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Texture

Texture refers to properties that represent the surface or structure of an object (in
reflective or transmissive images, respectively); it is widely used, and perhaps intuitively
obvious, but has no precise definition due to its wide variability. We might define texture
as something consisting of mutually related elements; therefore we are considering a group
of pixels (a texture primitive or texture element) and the texture described is highly
dependent on the number considered (the texture scale) | , ]. Examples are
shown in Figure 15.1; dog fur, grass, river pebbles, cork, checkered textile, and knitted
fabric. Many other examples can be found in [ , ].

Texture consists of texture primitives or texture elements, sometimes called texels.
Primitives in grass and dog fur are represented by several pixels and correspond to a
stalk or a pile; cork is built from primitives that are comparable in size with pixels. It
is difficult, however, to define primitives for the checkered textile or fabric, which can
be defined by at least two hierarchical levels. The first level of primitives corresponds
to textile checks or knitted stripes, and the second to the finer texture of the fabric or
individual stitches. As we have seen in many other areas, this is a problem of scale;
texture description is scale dependent.

The main aim of texture analysis is texture recognition and texture-based shape
analysis. Textured properties of regions were referred to many times while considering
image segmentation (Chapter 6), and derivation of shape from texture was discussed in
Chapter 11. People usually describe texture as fine, coarse, grained, smooth, etc.,
implying that some more precise features must be defined to make machine recognition
possible. Such features can be found in the tone and structure of a texture |

]. Tone is based mostly on pixel intensity properties in the primitive, while btructure
is the spatial relationship between primitives.

Each pixel can be characterized by its location and tonal properties. A texture
primitive is a contiguous set of pixels with some tonal and/or regional property, and can
be described by its average intensity, maximum or minimum intensity, size, shape, etc.
The spatial relationship of primitives can be random, or they may be pairwise dependent,
or some number of primitives can be mutually dependent. Image texture is then described
by the number and types of primitives and by their spatial relationship.
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Figure 15.1: Textures:
(f) knitted fabric.



720 Chapter 15: Texture

Figures 15.1a,b and 15.2a,b show that the same number and the same type of primitives
does not necessarily give the same texture. Similarly, Figures 15.2a and 15.2¢ show that
the same spatial relationship of primitives does not guarantee texture uniqueness, and
therefore is not sufficient for texture description. Texture tone and structure are not
independent; textures always display both tone and structure even though one or the
other usually dominates, and we usually speak about one or the other only. Tone can
be understood as tonal properties of primitives, taking primitive spatial relationships
into consideration. Structure refers to spatial relationships of primitives considering their
tonal properties as well.

%ok ok ok ok ok ok ok ok ok Hokookk skek cksk skek HHEHHHHAHRH
H sk sk % ok ok sk %k ok dk ckk ckk ckk skok HHeH#HAHHAHSE
$ sk sk %ok ok sk ok ok ok sk ckk skk skk skok HHeHH4HHH#ERH
H ok sk %ok ok ko ok ok dk ckk ckk ckk skok #HH#HAHHAHSE
H sk sk %ok ok sk ok ok ok sk ckk skk ckk skok HHeHHAHHHERH
H sk sk ook ok ko ok ok dk ok ockk sk sk #HH#HA#HHAHSE
H sk sk % ok sk sk ok ok ok dk ckk ckk ckk skok HHeHHAHHHRH
(a) (b) (c)

Figure 15.2: Artificial textures.

If the texture primitives in the image are small and if the tonal differences between
neighboring primitives are large, a fine texture results (Figures 15.1a,b and 15.1d). If
the texture primitives are larger and consist of several pixels, a coarse texture results
(Figures 15.1c and 15.1e). Again, this is a reason for using both tonal and structural
properties in texture description. Note that the fine/coarse texture characteristic depends
on scale.

Further, textures can be classified according to their strength—texture strength
then influences the choice of texture description method. Weak textures have small
spatial interactions between primitives, and can be adequately described by frequencies
of primitive types appearing in some neighborhood. Because of this, many statistical
texture properties are evaluated in the description of weak textures. In strong textures,
the spatial interactions between primitives are somewhat regular. To describe strong
textures, the frequency of occurrence of primitive pairs in some spatial relationship may
be sufficient. Strong texture recognition is usually accompanied by an exact definition of
texture primitives and their spatial relationships.

It remains to define a constant texture. One existing definition | , ]
claims that ‘an image region has a constant texture if a set of its local properties in that
region is constant, slowly changing, or approxzimately periodic’. The set of local properties
can be understood as primitive types and their spatial relationships. An important part
of the definition is that the properties must be repeated inside the constant texture area.
How many times must the properties be repeated? Assume that a large area of constant
texture is available, and consider smaller and smaller parts of that texture, digitizing it
at constant resolution as long as the texture character remains unchanged. Alternatively,
consider larger and larger parts of the texture, digitizing it at constant raster, until details
become blurred and the primitives finally disappear. We see that image resolution (scale)
must be a consistent part of the texture description; if the image resolution is appropriate,
the texture character does not change for any position in our window.
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Two main texture description approaches exist—statistical and syntactic | ,

]. Statistical methods compute different properties and are suitable if texture primitive
sizes are comparable with the pixel sizes. Syntactic and hybrid methods (combination of
statistical and syntactic) are more suitable for textures where primitives can be assigned
a label—the primitive type—meaning that primitives can be described using a larger
variety of properties than just tonal properties; for example, shape description. Instead of
tone, brightness will be used more often in the following sections because it corresponds
better to gray-level images.

Research on pre-attentive (early) vision | , | shows that human ability
to recognize texture quickly is based mostly on textons, which are elongated blobs
(rectangles, ellipses, line segments, line ends, crossings, corners) that can be detected by
pre-attentive vision, while the positional relationship between neighboring textons must
be done slowly by an attentive vision sub-system. As a result of these investigations,
methods based on texton detection and texton density computation were developed.

15.1 Statistical texture description

Statistical texture description methods describe textures in a form suitable for statistical
pattern recognition. As a result of the description, each texture is described by a feature
vector of properties which represents a point in a multi-dimensional feature space. The
aim is to find a deterministic or probabilistic decision rule assigning a texture to some
specific class (see Chapter 9).

15.1.1 Methods based on spatial frequencies

Measuring spatial frequencies is the basis of a large group of texture recognition methods.
Textural character is in direct relation to the spatial size of the texture primitives; coarse
textures are built from larger primitives, fine textures from smaller primitives. Fine
textures are characterized by higher spatial frequencies, coarse textures by lower spatial
frequencies.

One of many related spatial frequency methods evaluates the autocorrelation
function of a texture. In an autocorrelation model, a single pixel is considered a texture
primitive, and primitive tone property is the gray-level. Texture spatial organization is
described by the correlation coefficient that evaluates linear spatial relationships between
primitives. If the texture primitives are relatively large, the autocorrelation function value
decreases slowly with increasing distance, while it decreases rapidly if texture consists of
small primitives. If primitives are placed periodically in a texture, the autocorrelation
increases and decreases periodically with distance.

Texture can be described using the following algorithm.

