Chapter 1 5

Texture

Texture is hard to define, yet ubiquitous in images of natural and many man-made objects.
Classical texture descriptors are based on co-occurrence matrices (function haralick,
p. 209). As an example, we show how to use them for texture classification. Another
group of texture descriptors is based on discrete wavelet frames (function waveletdescr,
p. 213). They can be computed very efficiently and their classification performance is
often better than for co-occurrence based features. As well as for texture classification,
we show how to use wavelet descriptors for (supervised) texture segmentation (function
texturesegm, p. 217), by combining them with a graph cut method (Section 7.6).

Finally, we present the famous Lindenmayer or L-system (function 1system, p. 220)
as an example of a syntactic grammar-based shape and texture description and generation
tool.

15.1 Problems

15.1. What is a texel?
15.2. Explain the difference between weak and strong textures.

15.3. How does scale influence texture description and perception? How does texture
appear if the scale is too small or too large?

15.4. Define statistical and syntactic texture description methods. Describe texture types
for which each approach is expected to work well and when it is likely to fail and
explain why.

15.5. Define fractal dimension and lacunarity, and explain how these measures can be
used for texture description.

15.6. Which texture description features are well suited for characterization of directional
textures? Give several examples.

15.7. Can deterministic grammars be used to describe real-world textures? What are the
main limitations?

15.8. Define a stochastic grammar. How is it useful for texture description?

208

15.9.

15.10.
15.11.
15.12.

15.13.

15.14.

15.15.

15.16.

15.17.

15.18.

15.19.

15.20.

15.21.

15.22.

Chapter 15: Texture

What is primitive grouping? Why is it done? To which textures is this approach
applicable? Give examples. How can it be used for texture description?

Describe how texture descriptors may be used in region growing segmentation.
Name several application areas for texture description and recognition.

Given the following texture features, determine whether their value is higher for
fine textures than for coarse textures: (i) Energy in a small-radius circle of the
Fourier power spectrum [Figure [J:15.3a], (i) Average edge frequency feature [Equa-
tion [:15.10] for a small value of d, (iii) Short primitive emphasis [Equation [4:15.12],
(iv) Long primitive emphasis, (v) Fractal dimension, (vi) Lacunarity.

Determine the co-occurrence matrices Fyo 2, Piso 2, and Pygo 3 for the image in
[Figure []:15.4].

For a 30 x 30 checkerboard image with 3 x 3 binary checkers (values of 0 and 1,
0-level checker in the upper left corner), determine the average edge frequency
function [Equation [J:15.10] for d € {1,2,3,4,5}. For this image and also for
a 30 x 30 image with vertical binary 3-pixel-wide stripes (0-level stripe along the
left image edge), determine the following texture descriptors: (i) Short primitive
emphasis, (ii) Long primitive emphasis, (iii) Gray-level uniformity, (iv) Primitive
length uniformity, (v) Primitive percentage.

Design a shape chain grammar that generates the texture shown in [Figure [:12.4].
Show the first few steps of the generation process.

Implement Fourier transform based descriptors [Figure [:15.3]. Compare their
classification performance with descriptors given by functions haralick (p. 209)
and waveletdescr (p. 213) using the same data and classifier as in the example
for haralick.

Implement Law’s texture measures [Section (:15.1.5]. Compare their classification
performance as in Problem 15.16.

Extend the texture segmentation code (texturesegm, p. 217) to accept many train-
ing images instead of one. Study experimentally whether and how the segmentation
accuracy increases with training. You might want to use a bigger texture database
for a meaningful comparison.

Extend the wavelet descriptor calculation (waveletdescr, p. 213) to other wavelets
besides Haar, such as Battle-Lemarié, Daubechies, B-spline and D-spline [Unser,
1995]. Compare their computational efficiency and classification accuracy. You
might want to use a bigger texture database for a meaningful comparison.

Following Unser [Unser, 1995], extend the texture segmentation code (texturesegn,
p. 217) to unsupervised texture segmentation. Compare segmentation accuracy
with the supervised approach.

