
Chapter15
Texture

Texture is hard to define, yet ubiquitous in images of natural and many man-made objects.
Classical texture descriptors are based on co-occurrence matrices (function haralick,
p. 209). As an example, we show how to use them for texture classification. Another
group of texture descriptors is based on discrete wavelet frames (function waveletdescr,
p. 213). They can be computed very efficiently and their classification performance is
often better than for co-occurrence based features. As well as for texture classification,
we show how to use wavelet descriptors for (supervised) texture segmentation (function
texturesegm, p. 217), by combining them with a graph cut method (Section 7.6).

Finally, we present the famous Lindenmayer or L-system (function lsystem, p. 220)
as an example of a syntactic grammar-based shape and texture description and generation
tool.

15.1 Problems

15.1. What is a texel?

15.2. Explain the difference between weak and strong textures.

15.3. How does scale influence texture description and perception? How does texture
appear if the scale is too small or too large?

15.4. Define statistical and syntactic texture description methods. Describe texture types
for which each approach is expected to work well and when it is likely to fail and
explain why.

15.5. Define fractal dimension and lacunarity, and explain how these measures can be
used for texture description.

15.6. Which texture description features are well suited for characterization of directional
textures? Give several examples.

15.7. Can deterministic grammars be used to describe real-world textures? What are the
main limitations?

15.8. Define a stochastic grammar. How is it useful for texture description?

15.2 Haralick texture descriptors: haralick 211

textures_train = textures(1:n/2);

textures_test = textures(n/2+1:end);

(a) 1 (b) 2 (c) 3 (d) 4 (e) 5

(f) 6 (g) 7 (h) 8 (i) 9 (j) 10

Figure 15.1: Ten selected textures with their class labels.

Haralick texture descriptors are calculated for each patch in the training and test sets
and stored into a structure suitable for use by the STPRtool [Franc and Hlavac, 2004],
function mlcgmm, later on.

ntrain = size(textures_train, 2);

h0 = haralick(textures_train(1).patch);

n = size(h0,1);

features_train.X = zeros(n, ntrain);

features_train.y = zeros(1, ntrain);

features_train.X(:,1) = h0;

features_train.y(1) = textures_train(1).class;

for i = 2:ntrain

features_train.X(:,i) = haralick(textures_train(i).patch);

features_train.y(i) = textures_train(i).class;

end

ntest = size(textures_test,2);

features_test.X = zeros(n,ntest);

features_test.y = zeros(1,ntest);

for i = 1:ntest

features_test.X(:,i) = haralick(textures_test(i).patch);

features_test.y(i) = textures_test(i).class;

end

As the descriptor calculation may take a few minutes, for convenience the precomputed
descriptors can be saved and later restored.

212 Chapter 15: Texture

save features features_test features_train ntrain ntest

load features

The training data is normalized so that all features have zero mean and unit standard
deviation. This improves numerical stability of the subsequent steps.

m = mean(features_train.X, 2);

X = features_train.X - repmat(m,1,ntrain);

v = sqrt(var(X’))’;

features_train.X = X ./ repmat(v,1,ntrain);

There are 202 features, which is too many given that we only have 18 training patches (on
the average) per class. We choose the 10 most relevant ones using function goodfeatures

(p. 213).

ind = goodfeatures(features_train, 10);

features_train.X = features_train.X(ind,:);

We use the maximum probability normal classifier, function maxnormalclass (p. 123)
and determine the parameters of the Gaussian distributions for each class using STPRtool

function mlcgmm [Franc and Hlavac, 2004]. Because of the relative scarcity of training
data, we make the additional assumption of diagonality of the class covariance matrices.
This completes the training phase.

model = mlcgmm(features_train, ’diag’);

To classify the test data, we normalize them using the parameters m and v determined
from the training data. We also select the previously determined subset of ‘good’ features
ind. The classification itself is performed by function maxnormalclass which provides
a vector ytest with class labels for each test sample.

features_test.X = (features_test.X-repmat(m,1,ntest)) ./ repmat(v,1,ntest);

features_test.X = features_test.X(ind,:);

ytest = maxnormalclass(features_test.X, model);

The classification results are quite good, given the simple classifier and limited amount of
training data. The overall classification accuracy (the ratio of correctly classified patches
with respect to all test patches) is 94%. The results can also be presented as a confusion

1 2 3 4 5 6 7 8 9 10

1 21 0 0 0 0 0 0 0 2 0

2 0 16 0 0 0 0 4 0 0 0
3 0 0 11 0 0 0 0 0 0 0
4 0 0 0 18 0 0 0 0 0 0
5 0 0 0 0 12 0 0 0 0 0
6 0 0 0 0 0 15 0 0 0 0
7 0 1 0 0 0 0 16 0 0 0
8 0 0 0 0 0 0 0 22 0 0
9 0 0 0 0 0 0 2 0 17 0

10 0 0 4 0 0 0 0 0 0 19

Table 15.1: Haralick texture classifier confusion matrix.