Algorithm 15.1: Autocorrelation texture description
1. Evaluate autocorrelation coefficients for several different values of parameters p, q:

MN Y S £, 5) i+ .5+ q)
M = p)(N —q) Yty Yoiey f2(6,5)

Cys(piq) = ( . (15.1)
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where p, q is the position difference in the 4, j direction, and M, N are the image
dimensions.

2. Alternatively, the autocorrelation function can be determined in the frequency
domain from the image power spectrum [ , ]:

Cry =F HIFP}. (15.2)

If the textures described are circularly symmetric, the autocorrelation texture descrip-
tion can be computed as a function of the absolute position difference not considering
direction—that is, a function of one variable.

Spatial frequencies can also be determined from an optical image transform (recall
that the Fourier transform can be realized by a convex lens—see Section 3.2) | ,

|, a big advantage of which is that it may be computed in real time. The Fourier
transform describes an image by its spatial frequencies; average values of energy in specific
wedges and rings of the Fourier spectrum can be used as textural description features
(see Figure 15.3). Features evaluated from rings reflect coarseness of the texture—high
energy in large-radius rings is characteristic of fine textures (high frequencies), while high
energy in small radii is characteristic of coarse textures (with lower spatial frequencies).
Features evaluated from wedge slices of the Fourier transform image depend on directional
properties of textures—if a texture has many edges or lines in a direction ¢, high energy
will be present in a wedge in direction ¢ + /2.

\4 v

(@) (b)
Figure 15.3: Partitioning of Fourier spectrum. (a) Ring filter. (b) Wedge filter reflecting the
Fourier spectrum symmetry.

Similarly, a discrete image transform may be used for texture description. A
textured image is usually divided into small square non-overlapping subimages. If the
subimage size is n x n, the gray-levels of its pixels may be interpreted as an n-dimensional
vector, and an image can be represented as a set of vectors. These vectors are transformed
applying a Fourier, Hadamard, or other discrete image transform (Section 3.2). The new
co-ordinate system’s basis vectors are related to the spatial frequencies of the original
texture image and can be used for texture description | , ]. When description
of noisy texture becomes necessary, the problem becomes more difficult. From a set of 28
spatial frequency-domain features, a subset of features insensitive to additive noise was
extracted (dominant peak energy, power spectrum shape, entropy) in |

.

)
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Spatial frequency texture description methods are based on a well-known approach.
Despite that, many problems remain—the resulting description is not invariant even to
monotonic image gray-level transforms; further, it can be shown | , ]
that the frequency-based approach is less efficient than others. A joint spatial/spatial
frequency approach is recommended; the Wigner distribution was shown to be useful in a
variety of synthetic and Brodatz textures | , ]

15.1.2 Co-occurrence matrices

The co-occurrence matrix method of texture description is based on the repeated occur-
rence of some gray-level configuration in the texture; this configuration varies rapidly with
distance in fine textures and slowly in coarse textures | , ]. Suppose the
part of a textured image to be analyzed is an M x N rectangular window. An occurrence
of some gray-level configuration may be described by a matrix of relative frequencies
Py 4(a,b), describing how frequently two pixels with gray-levels a, b appear in the window
separated by a distance d in direction ¢. These matrices are symmetric if defined as given
below. However, an asymmetric definition may be used, where matrix values are also
dependent on the direction of co-occurrence. A co-occurrence matrix computation scheme
was given in Algorithm 4.1.

Non-normalized frequencies of co-occurrence as functions of angle and distance can
be represented formally as

Pye a(a,b) = |{[(k,1),(m,n)] € D
E—m=0,|l—n|=d, f(k,]) =a, f(mn) = b}|
Pyso q(a,b) = |{[(k,l), (m,n)] € D:
(k—mzd,l—n:—d)\/(k—mz—d,l—n:d),f(k,l):a,f(m,n):b}’
Poge a(a,b) = [{[(k,1),(m,n)] € D :
lk—m|=d,l—n=0,f(k,]) = a, f(m,n) = b}|
Pisse,a(a,b) = [{[(k.1), (m,n)] € D
(k—m:d,l—n:d)\/(k—m:—d,l—n:—d),f(k,l):a,f(m,n):b}’,
(15.3)

where |{...}| refers to set cardinality and D = (M x N) x (M x N).
An example illustrates co-occurrence matrix computations for the distance d = 1. A
4 x4 image with four gray-levels is presented in Figure 15.4. The matrix Fyo ; is constructed

N O O O
N DO O

W N = =
W N = =

Figure 15.4: Gray-level image.

as follows: The element Pyo 1(0,0) represents the number of times the two pixels with
gray-levels 0 and 0 appear separated by distance 1 in direction 0°; Ppo 1(0,0) = 4 in this
case. The element Pyo 1(3,2) represents the number of times two pixels with gray-levels



724 Chapter 15: Texture

3 and 2 appear separated by distance 1 in direction 0°; Py 1(3,2) = 1. Note that
Pyo 1(2,3) = 1 due to matrix symmetry:

4 2 10 2 1 30
2 4 0 0 1 210
Pea=11 g ¢ 1 Piasen=|g 1 o 9
00 1 2 0020

The construction of matrices Py q for other directions ¢ and distance values d is similar.

Texture classification can be based on criteria derived from the following co-occurrence
matrices.

e Energy, or angular second moment (an image homogeneity measure—the more
homogeneous the image, the larger the value)

> P2 a(a,b). (15.4)
a,b

¢« Entropy:

> Pya(a,b) logy Py.a(a,b) . (15.5)
a,b

¢ Maximum probability:
max Py q(a,b) . (15.6)

o Contrast (a measure of local image variations; typically k = 2, A = 1):

> la—b|" P} 4(ab) . (15.7)
a,b
¢ Inverse difference moment:
P} (a,b
> ﬂbﬁ) (15.8)
a,b;a#b |a_ |

o Correlation (a measure of image linearity, linear directional structures in direction
¢ result in large correlation values in this direction):

Da [(ab) Py a(a,b)] — prapuy

Oz0y

, (15.9)

where ., 11, are means and o, 0, are standard deviations

Mz :ZGZP¢,d(aab): Og :Z(a_uz)2zp¢,d(avb)v
a b b

a

uy:ZbZPM(a,b), Uy:z(b*“myz&’vd(a’b)'
b a @

b

Following is a general algorithm for texture description based on co-occurrence matrices.
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Algorithm 15.2: Co-occurrence method of texture description

1. Construct co-occurrence matrices for given directions and given distances.

2. Compute texture feature vectors for four directions ¢, different values of d, and
the six characteristics. This results in many correlated features.

The co-occurrence method describes second-order image statistics and works well
for a large variety of textures (see | , ] for a survey of texture
descriptors based on co-occurrence matrices). Good properties of the co-occurrence
method are the description of spatial relations between tonal pixels, and invariance to
monotonic gray-level transformations. On the other hand, it does not consider primitive
shapes, and therefore cannot be recommended if the texture consists of large primitives.
Memory requirements represent another big disadvantage, although this is definitely not
as limiting as it was a few years ago. The number of gray-levels may be set to 32 or
64, which decreases the co-occurrence matrix sizes, but loss of gray-level accuracy is a
resulting negative effect (although this loss is usually insignificant in practice).