Implement texture segmentation as in function texturesegm (p. 217) using region
merging (function regmerge, p. 75) instead of graph cut. Compare the speed and
segmentation accuracy of the two approaches.

Extend the L-system code (function lsystem, p. 220) to draw lines in green as well
as black. Design (or find on the Internet) an L-system that produces a stylized
branch with black stems and green leaves.

15.2 Haralick texture descriptors: haralick 209
15.2 Haralick texture descriptors: haralick

Classical texture descriptors based on co-occurrence matrices were introduced by Hara-
lick [Section []:15.1.2] and are useful mainly for texture classification. For each angle
¢ € {OO, 45°,90°, 1350} and distance d € {1 e dmax} defining a co-occurrence matrix
[Algorithm []:4.1], we shall calculate five texture descriptors: energy, entropy, contrast,
inverse difference moment (homogeneity), and correlation. The descriptors are defined
by Equations []:15.4-15.9, with x = 1, A = 1. The distance d = 0 is treated specially:
it only makes sense to calculate energy and entropy in this case since the co-occurrence
matrix is diagonal. The descriptors for all (¢, d) are concatenated into a feature vector.

function h = haralick(im,maxdist)
input
im [mxn] Input image of type uint8. It should contain a sufficiently large patch
of homogeneous texture to analyze; a typical size might be 100 x 100
pixels, depending on resolution. Images must be of the same size for
feature vectors to be comparable.
maxdist {10} Maximum distance dy,x between pixels to consider—to be chosen
depending on the characteristic scale of the texture. Increasing dpax
increases computational complexity and the number of features gener-

ated.
output
h [kx1] Feature vector of length £ = 20 dyax + 2, characterizing the input
texture im.

see also waveletdescr (p. 213), cooc (p. 37).

The restriction to uint8 is necessary for the co-occurrence matrix calculation in cooc (p. 37).

Generate the offset vector for a function cooc (p. 37) which is used for calculating
the co-occurrence matrices, each row corresponds to one offset. We go over distances
d e {1 . ..dmax} and angles ¢ € {00,450,900, 1350}. Note that only angles smaller
than 180° need to be considered thanks to the symmetry of the co-occurrence matrix
formulation used [Equation []:15.3].

t (1:maxdist)’;

z = 0%t

offs = [t z; z t; t t; -t t];
n = size(offs, 1);

First the descriptors for d = 0 are evaluated using function hfeatures and only energy
and entropy are retained. Then, the descriptors for all other offsets are evaluated and
stored into the output vector h. Note that the asymmetric co-occurrence matrix returned
by cooc is made symmetric to correspond to the definition [Equation [4:15.3].

hO = hfeatures(cooc(im, [0 0]));
h = [h0(1:2); zeros(5*n,1)];

for i = 1:n
¢ = cooc{im,offs(i,:)); c = c+c’;
h(5%i-2:5%i+2) = hfeatures(c);
end

210 Chapter 15: Texture

function f = hfeatures(c)

Given a symmetric co-occurrence matrix ¢, this function evaluates the five texture
descriptors: energy, entropy, contrast, inverse difference moment (homogeneity), and
correlation [Equations [4:15.4-15.9].

[nc,mc] = size(c); [x,y] = meshgrid(1l:nc, 1l:mc);

f0 = sum(sum(c.”2)); % energy

f1 = -sum(sum(c.*log(cteps))); % entropy

2 = sum(sum(abs(x-y).*c)); % contrast

£3 = sum(sum(c./(1l+abs(x-y)))); ' inverse difference moment
mx = sum(sum{ x.*c)); my = sum(sum(y.*c));

sx = sum(sum((x-mx)."2.%c));

sy = sum(sum((y-my). 2.%c));

f4 = sum(sum((x-mx).*(y-my).*c)) / sqrt(sx*sy); % correlation
f = [f0 f1 2 £3 f4]’;

