orthonormal basis, then the parallelogram used to measure coordinates
x,y of ¥ is a rectangle, and hence x> + 3 is the squared length of ¥ by the
Pythagoras theorem. If f’ is related by rotation ro 8, then also (x')? + (y')?
is the squared length of ¥, again thanks to the Pythagoras theorem.

We see that fgfﬁ is the squared length of X when g is orthonormal and
that this length is preserved by computing it in the same way from the
new coordinates of ¥ in the new coordinate system after motion. The
change of coordinates induced by motion is modeled by rotation matrix
R, which has the desired property R'R = I when the bases , 8’ are both
orthonormal.

§2 Three-dimensional rotation. Letusnow consider three dimensions.

It would be possible to generalize Figure[I.2Jto three dimensions, construct
orthonormal bases, and use rectangular parallelograms to establish the re-
lationship between elements of Rin three dimensions. However, the figure
and the derivations would become much more complicated.

We shall follow a more intuitive path instead. Consider that we have
found that with two-dimensional orthonormal bases, the lengths of vec-
tors could be computed by the Pythagoras theorem since the parallelo-
grams determining the coordinates were rectangular. To achieve this in
three dimensions, we need (and can!) use bases consisting of three or-
thogonal vectors. Then, again, the parallelograms will be rectangular and
hence the Pythagoras theorem for three dimensions can be used analogi-
cally as in two dimensions, Figure

—  Auew

Figure 1.3: A three-dimensional coordinate system.
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Considering orthonormal bases f, 8/, we require the following to hold -
- . - T -, T \
true for all vectors ¥ with ¥ = [x y z] and X, = [x y 2] Diskamces bed ween  pol whs o%
[ ' ~
Baiem = (P + QP+ G = i e lyiedty oy 053t yermnle
21T ST = d i
( S xl'g,xé, = X ip ¢ w\,\c(ww\ode N
(R%) REG = 1
~di T - d d v
% R'R)% = %35 V\) a _
ST~ 2 ST =2
T CHp = X )}’76 R (1.13) C = R &
Equation must hold true for all vectors ¥ and hence also|for special
vectors such as those with coordinates +
17 [o] [o] [1] [1] [oO ~
0 ’ 1 ’ 0 ’ 1 ’ 0 ’ 1 (114) C c c
o] lof [1] [of [1] [1 gz ok
e : C=ley G Gy
Let us see what that implies, e.g., for the first vector (Y _C
1 > |u | b Cy Cae C13
¢
[1 0 0]c [0] -1 > (1.15)
0
(1.16) ¢, = C71 = CZ3 =

Taking the second and the third vector leads similarly to cp = ¢33 = 1.
M
Now, let’s try the fourth vector

1
11 0]c|1| =2 =[ ‘01[';] (1.17) ~
0 /—/‘> G, &, 0
l+cn+cn+1 = 2 (1.18) - -
cp+cn = 0 (1.19) Cin czl
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Again, taking the fifth and the sixth vector leads to c13 +c31 = c23 +¢32 = 0.

This brings us to the following form of C e
[ 1 c1p ci3 ]
C = |—cp 1 cm (1.20) c.=¢ % (. =-c
| I 21 Iz ¥a

Moreover, we see that C is symmetric since

(:XZEST—ﬂR—C (1.21)
___C__ - : Q‘3:0

whichleadsto —c¢1p = ¢13, —¢13 = c1z3and —cy3 = ¢p3,i.e.c1p = c13 = ¢33 =0
and allows us to conclude that

(Rr—c-1|

Interestingly, not all matrices R satisfying Equation[I.22]represent motions
in three-dimensional space.
Consider, e.g., matrix

(1.22)