Although co-occurrence matrices give very good results in discrimination between
textures, the method is computationally expensive. A fast algorithm for co-occurrence
matrix computation is given in [ , |, and a modification of the method
that is efficiently applicable to texture description of detected regions is proposed in
[ , ], in which a co-occurrence array size varies with the region size.

15.1.3 Edge frequency

Methods discussed so far describe texture by its spatial frequencies, but comparison
of edge frequencies in texture can be used as well. Edges can be detected either as
micro-edges using small edge operator masks, or as macro-edges using large masks |

, ]. The simplest operator that can serve this purpose is Robert’s gradient,
but virtually any other edge detector can be used (see Section 5.3.2). Using a gradient
as a function of distance between pixels is another option | , ]. The
distance-dependent texture description function g(d) can be computed for any subimage
f defined in a neighborhood N for variable distance d:

g(d) = |f(i,5) — fi+d,j)| +|f@i,5) — f(i —d.j)|

- - - - (15.10)
+|f(Z,j)—f(Z,j+d)|+|f(’t,j)—f(2,j—d)‘.

The function g(d) is similar to the negative autocorrelation function; its minimum
corresponds to the maximum of the autocorrelation function, and its maximum corresponds
to the autocorrelation minimum.

Algorithm 15.3: Edge-frequency texture description

1. Compute a gradient g(d) for all pixels of the texture.

2. Evaluate texture features as average values of gradient in specified distances d.
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Dimensionality of the texture description feature space is given by the number of
distance values d used to compute the edge gradient.

Several other texture properties may be derived from first-order and second-order
statistics of edge distributions [ , ].

e Coarseness: Edge density is a measure of coarseness. The finer the texture, the
higher is the number of edges present in the texture edge image.

e Contrast: High-contrast textures are characterized by large edge magnitudes.

¢ Randomness: Randomness may be measured as entropy of the edge magnitude
histogram.

¢ Directivity: An approximate measure of directivity may be determined as entropy of
the edge direction histogram. Directional textures have an even number of significant
histogram peaks, directionless textures have a uniform edge direction histogram.

e Linearity: Texture linearity is indicated by co-occurrences of edge pairs with the
same edge direction at constant distances, and edges are positioned in the edge
direction (see Figure 15.5, edges a and b).

o Periodicity: Texture periodicity can be measured by co-occurrences of edge pairs
of the same direction at constant distances in directions perpendicular to the edge
direction (see Figure 15.5, edges a and c).

o Size: Texture size measure may be based on co-occurrences of edge pairs with
opposite edge directions at constant distance in a direction perpendicular to the edge
directions (see Figure 15.5, edges a and d).

Note that the first three measures are derived from first-order statistics, the last three
measures from second-order statistics.

a b

I
-
T
|
\ 4
I
-
|
|

Figure 15.5: Texture linearity, periodicity, and size measures may be based on image edges.
Adapted from [ , .

Many existing texture recognition methods are based on texture detection. The
concepts of pre-attentive vision and textons have been mentioned, which are also based
mostly on edge-related information. A zero-crossing operator was applied to edge-based
texture description in | , |; the method determines image regions of
a constant texture, assuming no a priori knowledge about the image, texture types, or
scale. Feature analysis is performed across multiple window sizes.

A slightly different approach to texture recognition may require detection of borders
between homogeneous textured regions. A hierarchical algorithm for textured image
segmentation is described in [Fan, ], and a two-stage contextual classification and
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segmentation of textures based on a coarse-to-fine principle of edge detection is given in
[ , ]. Texture description and recognition in the presence of noise represents
a difficult problem. A noise-tolerant texture classification approach based on a Canny-type
edge detector is discussed in | , | where texture is described using
periodicity measures derived from noise-insensitive edge detection.

15.1.4 Primitive length (run length)

A large number of neighboring pixels of the same gray-level represents a coarse texture, a
small number of these pixels represents a fine texture, and the lengths of texture primitives
in different directions can serve as a texture description | , ]. A primitive is
a maximum contiguous set of constant-gray-level pixels located in a line; these can then
be described by gray-level, length, and direction. The texture description features can
be based on computation of continuous probabilities of the length and the gray-level of
primitives in the texture.

Let B(a,r) be the number of primitives of all directions having length r and gray-level
a, M, N the image dimensions, and L the number of image gray-levels. Let N, be
the maximum primitive length in the image. The texture description features can be
determined as follows. Let K be the total number of runs

L N,
K=> Y Ba,r). (15.11)

a=1 r=1
Then:
e Short primitives emphasis:
L N
1 < Bl(a,r)
% > ol (15.12)
a=1 r=1
¢ Long primitives emphasis:
1 LN
% > Bla,r)r?. (15.13)
a=1 r=1
¢ Gray-level uniformity:
2
L
1 -
% > Bla,r) (15.14)
a=1 L r=1
¢ Primitive length uniformity:
| N[ L 2
% > Bla,r) (15.15)
r=1 [ a=1
e« Primitive percentage:
K K
= ) (15.16)
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A general algorithm might then be the following.

Algorithm 15.4: Primitive-length texture description

1. Find primitives of all gray-levels, all lengths, and all directions in the texture
image.

2. Compute texture description features as given in (15.12)—(15.16). These features
then provide a description vector.

15.1.5 Laws’ texture energy measures

Laws’ texture energy measures determine texture properties by assessing average gray-
level, edges, spots, ripples, and waves in texture | , ; , ]. The
measures are derived from three simple vectors: Lz = (1,2, 1) which represents averaging;
E5; = (—1,0,1) calculating first difference (edges); and S3 = (—1,2,—1), corresponding
to the second difference (spots). After convolution of these vectors with themselves and
each other, five vectors result:

1,4,6,4,1),

-2, 0 2,1),

0,2,0,—-1), (15.17)
1,-4,6,—4,1)

1,2,0,—2,—1).

1
1,

(
(=
(=
(
(=

Mutual multiplying of these vectors, considering the first term as a column vector and
the second term as a row vector, results in 5 x 5 Laws’ masks. For example, the following
mask can be derived

-1 0 20 -1
4 0 8 0 —4

LExSs=1] -6 0 12 0 —6 | . (15.18)
-4 0 8 0 —4

-1 0 2 0 -1

By convoluting the Laws’ masks with a texture image and calculating energy statistics, a
feature vector is derived that can be used for texture description.

15.1.6 Fractal texture description

Fractal-based texture analysis was introduced in | , ], where a correlation
between texture coarseness and fractal dimension of a texture was demonstrated. A
fractal is defined | ) | as a set for which the Hausdorff-Besicovich dimension
[ , ; , ] is strictly greater than the topological
dimension; therefore, fractional dimension is the defining property. Fractal models
typically relate a metric property such as line length or surface area to the elementary
length or area used as a basis for determining the metric property; measuring coast length
is a frequently used example |

) ; ) 5 ) ]
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Suppose the coast length is determined by applying a 1-km-long ruler end to end to the
coastline; the same procedure can be repeated with a 0.5-km ruler and other shorter or
longer rulers. It is easy to understand that shortening of the ruler will be associated with
an increase in the measured length. Importantly, the relation between the ruler length
and the measured coast length can be considered a measure of the coastline’s geometric
properties, e.g., its roughness. The functional relationship between the ruler size r and
the measured length L can be expressed as

L=cr'=P, (15.19)

where c is a scaling constant and D is the fractal dimension | , ]. Fractal
dimension has been shown to correlate well with the function’s intuitive roughness.