Example

We consider ten texture samples from the Brodatz collection! [Brodatz, 1966], see
Figure 15.1. Each texture sample is converted to a grayscale uint8 image and cut to 36
non-overlapping patches 100 x 100 pixels. Each patch is assigned a label indicating its
class 1...10.

files = {’D101’ ’D110’ ’D112’ °D16’ ’D17’ ’D21’ °’D3’ °’D4’ °’D67’ ’D95°’};
patchsize = 100;
textures = struct([]);
ind = 1;
for i = 1:size(files,?2)
fn = files{il};
img = im2uint8(imread([ImageDir fn ’.png’]));
if size(img,3)>1, img = rgb2gray(img); end
[ny,nx] = size(img);
for ox = 1l:patchsize-1:nx-patchsize+1
for oy = l:patchsize-1:ny-patchsize+1
textures(ind) .patch = img(oy:oy+patchsize-1, ox:ox+patchsize-1);
textures(ind) .class = 1i;
ind = ind+1;
end
end
end

The samples are randomly permuted and divided into training and testing data. Note
that because the permutation is global, the number of training examples per class may
not be the same for all classes. This might lead to slightly suboptimal classification results
but corresponds to a realistic scenario.

n = ind-1;

textures = textures(randperm(n));

I Available in digital form for example from http://sipi.usc.edu/database.

15.2 Haralick texture descriptors: haralick 211

textures_train = textures(1:n/2);
textures_test = textures(n/2+1:end);

e S W e i
[T

i 7773 N
38 Lozemw mem)

(f) 6 () 7 (h) 8 (i) 9 () 10

Figure 15.1: Ten selected textures with their class labels.

Haralick texture descriptors are calculated for each patch in the training and test sets
and stored into a structure suitable for use by the STPRtool [Franc and Hlavac, 2004],
function mlcgmm, later on.

ntrain = size(textures_train, 2);
hO = haralick(textures_train(1l).patch);
n = size(h0,1);
features_train.X zeros(n, ntrain);
features_train.y = zeros(1, ntrain);
features_train.X(:,1) = hO;
features_train.y(1) = textures_train(1).class;
for i = 2:ntrain
features_train.X(:,i) = haralick(textures_train(i).patch);
features_train.y(i) = textures_train(i).class;
end

ntest = size(textures_test,2);
features_test.X = zeros(n,ntest);
features_test.y = zeros(l,ntest);

for i = 1l:ntest
features_test.X(:,i) = haralick(textures_test(i).patch);
features_test.y(i) = textures_test(i).class;

end

As the descriptor calculation may take a few minutes, for convenience the precomputed
descriptors can be saved and later restored.

212 Chapter 15: Texture

save features features_test features_train ntrain ntest
load features

The training data is normalized so that all features have zero mean and unit standard
deviation. This improves numerical stability of the subsequent steps.

m = mean(features_train.X, 2);

X = features_train.X - repmat(m,1,ntrain);
v = sqrt(var(X’))’;

features_train.X = X ./ repmat(v,1,ntrain);

There are 202 features, which is too many given that we only have 18 training patches (on
the average) per class. We choose the 10 most relevant ones using function goodfeatures
(p. 213).

ind = goodfeatures(features_train, 10);
features_train.X = features_train.X(ind,:);

We use the maximum probability normal classifier, function maxnormalclass (p. 123)
and determine the parameters of the Gaussian distributions for each class using STPRtool
function mlcgmm [Franc and Hlavac, 2004]. Because of the relative scarcity of training
data, we make the additional assumption of diagonality of the class covariance matrices.
This completes the training phase.

model = mlcgmm(features_train, ’diag’);

To classify the test data, we normalize them using the parameters m and v determined
from the training data. We also select the previously determined subset of ‘good’ features
ind. The classification itself is performed by function maxnormalclass which provides
a vector ytest with class labels for each test sample.

features_test.X = (features_test.X-repmat(m,1,ntest)) ./ repmat(v,1,ntest);
features_test.X = features_test.X(ind,:);
ytest = maxnormalclass(features_test.X, model);