0 —~
1 0 SS5=1  1m)
0

Matrix S does not correspond to any rotation of the space since it keeps
the plane xy fixed and reflects all other points w.r.t. this xy plane. We see
that some matrices satisfying Equation[1.22]are rotations but there are also 5 ‘ AA. (_ A ) = -4
some such matrices that are not rotations. Can we somehow distinguish \

them? eV

Notice that |S| = —1 while |T| = 1. It might be therefore interesting to \Q \ :}\ = = A
study the determinant of C in general. Consider that
Joiop - (@m =R R-Rr =R a2 L,
<
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which gives that |R| = +1. We see that the sign of the determinant splits all :
matrices satisfying Equation[1.22linto two groups - rotations, which have a Rel R} xlN 7 3 | % 3
positive determinant, and reflections, which have a negative determinant.
The product of any two rotations will again be a rotation, the product 32 D RT R=T % R ‘ =1
of a rotation and a reflection will be a reflection and the product of two 3 -
reflections will be a rotation. n{'@ 3 1 B = B 3

To summarize, rotation in three-dimensional space is represented by a Jeq1s - 9 P‘l&
3 x 3 matrix R with R'R = I and |R| = 1. The set of all such matrices, and q 6 (Ae e
at the same time also the corresponding rotations, will be called SO(3), 9
for special orthonormal three-dimensional group. Two-dimensional rotations / K ‘E\ l R\ =1 \v-ea e
will be analogically denoted as SO(2). ", — T

A I R

1.3 Coordinate vectors 't

]‘
)

We see that the matrix R induced by motion has the property that coor-
dinates and the basic vectors are transformed in the same way. This is T
particularly useful observation when g is formed by the standard basis,

D = e <

For a rotation matrix R, Equation ?? becomes

- - - -
= R(Dby|= |10 Tt 7123 by | = | ra1b1 + ron by + rfb24)

53 31 T2 T | 53 31 51 + 732 52 + 733 53 @& XI La ‘% ) /’ Pq_ ?7t' C(
dh $[x )f 1-
an ence /,/ 3 >

] 0 0 1 ‘
D RH R R YO

- - > - - -
b [711 12 713] by ri1 b1 +ri2by + 113 b3

eI =

-

by = 7’11b1+71252+7’13b37’11[

S O -
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2 Rotation

2.1 Properties of rotation matrix

Let us study additional properties of the rotation matrix in three-dimensional
space.

> .

2.1.1 Inverse of R

l [ — ’l‘ U IR
Let W -
1 r2 7113 (. LR-T {—ql’ UL V)] h
R=|[r1 rmp r3|=[r1 r r3] (2.1) —.,?;r. 11 L
r31 132 733 b VTVA v V; rz; D
be a rotation matrix with columns rq, rp, r3. We can find the inverse of R 1 e o 8 #‘ :
by evaluating its adjugate matrix [?] and useR~! =R" and |R| = 1 a ] (+9
B 1 . [T"\L "v(-‘-*
R™! = —Adj(R) ] (2.2) vl
IR| A 2
R' = Adj(R) (2.3) Pl 92!
T 3 :
= [rz X I3 I3XxXr] IpXx rg]T (2.4) » V:z
T2 133 — 123732 113732 — 112733 712723 — 1137122 V:.\ ‘L ‘C; v
= | 7ra3r3i—ratrsz ri1tsz —Tr3rar r3rtazr —riires | (25) 1
2113 — 122731 Y2131 — 111732 T11722 — 27121 M 4
- =z W v,
t 3 1 X Ta
- o
o = \axly
= V '
11 sy
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which also gives an alternative expression of

" *i2 713 T22733 — 123732 123731 — 121733 121732 — 122731 . o33 — 1373 T13T3 — 12733 12723 — 113122
R= (1 7 13| =|"r3r32—7r2¥33 111733 — 113731 T12¥31 —F11732 R' = | ro3r31 — 1133 11733 — 3731 113721 — 11123
e ——
31 132 133 2723 — 713722 Y13¥21 — V11123 T11722 — 7112721 721732 — 71227131 112731 — 11732 T11122 — 72721
(2.6)