214 Chapter 15: Texture

Unlike for haralick, input images are not restricted to be of type uint8. Here the image
is first converted to double, to avoid overflow problems. However, note that an optimized,
all integer, implementation would be straightforward.

im = double(im);

[m,n] = size(im);

npix = m*n;

The main loop is repeated maxlevel times. At each level, we filter the input image im to
provide four sub-bands by using the following filter combinations: HxHy, HxGy, GxHy,
GxGy, where Hx is the low-pass filter applied along the x direction, Gy is the high-pass
filter applied along the y direction etc. Note that thanks to separability, only six 1D
filtering operations are required, implemented by functions filterh and filterg, below.
The low-pass version (filtered by HxHy) is used as an input to the subsequent scale and
the filter size l is doubled.

The features are the energies in the three high-pass (detail) sub-bands for each level.
At the last level, the energy of the low-pass band is also added to the output feature
vector v.

v = zeros(3*maxlevel+1, 1); % the descriptors

for i = 1:maxlevel

l = 2^i;

% filtering in the y direction

imhy = filterh(im, l);

imgy = filterg(im, l);

% filtering in the x direction

vgg = sum(sum(filterg(imgy’,l).^2)) / npix;

vhg = sum(sum(filterh(imgy’,l).^2)) / npix;

vgh = sum(sum(filterg(imhy’,l).^2)) / npix;

im = filterh(imhy’, l)’;

v(3*i-2:3*i) = [vgg vhg vgh];

end

v(end) = sum(sum(im.^2)) / npix; % low-pass band energy

Unlike a standard discrete wavelet transform, we are using a wavelet frame, so no
subsampling of the filtered images is performed.

function imf = filterh(im,l)

Function filterh filters all columns of the image im by a low-pass Haar filter H(z) =
(1 + zl)/2. Since the filter has only two non-zero elements, the filtering amounts to adding
together two shifted copies of the image. Mirror boundary conditions are ensured by
extending the image by l rows.

imf = 0.5*[im; im(end-1:-1:end-l,:)];

imf = imf(1:end-l,:) + imf(l+1:end,:);

15.4 Texture based segmentation: texturesegm 215

function imf = filterg(im,l)

Function filterg works like filterh except the high-pass filter G(z) = (zl − 1)/2 is
used.

imf = 0.5*[im; im(end-1:-1:end-l,:)];

imf = imf(l+1:end,:) - imf(1:end-l,:);

Example

We compare the classification performance of wavelet descriptors waveletdescr (p. 213)
with co-occurrence matrix based descriptors generated by haralick (p. 209). We use the
same set of textures (Figure 15.1), the same set of training and testing patches, and the
same classifier. The source code from Section 15.2 can be re-used, with all occurrences of
haralick replaced by waveletdescr. The only difference is that for wavelet descriptors
no feature selection is needed, since with the default settings (maxlevel=3) only 10
features are generated.

Notice that calculating wavelet descriptors is many times faster than calculating
the descriptors generated by haralick. Also the performance is better, with an overall
classification accuracy 97%, see Table 15.2.

1 2 3 4 5 6 7 8 9 10

1 20 0 0 0 0 0 0 0 1 0

2 0 17 0 0 0 0 0 0 0 0
3 0 0 15 0 0 0 0 0 0 0
4 0 0 0 18 0 0 0 0 0 0
5 0 0 0 0 12 0 0 0 0 0
6 0 0 0 0 0 15 0 0 0 0
7 0 0 0 0 0 0 22 0 0 0
8 0 0 0 0 0 0 0 22 3 0
9 1 0 0 0 0 0 0 0 15 0

10 0 0 0 0 0 0 0 0 0 19

Table 15.2: Wavelet confusion matrix.