The classification results are quite good, given the simple classifier and limited amount of
training data. The overall classification accuracy (the ratio of correctly classified patches
with respect to all test patches) is 94%. The results can also be presented as a confusion

1 2 3 4 5 6 7 8 9 10
1422 0o O O O O O O 2 O
210 16 0 0 0 0 4 0 O 0
3 0 0 1 o0 0 0 0 0 O 0
4,0 0 0 18 O O O 0 O 0
5/ 0 0 0 0 12 0 0 0 O 0
6/ 0 0 O O O 15 0 0 O 0
T 0 1 0 O O 0 16 0 O 0
8§ 0 0 O O O 0 0 22 0 0
90 0 O O O O 2 0 17 0

o, o o0 4 o 0 0 0 0 0 19

Table 15.1: Haralick texture classifier confusion matrix.

15.3 Wavelet texture descriptors: waveletdescr 213

matrix, see Table 15.1. The number in row ¢ and column j is the number of patches from
class j classified as i. (Ideally, all off-diagonal elements should be zero.)

function ind=goodfeatures(data,n)

Function goodfeatures takes data, which is a structure with fields X (feature vectors)
and y (labels), as expected by mlcgmm [Franc and Hlavac, 2004], and chooses n ‘best’ ones.
The feature vectors are assumed normalized, i.e., each feature should have zero mean and
unit variance.

Feature selection is a difficult problem. For simplicity, we use the ratio of intra-class
and inter-class variance. Since we have normalized for inter-class (total) variance, we can
calculate the total intra-class variance and choose n features with the smallest intra-class
variance.

k = max(data.y);
sumv = zeros(size(data.X,1), 1);

for y = 1:k

ind = (data.y==y);

sumv = sumv + var{(data.X(:,ind)’)’;
end

[junk,ind] = sort(sumv);
ind = ind(1:n);

15.3 Wavelet texture descriptors: waveletdescr

Discrete wavelet frame texture descriptors [Unser, 1995], [Section [4:15.1.7] are an al-
ternative to classical texture descriptors, based for example on co-occurrence matrices
(Section 15.2). Discrete wavelet frames can be calculated fast using a filter-bank and the
descriptors perform well for many applications.

For simplicity and computational efficiency, we shall use the Haar wavelet with
a low-pass filter H(z) = (1 4 z)/2 and a corresponding high-pass filter G(z) = (z — 1)/2.

function v = waveletdescr (im,maxlevel)
input
im [mxn] Input image. It should contain a sufficiently large patch of homoge-
neous texture to analyze. A typical size might be 100 x 100 pixels,
depending on the resolution. It is recommended that images be of
the same size and the same amplitude for the feature vectors to be
comparable.
maxlevel {3} The number of multiresolution levels, chosen depending on the charac-
teristic scale of the texture; the largest filters will have size 2°2*tevel,
Increasing maxlevel increases computational complexity and the
number of features generated.
output
v [kx1] Feature vector of length £ = 3maxlevel + 1, characterizing the input
texture im.
see also haralick (p. 209).

214 Chapter 15: Texture

Unlike for haralick, input images are not restricted to be of type uint8. Here the image
is first converted to double, to avoid overflow problems. However, note that an optimized,
all integer, implementation would be straightforward.

im = double(im);
[m,n] = size(im);
npix = m*n;

The main loop is repeated maxlevel times. At each level, we filter the input image im to
provide four sub-bands by using the following filter combinations: H,H,, H,G,, G, H,,
GGy, where H, is the low-pass filter applied along the x direction, G, is the high-pass
filter applied along the y direction etc. Note that thanks to separability, only six 1D
filtering operations are required, implemented by functions filterh and filterg, below.
The low-pass version (filtered by H,H,) is used as an input to the subsequent scale and
the filter size 1 is doubled.