( o N ewa‘o s do
2.1.2 Eigenvalues of R E\WM»QMJS e > e

Let R be a rotation matrix. Then for every 7 e C° O‘LY’('JM WWS of d‘“& =3

R?)RT = FTRTRT = T (RTR) 7 = ' (2.7) D Ve auved 4o ot e €

where { is the conjugate transpos. We see that for all e C3and A € C Tee s (avd. scalomn p\roo\MM‘"

such that
RT=AT (2.8) e C™ & a A 3od e b_f;
there holds true . .‘,L* N (osd scolon ProAMg-l- w
v F0
AD'0D = (@D 0 a9 L
p— ,~> -
@D = @9 7 Yo Tus. ¥ we € ®w ER
AH@'F) = (') xl=1 em -
alad N 2
1Conjugate transpose [?] on vectors with complex coordinates means, e.g., that N %\MJ— i e a ¢ v €7
|:1111+b11i 1112+b12i:|T_|:a11b11i a217b21i] z‘ a.a :?AT:/ - (A-‘-L’(:(C“’il.) A“'-b‘ -
ar + b21 i ax» + bzzi aypp — blzi Ay — bzzi ﬁ /5 cu d_(‘

for all ayy,a12,a21,a2, byt bia, by, by € R._Also recall [?] that ab = ab for alla,be C, 1 1 A . LA e .2
becomes T for real matrices and AT = A for scalar A € C. Conjugate transpose is a (a+ 'o'\) + (C*VJv\ ) = a4t (Q'H)) L-b +c e "l)f.'td ¢ 'R,

natural generalization of the Euclidean scalar product in real vector spaces to complex
vector spaces. As X' X = |¥|* gives the squared Euclidean norm for real vectors, 5 o TR = \l -
¥1¥ = |¥|* gives the squared “Euclidean” norm for complex vectors. It therefore also H emer: Wenr = ?A/ [\Veg :k u.) N
makes a good sense to extend the notion of angle between complex vectors to X, i/ as
> Re(2T )
cos L(%, ) = NN
12
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and hence |A|? = 1 for all 7 # 0. We conclude that the absolute value of
eigenvalues of R is one.
Next, by looking at the characteristic polynomial of R

p(A)

(A—1)~A2+ (1 —traceR) A + 1)

A—rn —T12 —713
‘(/\ I-— R)’ = —7ry31 A —T120 —723 (2.12)
—731 —r3 A—r13
A3 — (11 + 120 + 133) A?
+(r1rn —rari2 111133 — 131113 + 1233 — 13 13) A (2.13)

+r11 (r3 130 — 122 733) — 121 (132713 — 112733) + 131 (F13 722 — 712 Tzi),

/\3 — (1’11 + 10 + 1’33) /\2 + (1’33 + 1y + 1’11) A —TI{‘ (2.14)
A3 —traceR(A%2 — 1) —1 (2.15)

(2.16)

e —

we conclude that 1 is always an eigenvalue of R. Notice that we have used
identities in Equation[2.6lto pass from Equation[2.13]to Equation

Let us denote the eigenvaluesas Ay = 1, A\, = x + yiand A3 = x — yi
with real x, y. It follows from the above that x> + y*> = 1. We see that there
is either one real or three real solutions since if y = 0, then x> = 1 and
hence A, = A3 = +1. We conclude that we encounter only two situations
when all eigenvalues are real. Either Ay = A, = A3 =1, 0or Ay = 1and
Ay = A3 = -1

2 Alternatively, it follows from the Fundamental theorem of algebra [?] the p(A) = 0 has
always a solution in € and since coefficients of p(A) are all real, the solutions must come
in complex conjugated pairs. The degree of p(A) is three and thus at least one solution
must be real and hence equal to +1. Now, since p(0) = — |(R)| = —1,limy_,, p(A) = oo,
and p(A) is a continuous function, it must (by the mean value theorem [?]) cross the
positive side of the real axis and hence one of its eigenvalues has to be equal to one.
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