While equation (15.19) can be applied directly to lines and surfaces, it is often
more appropriate to consider the function as a stochastic process. One of the most
important stochastic fractal models is the fractional Brownian motion model described in
[ , ], which considers naturally rough surfaces as the end results of random
walks. Importantly, intensity surfaces of textures can also be considered as resulting
from random walks, and the fractional Brownian motion model can be applied to texture
description.

Fractal description of textures is typically based on determination of fractal dimension
and lacunarity to measure texture roughness and granularity from the image intensity
function. The topological dimension of an image is equal to three—two spatial dimensions
and the third dimension representing the image intensity. Considering the topological
dimension Ty, the fractal dimension D can be estimated from the Hurst coefficient H

[ : ; : ] as
H=T,-D. (15.20)

For images (T,; = 3), the Hurst parameter H or the fractal dimension D can be estimated
from the relationship

E((Af)?) = c[(An)"]? = c(ar)®2P (15.21)

where E() is an expectation operator, Af = f(i,j) — f(k,1) is the intensity variation, ¢
is a scaling constant, and Ar = |(i,7) — (k,1)| is the spatial distance. A simpler way to
estimate fractal dimension is to use the following equation:

E(|Af]) = r(Ar)*=P, (15.22)
where kK = E<|Af|)m«=1' By applying the log function and considering that H =3 — D,
log E(|Af]) =logk + Hlog(Ar) . (15.23)

The parameter H can be obtained by using least-squares linear regression to estimate
the slope of the curve of gray-level differences gd(k) versus k in log—log scales | ,
]. Considering an M x M image f,

M-1 M—k—1 M—-k—1 M-1

PRI EN (Y EROIE Y

i=0 = = =0

|f(7’7j)_f(7’+k7.7)| )

(15.24)

gd(k) = %
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where = 2M(M — k — 1). The scale k varies from 1 to the maximum selected value
s. Fractal dimension D is then derived from the value of the Hurst coefficient. The
approximation error of the regression line fit should be determined to prove that the
analyzed texture is a fractal, and can thus be efficiently described using fractal measures.
A small value of the fractal dimension D (large value of the parameter H) represents a
fine texture, while large D (small H) corresponds to a coarse texture.

Single fractal dimension is not sufficient for description of natural textures. Lacunarity
measures describe characteristics of textures of different visual appearance that have the
same fractal dimension | , ; , ; , ]. Given a fractal
set A, let P(m) represent the probability that there are m points within a box of size L
centered about an arbitrary point of A. Let N be the number of possible points within
the box, then ZTZX=1 P(m) =1 and the lacunarity A is defined as

My — M?
A= 2M2 : (15.25)
where
N N
M = Z m P(m), My = Z m?P(m) . (15.26)
m=1 m=1

Lacunarity represents a second-order statistic and is small for fine textures and large for
coarse ones.
A multi-resolution approach to fractal feature extraction was introduced in [ ,
]. The multi-resolution feature vector M F' that describes both texture roughness and
lacunarity is defined as

MF = (H™ gm=b_  gm=nih) (15.27)

where the parameters H*) are estimated from pyramidal images f*), where f(™) repre-
sents the full-resolution image of size M = 2™, f(™~1) is the half-resolution image of size
M =2™1 etc., and n is the number of resolution levels considered. The multi-resolution
feature vector M F can serve as a texture descriptor. Textures with identical fractal
dimensions and different lacunarities can be distinguished, as was shown by classification
of ultrasonic liver images in three classes—normal, hepatoma, and cirrhosis | ,

]. Practical considerations regarding calculation of fractal-based texture description
features can be found in [ , : , : ,

]

15.1.7 Multiscale texture description—wavelet domain approaches

Texture description is highly scale dependent. To decrease scale sensitivity, a texture
may be described in multiple resolutions and an appropriate scale may be chosen to
achieve the maximum discrimination | , ]. Gabor transforms and
wavelets (Section 3.2.7) are well suited to multi-scale texture characterization |

, ; , ; , ; , ]. Both are multi-scale
spatial—spatial frequency filtering approaches, which were in the past dominated by
Gabor filters. Recently, wavelets have been successfully applied to texture classification
using pyramid- or tree-structured discrete wavelet transforms | , ;
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Kuo, ] (Section 3.2.7), typically outperforming conventional texture characterization
approaches.
In | , ], overcomplete discrete wavelet frames were shown to outperform

standard critically sampled wavelet texture feature extraction—the following paragraphs
are based on Unser’s work. Considering a discrete version of the wavelet transform
in Iy (the space of square summable sequences [ , ) textures are described
using orthogonal wavelet frames. First, consider the principle of this approach using a
single-dimensional signal . Take a prototype filter h satisfying condition

H)H(EY+H(—2)H(-2"Y =1, (15.28)

where H(z) is the z-transform of h | ) ], and let the filter also be
subjected to the lowpass constraint H(z)|,—1 = 1. A complementary high-pass filter g is
then obtained by shift and modulation

G(z)=zH(-z"). (15.29)

Using these two prototypes, a sequence of filters of increasing width can be iteratively
generated as follows:

Hipi(2) = H(z") Hy(z) , (15.30)
Giia(z) = G(=2) Hi(z), (15.31)
fori=0,...,I—1, initialized with Hy(z) = 1. The filters represent perfect reconstruction

filter banks, which are used for definition of the individual wavelets used below. In the
signal domain, a two-scale relationship is obtained:

hip1(k) = [h]20 % ha(K) ,
gir1(k) = [Q]Tzi * hi(k) , (15.32)

where [.]1,, represents upsampling by a factor of m. In general, each iteration dilates
the filters h; and g; by a factor of two; this sequence of filters is used to decompose the
signal in sub-bands of approximately one octave each. Importantly, such filter sequences
provide a full coverage of the frequency domain.

An orthogonal wavelet decomposition obtained by such a sequence of filters yields
discrete normalized basis functions

pia(k) =27 hy(k — 211) (15.33)
bia(k) =22 gi(k — 21) (15.34)

where i and [ are scale and translation indices, respectively; the product 2¢/2 is for inner
product normalization. Consider a sequence of nested subspaces lo D Vy D Vi D ... D V],
Here, V; = span{; }icz is the approximation space at resolution i. Let subspaces W;
(¢ =1,...,T) represent residue space at resolution 4, defined as an orthogonal complement
of V; with respect to V;_q1, i.e., V;_1 = V; + W, and V; LW;. The minimum Is-norm
approximation of x at scale ¢ which corresponds to the orthogonal projection into V; is
given by

2 (k) = s 1) pia, (15.35)

lez
sy (1) = (z(k), pia(K)),, (15.36)



732 Chapter 15: Texture

where (.,.) represents the standard I inner product and ¢; o(k) = 2/2h;(k) is the discrete
scaling function at resolution ¢. The residue (projection of x into W;), is given by the
complementary wavelet expansion

(E(i_l)(k — CE(,L) Z d(z) 'l/)l 1y (1537)
lez
d( ) <ZE 1,/}7 1 > 5 (1538)

where 1; o(k) = 2/2g;(k) is the discrete wavelet at scale i.
By combining the residues over all scales to a given depth I, a full discrete wavelet
expansion of the signal is obtained

k) = ZS(I)( )1+ Z Zd(z) )it s (15.39)

ez i=1 leZ

where d; are wavelet coeflicients and sy are expansion coefficients of a coarser approxima-
tion x(y), see equation (15.35).