The features are the energies in the three high-pass (detail) sub-bands for each level.
At the last level, the energy of the low-pass band is also added to the output feature
vector v.

v = zeros(3*maxlevel+l, 1); % the descriptors
for i = l:maxlevel
1= 271i;
% filtering in the y direction
imhy = filterh(im, 1);
imgy = filterg(im, 1);
% filtering in the x direction
vgg = sum(sum(filterg(imgy’,1).72)) / npix;
vhg = sum(sum(filterh(imgy’,1).72)) / npix;
vgh = sum(sum(filterg(imhy’,1).72)) / npix;
im = filterh(imhy’, 1)’;
v(3%i-2:3%i) = [vgg vhg vghl;
end

v(end) = sum(sum(im."2)) / npix; % low-pass band energy

Unlike a standard discrete wavelet transform, we are using a wavelet frame, so no
subsampling of the filtered images is performed.

function imf = filterh(im,1)

Function filterh filters all columns of the image im by a low-pass Haar filter H(z) =
(1+ 2")/2. Since the filter has only two non-zero elements, the filtering amounts to adding
together two shifted copies of the image. Mirror boundary conditions are ensured by
extending the image by 1 rows.

imf = 0.5%[im; im(end-1:-1:end-1,:)];
imf = imf(l:end-1,:) + imf(l+1l:end,:);

15.4 Texture based segmentation: texturesegm 215
function imf = filterg(im,1)

Function filterg works like filterh except the high-pass filter G(z) = (2! — 1)/2 is
used.

imf = 0.5*%[im; im(end-1:-1:end-1,:)];
imf = imf(l+1l:end,:) - imf(l:end-1,:);
Example

We compare the classification performance of wavelet descriptors waveletdescr (p. 213)
with co-occurrence matrix based descriptors generated by haralick (p. 209). We use the
same set of textures (Figure 15.1), the same set of training and testing patches, and the
same classifier. The source code from Section 15.2 can be re-used, with all occurrences of
haralick replaced by waveletdescr. The only difference is that for wavelet descriptors
no feature selection is needed, since with the default settings (maxlevel=3) only 10
features are generated.

Notice that calculating wavelet descriptors is many times faster than calculating
the descriptors generated by haralick. Also the performance is better, with an overall
classification accuracy 97%, see Table 15.2.

1 2 3 4 5 6 7 8 9 10
1420 o o0 O O O O O 1 O
210 1 0 O O O O 0 O 0
3|10 0 1B o0 0 0 0 0 O 0
4,0 0 0 18 0 O 0 0 O 0
5/ 0 0 0 0 12 0 0 0 O 0
6/ 0 0 0O O O 15 0 0 O 0
710 0 O O O 0 22 0 O 0
8§ 0 0 O O O 0 0 22 3 0
91 0 0 O O 0 0 0 15 0

(o o o0 o o0 o0 0o 0 0 19

Table 15.2: Wavelet confusion matrix.

15.4 Texture based segmentation: texturesegnm

Texture descriptors can also be used for segmentation of images consisting of several
different textures. Here we follow Unser [Unser, 1995] and show how wavelet texture
descriptors (Section 15.3) can be used for this purpose. We proceed in three steps:
(i) We create a function waveletsegdescr which is derived from waveletdescr (p. 213)
but instead of calculating the descriptors globally for the whole image, it calculates
them for each pixel. (ii) Function texturesegmtrain (p. 217) takes a training image
with a known segmentation and creates a model of the classes (textures) in the image.
(iii) Finally, function texturesegm (p. 217) takes an unknown image and segments it

216 Chapter 15: Texture

using the learnt model. Graph cut segmentation (Section 7.6) is used to obtain spatially
coherent segmentation.

function v = waveletsegdescr(im,maxlevel,sigma)
input
im [mxn] Input image.
maxlevel {3} The number of multiresolution levels, see waveletdescr.
sigma {10} Standard deviation of the Gaussian filter used for descriptor aver-
aging, in pixels. Large values result in more reliable classification
at the expense of suppressing small details.
output
v [kxmxn] A matrix of feature vectors of length k£ = 3maxlevel + 1 for each
pixel.
see also waveletdescr (p. 213).