15.4 Texture based segmentation: texturesegm

Texture descriptors can also be used for segmentation of images consisting of several
different textures. Here we follow Unser [Unser, 1995] and show how wavelet texture
descriptors (Section 15.3) can be used for this purpose. We proceed in three steps:
(i) We create a function waveletsegdescr which is derived from waveletdescr (p. 213)
but instead of calculating the descriptors globally for the whole image, it calculates
them for each pixel. (ii) Function texturesegmtrain (p. 217) takes a training image
with a known segmentation and creates a model of the classes (textures) in the image.
(iii) Finally, function texturesegm (p. 217) takes an unknown image and segments it

216 Chapter 15: Texture

using the learnt model. Graph cut segmentation (Section 7.6) is used to obtain spatially
coherent segmentation.

function v = waveletsegdescr(im,maxlevel,sigma)

input

im [m×n] Input image.
maxlevel {3} The number of multiresolution levels, see waveletdescr.

sigma {10} Standard deviation of the Gaussian filter used for descriptor aver-
aging, in pixels. Large values result in more reliable classification
at the expense of suppressing small details.

output

v [k×m×n] A matrix of feature vectors of length k = 3 maxlevel + 1 for each
pixel.

see also waveletdescr (p. 213).

Since this function is so similar to waveletdescr, we will only comment on the differences
here.

im = double(im);

[m,n] = size(im);

npix = m*n;

v = zeros(3*maxlevel+1, m, n); % an array to store the descriptors

Prepare the filter h for descriptor averaging. Note that h is unitary (has a unit gain).
The energy in all bands is low-pass filtered by h, with symmetric boundary conditions.

h = fspecial(’gaussian’, ceil(3*sigma), sigma);

for i = 1:maxlevel

l = 2^i;

% filtering in the y direction

imhy = filterh(im, l);

imgy = filterg(im, l);

% filtering in the x direction

v(3*i-2,:,:) = imfilter(filterg(imgy’,l)’.^2, h, ’symmetric’);

v(3*i-1,:,:) = imfilter(filterh(imgy’,l)’.^2, h, ’symmetric’);

v(3*i,:,:) = imfilter(filterg(imhy’,l)’.^2, h, ’symmetric’);

im = filterh(imhy’, l)’;

end

v(end,:,:) = imfilter(im.^2, h, ’symmetric’); % low-pass band energy

We have chosen the feature index to be the first index to v (instead of the last) even
though it is less efficient here because it is more appropriate for subsequent processing in
texturesegmtrain and texturesegm.

15.4 Texture based segmentation: texturesegm 217

function model = texturesegmtrain(im,mask,maxlevel,sigma)

input

im [m×n] Input image.
mask [m×n] Segmentation for the image im. The numbers in mask denote the

class for the corresponding pixel in im and should be from the range
1 . . . d where d is the number of classes.

maxlevel {3} The number of multiresolution levels, see waveletdescr.
sigma {10} Standard deviation of the Gaussian filter used for descriptor averaging,

in pixels, see waveletsegdescr.
output

model struct Model of the texture classes to be used by texturesegm.
see also texturesegm (p. 217), waveletdescr (p. 213),

waveletsegdescr (p. 216).

First, the texture descriptors f are calculated (for each pixel). The probability distribution
of these descriptors for each class is assumed to be normal. Their parameters are estimated
using STPRtool function mlcgmm [Franc and Hlavac, 2004], as in Section 9.2 or Section 15.2.

f = waveletsegdescr(im, maxlevel, sigma);

[k,m,n] = size(f);

features.X = reshape(f, k, m*n);

features.y = reshape(mask, 1, m*n);

model = mlcgmm(features, ’diag’);

model.maxlevel = maxlevel;

model.sigma = sigma;

function texturesegm(im,model,regul)

input

im [m×n] Input image to be segmented.
model struct Model of the texture classes as returned by texturesegmtrain.
regul {200} Regularization for the GraphCut segmentation algorithm, penalizing

different class labels for neighborhood pixels. Increasing this parameter
eliminates small regions but may decrease accuracy.

output

l [m×n] output labeling. Each pixel position contains an integer 1 . . . d corre-
sponding to an assigned class; d is the number of classes.

see also waveletdescr (p. 213), texturesegmtrain (p. 217),
waveletsegdescr (p. 216).

Texture descriptors f are calculated for each pixel of the image and the probabil-
ity p of a pixel belonging to a particular class is evaluated using STPRtool function
pdfgauss [Franc and Hlavac, 2004], see also Section 9.2.

f = waveletsegdescr(im, model.maxlevel, model.sigma);

[k,m,n] = size(f);

p = pdfgauss(reshape(f,k,m*n), model);

d = size(p,1);

218 Chapter 15: Texture

The logarithm of p is used as the data term for the graph cut segmentation (Section 7.6).