Importantly for texture analysis, the equations (15.36) and (15.38) can be obtained
by simple filtering and down-sampling, yielding

5(1)(1) = 21/2[}1}1 * 90]121 OF

15.40
deiy () = 2%[g] 2] 12: (1) (1540
where i = 1,...,I; hT(k) = h(—k); and []},, is down-sampling by a factor of m. An
efficient algorithm based on direct filtering with a filter bank exists and is typically used
for this purpose | , ].
When using the discrete wavelet transform coefficients for texture analysis, the
most often used features are wavelet energy signatures | ;
, ; , ] and their second- order statlstlcs
[ , ]. While the wavelet-based features can be used directly
for texture description, this approach suffers from the lack of translation invariance. As
described earlier, when attempting to state a definition of texture, this is an important
property. One possibility to overcome this limitation is to compute the discrete wavelet
transform for all possible shifts of the input signal, giving the following decomposition
formulae:

SPWE (k) = (s (k — 1), (k)),, = hT +a(k)
D . (15.41)
" (k) = (gi(k = 1), x(k)), = gi *x(k),
where i = 1,..., I and DWF denotes a discrete wavelet frame representation to distinguish

this equation from the earlier equation (15.40). Hereon, we will deal with this DWF
representation without specifically using the superscript. Equation (15.41) represents a
non-sampled version of equation (15.40). The wavelet frame coefficients can be used for
translation-invariant texture description. Importantly, a simple reconstruction formula
exists and both decomposition and reconstruction can be obtained using filter banks

[Unser, 1995].
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Figure 15.6: Fast iterative approach to dis-
Si(k) crete wavelet decomposition.

Practical implementation is based on the two-scale relationship given in equation
(15.32) yielding a fast iterative decomposition algorithm

si+1(k) = [h]y2i * si(k) ,
div1(k) = [g]rai = si(k) ,

where i = 0, ..., I, with the initial condition sy = = (Figure 15.6). A convolution with
the basic filters h and g is repeated in each step—yielding an approach the complexity of
which is identical in each step and proportional to the number of samples.

Extending the single-dimensional case described above to higher-dimensional signals
(to allow its use for texture image analysis) calls for the use of tensor product formulation
[Mallat, 1989]. In a two-dimensional image, four distinct basis functions (four distinct
filters) are defined corresponding to the different cross-products of the one-dimensional
functions ¢ and ¥. The decomposition can therefore be obtained by successive one-
dimensional processing along the rows and columns of an image. The output of the filter
bank given in equation (15.41) can be rearranged in an N-component vector where N is
the number of sub-bands

ykD) = (kD) _y = [sr(kaD)s dr(hD); oo da(k,D)]T (15.43)

For a spatial coordinate pair (k,l), the resulting y(k,[) is a linear transformation of the
input vector x(k, 1), which is a block representation of the input image centered at (k,).
Applying the 2D separable wavelet transform with a depth [ yields N =1+ 31 features.

The texture can consequently be described by the set of N first-order probability
density functions p(y;), for i = 1,..., N. Also, a more compact representation can be
obtained by using a set of channel variance features

v; = var{y; } (15.44)

(15.42)

(see [Unser, 1986] for justification of this approach). Needless to say, texture description
capabilities of this methods depend on the appropriate choice of the filter bank.

The channel variances v; can be estimated from average sum of squares over a region
of interest R of the analyzed texture

1
vi=n D, vk, (15.45)

B (kier
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where Npg is the number of pixels in region R. As mentioned above, the lowpass condition
requires H(z)|,=1 = 1, which in turn yields E{y;} = E{z}, and E{y;} = 0 for ¢ =
1,...,N. Tt is therefore recommended to subtract E{xr}? from the lowpass channel
feature to obtain a better estimate of the variance.

If the discrete wavelet transform is employed, a smaller number of coefficients results
due to subsampling. Nevertheless, the variance estimates can be obtained in the same
manner. However, an adverse effect on texture classification performance can be observed
due to a resulting increased variability of features.

An assessment of the performance of the wavelet domain multiscale approach described
above is given in [ , ]. In the experiments performed on 256 x 256 images
of Brodatz textures | , ], the wavelet and filter bank decompositions were
performed by global processing of the analyzed images. The performance was assessed
in 64 (8 x 8) non-overlapping subregions sized 32 x 32 pixels in which the texture was
described using independent feature vectors v = (v1,...,vy) evaluated according to
equation (15.45), the assessment used a leave-one-out training/testing approach. The
performance assessment demonstrated that the discrete wavelet frame approach always
outperformed the discrete wavelet transform approach. It has showed that true multi-
resolution feature extraction with two or three levels (I = 2,3) is preferable to local
single-scale analysis. The results also showed that even with n = 0, the DWF features
performed very well. Importantly, the multiscale approach with 3 decompositions (n = 3)
at 3 levels of scale (I = 3) and using 10 features outperformed (correctness of 99.2%)
the single scale DWF approach (n = 0, I = 1) which used 4 features (correctness of
96.5%). This is notable since other comparison studies previously demonstrated that this
DWF approach (n =0, I = 1, equivalent to local linear transform using 2 x 2 Hadamard
transform [ , ]) typically outperforms most other statistical texture description
methods including co-occurrence matrices, correlation, etc. and can thus be used as a
reference method for single-scale analysis. The studies in | , ] also compare
performance of various orthogonal and non-orthogonal wavelet transforms.

Comparison of texture classification behavior of Gabor transforms and wavelets
is given in [ , ]. If texture segmentation is a goal, a coarse-to-fine
multi-resolution strategy may be used approximate position of borders between texture
regions being detected first in a low-resolution image, and accuracy being improved in
higher resolutions using the low-level segmentation as a priori information. Wavelet-
domain hidden Markov models (Section 10.9), and especially the hidden Markov trees are
designed directly considering the intrinsic properties of wavelet transforms and combine the
multiscale approach offered by wavelets with modeling of mutual statistical dependencies
and non-Gaussian statistics frequently encountered in real-world texture analysis |

, ]. The hidden Markov tree is a finite-state machine in the wavelet domain
(usually using 2 states), effectively characterizing the joint statistics of the discrete wavelet
transform by capturing inter-state dependencies of wavelet coeflicients via Markov chains
across scales | , ].