Since this function is so similar to waveletdescr, we will only comment on the differences
here.

im = double(im);
[m,n] = size(im);
npix = m*n;

v = zeros(3*maxlevel+l, m, n); % an array to store the descriptors

Prepare the filter h for descriptor averaging. Note that h is unitary (has a unit gain).
The energy in all bands is low-pass filtered by h, with symmetric boundary conditions.

h = fspecial(’gaussian’, ceil(3*sigma), sigma);

for i = 1l:maxlevel
1 =271
% filtering in the y direction
imhy = filterh(im, 1);
imgy = filterg(im, 1);
% filtering in the x direction

v(3*i-2,:,:) = imfilter(filterg(imgy’,1)’.72, h, ’symmetric’);
v(3%i-1,:,:) = imfilter(filterh(imgy’,1)’."2, h, ’symmetric’);
v(3*i,:,:) = imfilter(filterg(imhy’,1)’.72, h, ’symmetric’);
im = filterh(imhy’, 1)’;

end

v(end,:,:) = imfilter(im.”2, h, ’symmetric’); % low-pass band energy

We have chosen the feature index to be the first index to v (instead of the last) even
though it is less efficient here because it is more appropriate for subsequent processing in
texturesegmtrain and texturesegm.

15.4 Texture based segmentation: texturesegm 217

function model = texturesegmtrain(im,mask,maxlevel,sigma)
input
im [mxn] Input image.
mask [mxn] Segmentation for the image im. The numbers in mask denote the
class for the corresponding pixel in im and should be from the range
1...d where d is the number of classes.
maxlevel {3} The number of multiresolution levels, see waveletdescr.
sigma {10} Standard deviation of the Gaussian filter used for descriptor averaging,
in pixels, see waveletsegdescr.
output
model struct Model of the texture classes to be used by texturesegm.
see also texturesegm (p. 217), waveletdescr (p. 213),
waveletsegdescr (p. 216).

First, the texture descriptors £ are calculated (for each pixel). The probability distribution
of these descriptors for each class is assumed to be normal. Their parameters are estimated
using STPRtool function mlcgmm [Franc and Hlavac, 2004], as in Section 9.2 or Section 15.2.

f = waveletsegdescr(im, maxlevel, sigma);
[k,m,n] = size(f);

features.X = reshape(f, k, m*n);
features.y = reshape(mask, 1, m*n);

model = mlcgmm(features, ’diag’);
model.maxlevel = maxlevel;
model.sigma = sigma;

function texturesegm(im,model,regul)
input
im [mxn] Input image to be segmented.
model struct Model of the texture classes as returned by texturesegmtrain.
regul {200} Regularization for the GraphCut segmentation algorithm, penalizing
different class labels for neighborhood pixels. Increasing this parameter
eliminates small regions but may decrease accuracy.
output
1 [mxn] output labeling. Each pixel position contains an integer 1...d corre-
sponding to an assigned class; d is the number of classes.
see also waveletdescr (p. 213), texturesegmtrain (p. 217),
waveletsegdescr (p. 216).

Texture descriptors f are calculated for each pixel of the image and the probabil-
ity p of a pixel belonging to a particular class is evaluated using STPRtool function
pdfgauss [Franc and Hlavac, 2004], see also Section 9.2.

f = waveletsegdescr(im, model.maxlevel, model.sigma);
[k,m,n] = size(f);

p = pdfgauss(reshape(f,k,m*n), model);

d = size(p,1);

218 Chapter 15: Texture

The logarithm of p is used as the data term for the graph cut segmentation (Section 7.6).

Dc = -log(reshape(p’,m,n,d)+eps);

Sc = regul*(ones(d)-eye(d));

handle = GraphCut(’open’, Dc, Sc);
[gch 1] = GraphCut(’expand’, handle);
handle = GraphCut(’close’, handle);

1 = 1+1; % as GraphCut classes start at 0O

Example

We shall use four textures from Figure 15.1.

tl = im2double(imread([ImageDir ’D112.png’]l));
t2 = im2double(imread([ImageDir ’D17.png’l));
t3 = im2double(imread([ImageDir ’D4.png’l));

t4 = im2double(imread([ImageDir ’D95.png’l));

The training image consists of four vertical stripes, each containing one kind of texture.
Figure 15.2a and 15.2d show the test image imtrain and the corresponding mask (maskt).