Dc = -log(reshape(p’,m,n,d)+eps);

Sc = regul*(ones(d)-eye(d));

handle = GraphCut(’open’, Dc, Sc);

[gch l] = GraphCut(’expand’, handle);

handle = GraphCut(’close’, handle);

l = l+1; % as GraphCut classes start at 0

Example

We shall use four textures from Figure 15.1.

t1 = im2double(imread([ImageDir ’D112.png’]));

t2 = im2double(imread([ImageDir ’D17.png’]));

t3 = im2double(imread([ImageDir ’D4.png’]));

t4 = im2double(imread([ImageDir ’D95.png’]));

The training image consists of four vertical stripes, each containing one kind of texture.
Figure 15.2a and 15.2d show the test image imtrain and the corresponding mask (maskt).

[m,n] = size(t1);

[x,y] = meshgrid(1:n, 1:m);

maskt = 1 + floor(4*(x-1)/m);

imtrain = t1.*(maskt==1) + t2.*(maskt==2) + t3.*(maskt==3) + t4.*(maskt==4);

The model is learnt from the training image.

(a) (b) (c)

1

1.5

2

2.5

3

3.5

4

(d)

1

1.5

2

2.5

3

3.5

4

(e)

1

1.5

2

2.5

3

3.5

4

(f)

Figure 15.2: (a,d) Training image with the corresponding mask. (b,e) Test image with the
corresponding mask. (c,f) Segmentation results as boundaries superimposed over the test image
and as a mask.

15.5 L-system interpreter: lsystem 221

for i = 1:length(s)

cmd = s(i);

switch(cmd)

case ’F’

x1 = l*cos(d) + x;

y1 = l*sin(d) + y;

line([x x1], [y y1], ’Color’,’k’, ’LineWidth’,2); % draw

x = x1; y = y1;

case ’f’

x = l*cos(d) + x;

y = l*sin(d) + y;

case ’+’

d = d+angle;

case ’-’

d = d-angle;

case ’[’

stack(stackpos).x = x;

stack(stackpos).y = y;

stack(stackpos).d = d;

stackpos = stackpos+1;

case ’]’

if stackpos<2, error(’lsystem: Stack empty.’); end

stackpos = stackpos-1;

x = stack(stackpos).x;

y = stack(stackpos).y;

d = stack(stackpos).d;

end

end

Example

Many different shapes and textures can be generated using L-systems. Here we present
a few:3

Koch snowflake (Figure 15.3a):

rules(1).left = ’F’;

rules(1).right = ’F+F--F+F’;

lsystem(’F--F--F’, rules, pi/3, 3);

Sierpinski triangle/gasket (Figure 15.3b):

rules(1).left = ’F’;

rules(1).right = ’F+F-F-F+F’;

lsystem(’F’, rules, 2/3*pi, 5);

Rectangular grid (Figure 15.3c):

rules(1).left = ’F’;

rules(1).right = ’F[+F][-F]F’;

lsystem(’F’, rules, pi/2, 5);

3Mostly taken from the Fractint tutorial http://spanky.triumf.ca/www/fractint/lsys/tutor.html.

222 Chapter 15: Texture

Triangular grid with irregular borders (Figure 15.3d):

rules(1).left = ’X’;

rules(1).right = ’FY[+FY][--FY]FY’;

rules(2).left = ’Y’;

rules(2).right = ’FX[++FX][-FX]FX’;

rules(3).left = ’F’;

rules(3).right = ’’;

lsystem(’X’, rules, pi/3, 4);

Hexagonal grid (Figure 15.3e):

rules(1).left = ’F’;

rules(1).right = ’-F+F+[+F+F]-’;

lsystem(’F’, rules, pi/3, 5);

Hilbert space-filling curve (Figure 15.3f):

rules(1).left = ’L’;

rules(1).right = ’+RF-LFL-FR+’;

rules(2).left = ’R’;

rules(2).right = ’-LF+RFR+FL-’;

lsystem(’L’, rules, pi/2, 5);

The most famous examples are plant-like drawings, such as branches (Figure 15.3g):

rules(1).left = ’F’;

rules(1).right = ’FF’;

rules(2).left = ’X’;

rules(2).right = ’F[+X]F[-X]+X’;

lsystem(’X’, rules, pi/9, 5);

or a bush (Figure 15.3h):

rules(1).left = ’F’;

rules(1).right = ’FF-[-F+F+F]+[+F-F-F]’;

lsystem(’++++F’, rules, pi/8, 4);

15.5 L-system interpreter: lsystem 223

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 15.3: Drawings generated by L-systems: (a) Koch snowflake, (b) Sierpinski triangle,
(c) rectangular grid, (d) triangular grid, (e) hexagonal grid, (f) Hilbert curve, (g) branch, and
(h) bush.