15.1.8 Other statistical methods of texture description

A brief overview of some other texture description techniques will illustrate the variety of
published methods; we present here only the basic principles of some additional approaches

[ ) b ) ) ) 3y ) b

, 1990].
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The mathematical morphology approach looks for spatial repetitiveness of shapes
in a binary image using structure primitives (see Chapter 13). If the structuring elements
consist of a single pixel only, the resulting description is an autocorrelation function of the
binary image. Using larger and more complex structuring elements, general correlation
can be evaluated. The structuring element usually represents some simple shape, such as
a square, a line, etc. When a binary textured image is eroded by this structuring element,
texture properties are present in the eroded image [ , ]. One
possibility for feature vector construction is to apply different structuring elements to the
textured image and to count the number of pixels with unit value in the eroded images,
each number forming one element of the feature vector. The mathematical morphology
approach stresses the shape properties of texture primitives, but its applicability is limited
due to the assumption of a binary textured image. Methods of gray-level mathematical
morphology may help to solve this problem. The mathematical morphology approach to
texture description is often successful in granulated materials, which can be segmented
by thresholding. Using a sequence of openings and counting the number of pixels after
each step, a texture measure was derived in | , ]-

The texture transform represents another approach. Each texture type present in
an image is transformed into a unique gray-level; the general idea is to construct an image
g where the pixels g(i,7) describe a texture in some neighborhood of the pixel f(i,7)
in the original textured image f. If micro-textures are analyzed, a small neighborhood
of f(i,7) must be used, and an appropriately larger neighborhood should be used for
description of macro-textures. In addition, a priori knowledge can be used to guide the
transformation and subsequent texture recognition and segmentation. Local texture
orientation can also be used to transform a texture image into a feature image, after
which supervised classification is applied to recognize textures.

Linear estimates of gray-levels in texture pixels can also be used for texture description.
Pixel gray-levels are estimated from gray-levels in their neighborhood—this method is
based on the autoregression texture model, where linear estimation parameters are
used [ , ]. The model parameters vary substantially in fine
textures, but remain mostly unchanged if coarse texture is described. The autoregression
model has been compared with an approach based on second-order spatial statistics
[ , ]; it was found that even if the results are almost the same, spatial
statistics performed much more quickly and reliably.

The peak and valley method | , ; , ] is based
on detection of local extrema of the brightness function in vertical and horizontal scans of
a texture image. Fine textures have a large number of small-sized local extrema, coarse
textures are represented by a smaller number of larger-sized local extrema—higher peaks
and deeper valleys.

The sequence of pixel gray-levels can be considered a Markov chain in which the
transition probabilities of an m'"-order chain represent (m + 1)*"-order statistics of
textures | , ]. This approach may also be used for texture synthesis

[ , 1979].

Many of the texture description features presented so far are interrelated; the Fourier
power spectrum, the autoregression model, and autocorrelation functions represent the
same subset of second-order statistics. The mathematical relationships between texture
description methods are summarized in | , ], an experimental com-
parison of performance between several methods can be found in |

) )
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; ) ; , ], and criteria for

comparison are discussed in [ , ]

It has been shown that higher than second-order statistics contain little information
that can be used for texture discrimination [ , ]. Nevertheless,
identical second-order statistics do not guarantee identical textures; examples can be
found in [ , ] together with a study of human texture perception.
Texture-related research of the human visual system seems to bring useful results, and
a texture analysis method based on studies of it was designed to emulate the process
of texture feature extraction in each individual channel in the multi-channel spatial
filtering model of perception [Rao, ]. Results of the texture recognition process were
compared with co-occurrence matrix recognition, and the model-based approach gave
superior results in many respects.

15.2 Syntactic texture description methods

Syntactic and hybrid texture description methods are not as widely used as statistical
approaches | , ]. Syntactic texture description is based on an analogy
between the texture primitive spatial relations and the structure of a formal language.
Descriptions of textures from one class form a language that can be represented by its
grammar, which is inferred from a training set of words of the language (from descriptions
of textures in a training set)—during a learning phase, one grammar is constructed for
each texture class present in the training set. The recognition process is then a syntactic
analysis of the texture description word. The grammar that can be used to complete the
syntactic analysis of the description word determines the texture class (see Section 9.4).

Purely syntactic texture description models are based on the idea that textures consist
of primitives located in almost regular relationships. Primitive descriptions and rules of
primitive placement must be determined to describe a texture | , ;

, ]. Primitive spatial relation description methods were discussed at the
beginning of this chapter. One of the most efficient ways to describe the structure of
primitive relationships is using a grammar which represents a rule for building a texture
from primitives, by applying transformation rules to a limited set of symbols. Symbols
represent the texture primitive types and transformation rules represent the spatial
relations between primitives. In Chapter 9 it was noted that any grammar is a very
strict formula. On the other hand, textures of the real world are usually irregular, and
structural errors, distortions, or even structural variations are frequent. This means that
no strict rule can be used to describe a texture in reality. To make syntactic description of
real textures possible, variable rules must be incorporated into the description grammars,
and non-deterministic or stochastic grammars must be used (see Section 9.4 and [Fu,

]). Further, there is usually no single description grammar for a texture class, which
might be described by an infinite number of different grammars using different symbols
and different transformation rules, and different grammar types as well. We will discuss
chain grammars and graph grammars in the next sections, and other grammars suitable
for texture description (tree, matrix) can be found in | , ; Fu, ;

, ]. Another approach to texture description using generative
principles is to use fractals | , ; , ].
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15.2.1 Shape chain grammars

Shape chain grammars, whose definition matches that given in Section 9.4, are the simplest
grammars that can be used for texture description. They generate textures beginning
with a start symbol followed by application of transform rules, called shape rules. The
generating process is over if no further transform rule can be applied. Texture synthesis
consists of several steps. First, the transform rule is found. Second, the rule must be
geometrically adjusted to match the generated texture exactly (rules are more general;
they may not include size, orientation, etc.).

Algorithm 15.5: Shape chain grammar texture synthesis

1.

Start a texture synthesis process by applying some transform rule to the start
symbol.

Find a part of a previously generated texture that matches the left side of some
transform rule. This match must be an unambiguous correspondence between
terminal and non-terminal symbols of the left-hand side of the chosen transform
rule with terminal and non-terminal symbols of the part of the texture to which
the rule is applied. If no such part of the texture can be found, stop.

Find an appropriate geometric transform that can be applied to the left-hand side
of the chosen rule to match it to the considered texture part exactly.

4. Apply this geometric transform to the right-hand side of the transform rule.

5. Substitute the specified part of the texture (the part that matches a geometrically

transformed left-hand side of the chosen rule) with the geometrically transformed
right-hand side of the chosen transform rule.

Continue with step 2.

We can demonstrate this algorithm on an example of hexagonal texture synthesis.

Let V,, be a set of non-terminal symbols, V; a set of terminal symbols, R a set of rules,
S the start symbol (as in Section 9.4). The grammar | , ] is
illustrated in Figure 15.7, which can then be used to generate hexagonal texture following

v= ()
v- {9}

ORE;
|

<.‘.;>
SNARS

| |
RIS Ko R

Figure 15.7: Grammar generating hexagonal textures.
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Algorithm 15.5—note that the non-terminal symbol may appear in different rotations.
Rotation of primitives here is represented by a small circle attached to one side of the
primitive hexagon in Figure 15.7. Recognition of hexagonal textures is the proof that the
texture can be generated by this grammar; the texture recognition uses syntactic analysis
as described in Section 9.4. Note that the texture shown in Figure 15.8a will be accepted
by the grammar (Figure 15.7), and recognized as a hexagonal texture. Figure 15.8b will
be rejected—it is not a hexagonal texture according to the definition of Figure 15.7.