[m,n] = size(tl);

[x,y] meshgrid(1:n, 1:m);

maskt = 1 + floor(4*(x-1)/m);

imtrain = t1.*x(maskt==1) + t2.*(maskt==2) + t3.*(maskt==3) + t4.*(maskt==4);

The model is learnt from the training image.

(d) (e) ()

Figure 15.2: (a,d) Training image with the corresponding mask. (b,e) Test image with the
corresponding mask. (c,f) Segmentation results as boundaries superimposed over the test image
and as a mask.

15.5 L-system interpreter: 1system 219

model = texturesegmtrain(imtrain, maskt);

The test image imtest is constructed from the same textures but the mask (mask) is
more complicated, Figure 15.2be.

maskl = (((z-0.75*n).72 + (y-0.5xm)."2) < 20000);

mask?2 (x>100 & x<300 & y>50 & y<250);

mask3 = (x>100 & x<450 & y>350 & y<600) & not{(maskl);

mask = 1 + maskl + 2*mask2 + 3*mask3;

imtest = t1.*(mask==1) + £2.*(mask==2) + t3.*(mask==3) + t4.*(mask==4);

The texture segmentation algorithm is applied with default regularization.
1 = texturesegm(imtest, model);

The final segmentation can be seen in Figure 15.2cf as boundaries superimposed over the
test image and as a mask. Most of the texture regions were identified correctly.

15.5 L-system interpreter: lsystem

An L-system (Lindenmayer system) [Prusinkiewicz and Lindenmayer, 1990] is an example
of a syntactic shape and texture description technique [Section [:15.2]. Tt is mostly based
on a recursive, context-free, deterministic grammar [Section [}:9.4.1] although context and
stochastic versions also exist. The distinguishing feature of an L-system is that at each
iteration: (i) all applicable rules are applied, and (ii) all rules are applied simultaneously,
in parallel. For example, given a starting symbol F and a rule F — F+F-F+F, the first
two iterations are:

0: F
F+F-F+F
2: F+F-F+F+F+F-F+F-F+F-F+F+F+F-F+F

—_

The expansion is stopped after a predetermined number of iterations and the resulting
string is interpreted, one character at a time. We implement symbols given in the
following table—it is a simplified version of the interpretation used in [Prusinkiewicz and
Lindenmayer, 1990] or by L-system interpreter programs such as Fractint?.

Symbol Action

F Draw a line of a unit length in a current direction.

f Move forward by a unit length in a current direction.
+ Turn left by angle Ag.

- Turn right by angle Ag.

[Remember the current state (position and direction).
] Retrieve the remembered position.

other No action (ignored).

2http:/ /spanky.triumf.ca/www /fractint /fractint.html

220 Chapter 15: Texture

The implementation given here draws directly into a current Matlab figure, which
can be saved to a file using #:print. The drawing starts at point (0,0) and the initial
orientation is along the positive x-axis.

function lsystem(s,rules,angle,n)

input
s string The start symbol (axiom).
rules struct The grammar rules. A string rules(i).left contains the left
side of a rule 7, which must be a single letter symbol. A string
rules(i) .right contains the right side of a rule i. No two rules may
have the same left side.
angle [1] Angle increment A¢ in radians.
n [1] Number of iterations. As most L-systems increase the string length
exponentially, the number of iterations will rarely exceed 10.
output
There are no output parameters.