(a)

Figure 15.8: Hexagonal textures. (a) Accepted; (b) Rejected.

15.2.2 Graph grammars

Texture analysis is more common than texture synthesis in machine vision tasks (even
if texture synthesis is probably more common in general, i.e., in computer graphics and
computer games). The natural approach to texture recognition is to construct a planar
graph of primitive layout and to use it in the recognition process. Primitive classes and
primitive spatial relations must be known to construct such a graph; spatial relationships
between texture primitives will then be reflected in the graph structure. Texture primitive
classes will be coded in graph nodes, each primitive having a corresponding node in
the graph, and two nodes will be connected by an arc if there is no other primitive
in some specified neighborhood of these two primitives. The size of this neighborhood
is the main influence on the complexity of the resulting planar graph—the larger the
size of the neighborhood, the smaller the number of graph arcs. Note that choosing
the neighborhood too large may result in no arcs for some nodes (the same may be
true for the neighborhood being too small). Characteristic properties of some graphs
used practically (relative neighborhood graphs, Gabriel graphs, Voronoi diagrams) are
described in [ , ; , ; , ]. These graphs are
undirected since the spatial neighborhood relation is symmetric, with evaluated arcs and
nodes. Each node is labeled with a primitive class to which it corresponds, and arcs are
evaluated by their length and direction.

The texture classification problem is then transformed into a graph recognition
problem for which the following approaches may be used.

1. Simplify the texture description by decomposition of the planar graph into a set of
chains (sequences of adjacent graph nodes), and apply the algorithms discussed in the
previous section. The chain descriptions of textures can represent border primitives
of closed regions, different graph paths, primitive neighborhood, etc. A training set is
constructed from the decomposition of several texture description planar graphs for
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each texture class. Appropriate grammars are inferred which represent textures in
the training sets. The presence of information noise is highly probable, so stochastic
grammars should be used. Texture classification consists of the following steps.

o A classified texture is represented by a planar graph.

e The graph is decomposed into chains.

e The description chains are presented for syntactic analysis.

o A texture is classified into the class whose grammar accepts all the chains of the
decomposed planar graph. If more than one grammar accepts the chains, the

texture can be classified into the class whose grammar accepted the chains with
the highest probability.

The main advantage of this approach is its simplicity. The impossibility of recon-
structing the original planar graph from the chain decomposition is a disadvantage; it
means that some portion of the syntactic information is lost during decomposition.

2. Another class of planar graph description may be represented by a stochastic graph
grammar or by an extended graph grammar for description of distorted textures.
This approach is very difficult from both the implementational and algorithmic points
of view; the main problem is in grammar inference.

3. The planar graphs can be compared directly using graph matching approaches. It is
necessary to define a ‘distance’ between two graphs as a measure of their similarity;
if such a distance is defined, standard methods used in statistical classifier learning
can be used—exemplar computation, cluster analysis, etc.

The syntactic approach is valued for its ability to describe a texture character at
several hierarchical levels. It permits a qualitative analysis of textures, for decomposition
into descriptive substructures (primitive grouping), to incorporate texture descriptions
into the whole description of image, scene, etc. From this point of view, it significantly
exceeds the complexity of simple object classification. Not considering the implementation
difficulties, the second approach from the list above is recommended; if a descriptive
graph grammar is chosen appropriately, it can generate a class of graphs independently
of their size. It can be used if a pattern is sought in an image at any hierarchical level.
An example of a planar graph describing a texture is shown in Figure 15.9.

Figure 15.9: Planar graph describing a texture. (a) Texture primitives. (b) Planar graph overlaid.
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15.2.3 Primitive grouping in hierarchical textures

Several levels of primitives can be detected in hierarchical textures—lower-level primitives
form some specific pattern which can be considered a primitive at a higher description
level (Figure 15.10). The process of detecting these primitive patterns (units) in a texture
is called primitive grouping. Note that these units may form new patterns at an even
higher description level. Therefore, the grouping process must be repeated until no new
units can be formed.
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Figure 15.10: Hierarchical texture. (a) Texture. (b) A pattern formed from low-level primitives,
this pattern can be considered a primitive in the higher level. (¢) Higher-level texture.

Grouping makes a syntactic approach to texture segmentation possible. It plays the
same role as local computation of texture features in statistical texture recognition. It
has been claimed several times that different primitives and/or different spatial relation-
ships represent different textures. Consider an example (Figure 15.11a) in which the
primitives are the same (small circles) and textures differ in the spatial relations between
primitives. If a higher hierarchical level is considered, different primitives can be detected
in both textures—the textures do not consist of the same primitive types any more, see
Figure 15.11b.
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Figure 15.11: Primitive grouping. (a) Two textures, same primitives in the lowest description
level. (b) The same two textures, different primitives in the higher description level.

A primitive grouping algorithm is described in [ , ]

Algorithm 15.6: Texture primitive grouping

1. Determine texture primitive properties and classify primitives into classes.
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2. Find the nearest and the second nearest neighbor for each texture primitive. Using
the primitive class and distances to the nearest two neighboring primitives dy, do,
classify low-level primitives into new classes, see Figure 15.12.

3. Primitives with the same new classification which are connected (close to each
other), are linked together and form higher-level primitives, see Figure 15.12.

4. If any two resulting homogeneous regions of linked primitives overlap, let the
overlapped part form a separate region, see Figure 15.13.

+

Figure 15.12: Primitive grouping—low-level primitive patterns are grouped into single primitives
at a higher level.
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Figure 15.13: Overlap of homogeneous regions results in their splitting.

Regions formed from primitives of the lower level may be considered primitives in the
higher level and the grouping process may be repeated for these new primitives. Never-
theless, sophisticated control of the grouping process is necessary to achieve meaningful
results—it must be controlled from a high-level vision texture understanding sub-system.
A recursive primitive grouping, which uses histograms of primitive properties and primi-
tive spatial relations is presented in | , | together with examples of
syntactic-based texture segmentation results.

15.3 Hybrid texture description methods

Purely syntactic methods of texture description experience many difficulties with syntactic
analyzer learning and with graph (or other complex) grammar inference. This is the main
reason why purely syntactic methods are not widely used. On the other hand, a precise
definition of primitives brings many advantages and it is not wise to avoid it completely.
Hybrid methods of texture description combine the statistical and syntactic approaches;
the technique is partly syntactic because the primitives are exactly defined, and partly
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statistical because spatial relations between primitives are based on probabilities |
, 1980a].

The hybrid approach to texture description distinguishes between weak and strong
textures. The syntactic part of weak texture description divides an image into regions
based on a tonal image property (e.g., constant gray-level regions) which are considered
texture primitives. Primitives can be described by their shape, size, etc. The next step
constructs histograms of sizes and shapes of all the texture primitives contained in the
image. If the image can be segmented into two or more sets of homogeneous texture
regions, the histogram is bi-modal and each primitive is typical of one texture pattern.
This can be used for texture segmentation.

If the starting histogram does not have significant peaks, a complete segmentation
cannot be achieved. The histogram-based segmentation can be repeated in each hitherto
segmented homogeneous texture region. If any texture region consists of more than one
primitive type, the method cannot be used and spatial relations between primitives must
be computed. Some methods are discussed in [ ) ]

Description of strong textures is based on the spatial relations of texture primitives
and two-directional interactions between primitives seem to carry most of the information.
The simplest texture primitive is a pixel and its gray-level property, while the maximum
contiguous set of pixels of constant gray-level is a more complicated texture primitive
[ , ]. Such a primitive can be described by its size, elongatedness,
orientation, average gray-level, etc. The texture description includes spatial relations
between primitives based on distance and adjacency relations. Using more complex
texture primitives brings more textural information. On the other hand, all the properties
of single pixel primitives are immediately available without the necessity of being involved
in extensive primitive property computations.

The hybrid multi-level texture description and classification method | , ]
is based on primitive definition and spatial description of inter-primitive relations. The
method considers both tone and structural properties and consists of several consequent
steps. Texture primitives must be extracted first, and then described and classified. As
a result of this processing stage, a classifier knows how to classify texture primitives.
Known textures are presented to the texture recognition system in the second stage of
learning. Texture primitives are extracted from the image and the first-level classifier
recognizes their classes. Based on recognized texture primitives, spatial relations between
primitive classes are evaluated for each texture from the training set. Spatial relations
between texture primitives are described by a feature vector used to adjust a second-level
classifier. If the second-level classifier is set, the two-level learning process is over, and
unknown textures can be presented to the texture recognition system. The primitives
are classified by the first-level classifier, spatial primitive properties are computed and
the second-level classifier assigns the texture to one of the texture classes. Some hybrid
methods use Fourier descriptors for shape coding and a texture is modeled by a reduced
set of joint probability distributions obtained by vector quantization.

15.4 Texture recognition method applications

The estimated yield of crops or localization of diseased forests from remotely sensed
data, automatic diagnosis of lung diseases from X-ray images, recognition of cloud types
from meteorological satellite data, etc., are examples of texture recognition applications.
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Textures are very common in our world, and application possibilities are almost unlimited.
The effectiveness of various texture recognition methods is discussed in |
) ]

Texture recognition of roads, road crossings, buildings, agricultural regions, and
natural objects, or classification of trees into five classes, belong to classical applications
of spatial frequency-based texture description methods. An interesting proof of the role of
textural information in outdoor object recognition was done by comparison of classification
correctness if textural information was and was not used; spectral information-based
classification achieved 74% correctly classified objects. Adding the textural information,
accuracy increased to 99% | , ]. Real industrial applications of texture
description and recognition are becoming more and more common. Examples can be
found in almost all branches of industrial and biomedical activities—quality inspection
in the motor or textile industries | , ], workpiece surface monitoring, road
surface skidding estimation, micro-electronics, remote sensing, mammography |

, ], MR brain imaging | , |, pulmonary parenchyma
characterization [ , |, three-dimensional texture images | , I,
content-based data retrieval from image databases, etc.

15.5 Summary

o Texture

— Texture is widely used and intuitively obvious but has no precise definition due
to its wide variability. One existing definition claims that ‘an image region has a
constant texture if a set of its local properties in that region is constant, slowly
changing, or approximately periodic’.

— Texture consists of texture primitives (texture elements) called texels.

— A texture primitive is a contiguous set of pixels with some tonal and/or regional
property.

— Texture description is based on tone and structure. Tone describes pixel
intensity properties in the primitive, while structure reflects spatial relationships
between primitives.

— Texture description is scale dependent.

— Statistical methods of texture description compute different texture properties
and are suitable if texture primitive sizes are comparable with the pixel sizes.

— Syntactic and hybrid methods (combination of statistical and syntactic) are
more suitable for textures where primitives can be easily determined and their
properties described.

e Statistical texture description

— Statistical texture description methods describe textures in a form suitable for
statistical pattern recognition. As a result of the description, each texture is
described by a feature vector of properties which represents a point in a multi-
dimensional feature space.

— Coarse textures are built from larger primitives, fine textures from smaller primi-

tives. Textural character is in direct relation to the spatial size of the texture
primitives.
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Fine textures are characterized by higher spatial frequencies, coarse textures by
lower spatial frequencies.

Measuring spatial frequencies is the basis of a large group of texture recognition
methods:

x Autocorrelation function of a texture
*x Optical image transform
x Discrete image transform

Texture description may be based on the repeated occurrence of some gray-level
configuration in the texture; this configuration varies rapidly with distance in fine
textures, slowly in coarse textures. Co-occurrence matrices represent such an
approach.

Edge frequency approaches describe frequencies of edge appearances in texture.

In the primitive length (run length) approach, texture description features
can be computed as continuous probabilities of the length and the gray-level of
primitives in the texture.

Laws’ texture measures determine texture properties by assessing average
gray-level, edges, spots, ripples, and waves in texture.

Fractal approach to texture description is based on correlation between texture
coarseness and fractal dimension and texture granularity and lacunarity.

Wavelet texture description

x Wavelet texture description approaches are typically more efficient than other
statistical texture analysis methods.

* Wavelet energy signatures or their second-order statistics are frequently used.
x Standard wavelet approaches are not translation invariant.

x Discrete wavelet frames introduce the translational invariance and can be
efficiently implemented using filter banks.

* Wavelet-based hidden Markov models and hidden Markov trees incorpo-
rate independence between wavelet sub-bands for additional performance
enhancement.

Other statistical approaches exist:
* Mathematical morphology
* Texture transform

Variety of texture properties may be derived from first-order and second-order
statistics of elementary measures such as co-occurrences, edge distributions,
primitive lengths, etc.

Higher than second-order statistics contain little information that can be used
for texture discrimination.

e Syntactic and hybrid texture description

— Syntactic texture description is based on an analogy between texture primitive

spatial relations and structure of a formal language.

— Hybrid methods of texture description combine the statistical and syntactic

approaches; the technique is partly syntactic because the primitives are exactly
defined, and partly statistical because spatial relations between primitives are
based on probabilities.
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— Purely syntactic texture description models utilize the idea that textures consist
of primitives located in almost regular relationships. Primitive descriptions and
rules of primitive placement must be determined to describe a texture.

— Textures of the real world are usually irregular, with frequent structural errors,
distortions, and/or structural variations causing strict grammars to be inapplica-
ble. To make syntactic description of real textures possible, variable rules must be
incorporated into the description grammars, and non-deterministic or stochastic
grammars must be used.

— Syntactic texture description methods include:

* Shape chain grammars, which are the simplest grammars that can be
used for texture description. They generate textures beginning with a start
symbol followed by application of shape transform rules.

* Graph grammars, an approach that constructs a planar graph of primi-
tive layout. Primitive classes and primitive spatial relations must be known
to construct such a graph; spatial relationships between texture primitives
are reflected in the graph structure. The texture classification problem is
then transformed into a graph recognition problem

— The syntactic approach is valued for its ability to describe a texture character at
several hierarchical levels.

— Primitive grouping can be performed if lower-level primitives that form some
specific pattern can be considered a primitive at a higher description level.

— Syntactic and hybrid texture description methods are not as widely used as
statistical approaches.
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