We iterate n-times over the grammar production rules, expanding the string s. In each
iteration we go over the current string s from the left, character by character. For each
character, all rules are considered. If a rule matches, its expansion is appended to the
output string os. If no rule matches, the input character is copied to the output string
unchanged.

for i = 1:n
os = [1;
for j = 1:length(s)
subst = false; % a flag - has any rule matched?
for k = 1:length(rules)
if s(j)==rules(k).left 7 rule matches
os = [os rules(k).right];
subst = true; break;

end

end

if not(subst) % no rule matched so far
os = [os s(j)1;

end

end % for j loop
s = os;
end % for i loop

The expanded string s is now interpreted. The current position and orientation is stored
in x, y, and d, while 1 contains the length of a unit step. Operation ‘[’ stores the current
state into a stack and ‘]’ retrieves it.

stackpos = 1; % index to the stack
x = 0;
y = 0;
d = 0;
1 1;

H

clf % start with a clean figure

15.5 L-system interpreter: 1system 221

for i = 1:length(s)
cmd = s(i);
switch(cmd)
case ’'F’

x1 = 1l*cos(d) + x;
y1l = 1*sin(d) + y;
line([x x1], [y y1], ’Color’,’k’, ’LineWidth’,2); % draw
x =x1; y=yl;

case ’f’
x = 1l*cos(d) + x;
y = l*sin(d) + y;

case '+’
d = d+angle;

case -’
d = d-angle;

case [’
stack(stackpos) .x = x;
stack(stackpos) .y = y;
stack(stackpos).d = d;

stackpos = stackpos+1;

case ']’
if stackpos<2, error(’lsystem: Stack empty.’); end
stackpos = stackpos-1;

x = stack(stackpos) .x;
y = stack(stackpos).y;
d = stack(stackpos).d;
end
end
Example

Many different shapes and textures can be generated using L-systems. Here we present
a few:?

Koch snowflake (Figure 15.3a):

rules(1).left = ’F’;
rules(l) .right = ’F+F--F+F’;
lsystem(’F--F--F’, rules, pi/3, 3);

Sierpinski triangle/gasket (Figure 15.3b):

rules(1).left = ’F’;
rules(1) .right = ’F+F-F-F+F’;
lsystem(’F’, rules, 2/3*pi, 5);

Rectangular grid (Figure 15.3c):

rules(1).left = ’F’;
rules(1).right = ’F[+F] [-F]F’;
lsystem(’F’, rules, pi/2, 5);

3Mostly taken from the Fractint tutorial http://spanky.triumf.ca/www /fractint/lsys/tutor.html.

222 Chapter 15: Texture

Triangular grid with irregular borders (Figure 15.3d):

rules(1).left = ’X’;

rules(1) .right = °FY[+FY] [--FY]FY’;
rules(2).left = ’Y’;

rules(2) .right = ’FX[++FX] [-FX]FX’;
rules(3).left = ’F’;

rules(3).right = ’’;

lsystem(’X’, rules, pi/3, 4);

Hezxagonal grid (Figure 15.3e):

rules(1l) .left = ’F’;
rules(1).right = ’-F+F+[+F+F]-’;
lsystem(’F’, rules, pi/3, 5);

Hilbert space-filling curve (Figure 15.3f):

rules(1).left = ’L’;
rules(1).right = ’+RF-LFL-FR+’;
rules(2).left = ’R’;
rules(2) .right = ’-LF+RFR+FL-’;
lsystem(°L’, rules, pi/2, 5);

The most famous examples are plant-like drawings, such as branches (Figure 15.3g):

rules(1).left = ’F’;

rules(1) .right = °FF’;
rules(2).left = ’X’;

rules(2) .right = *F[+X]F[-X]+X’;
lsystem(’X’, rules, pi/9, 5);

or a bush (Figure 15.3h):

rules(1).left = ’F’;
rules(1).right = ’FF-[-F+F+F]+[+F-F-F]’;
lsystem(’++++F’, rules, pi/8, 4);

15.5 L-system interpreter: 1system 223

T
HH
in)

faaas
o
jas
t

(a) (b) (c) (d)

() (2) (h)

Figure 15.3: Drawings generated by L-systems: (a) Koch snowflake, (b) Sierpinski triangle,
(c) rectangular grid, (d) triangular grid, (e) hexagonal grid, (f) Hilbert curve, (g) branch, and
(h) bush.

