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Unser: Splines. A perfect fit for signal and image processing. 1999
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Polynomial splines

Splines are piecewise polynomials with pieces that are
smoothly connected together, The joining points of the
polynomials are called knots. For aspline of degree#, each
segment is a polynomial of degree #, which would sug-
gest that we need #+ 1 coefficients to describe each piece.
However, there is an additional smoothness constraint
that imposes the continuity of the spline and its deriva-
tives up to order (#-1) at the knots, so that, effectively,
there is only one degree of freedom per segment. Here,
we will only consider splines with uniform knots and unit
spacing. The remarkable result, due to Schoenberg [70],

s(o) =" c(k)B" (2 — k),

keZ
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B-splines
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B-splines
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> Basis for splines:  f(x) =, ¢i B(x—1)
» Generation:  [Op11 = Bn* Bo
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Cubic B-spline
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Signal interpolation

Clbic B-Spline Basie Functions.
- - . b

Now, given the signal samples 5(k), we want to deter-
mine the coefficients (k) of the B-spline model (1) such
that we have a perfect fit at the integers; i.e., VkeZ,

Y (v =D ces=s(h.

fad
Using the discrete B-splines, this constraint can be rewrit-
ten in the form of a convolution

s(le)= (&' ) (k). (12)
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Finding B-spline coefficients

s() =" »c) (k). (12)
Defining the inverse convolution operator

@) S 1/ B,

the solution is found by inverse fileering (cf. [97])

o) =(br" ) ws (k). {13)
Since #” is symmetric FIR (finite impulse response), the
so-called direct B-spline filter ()™ is an all-pole system
that can be implemented very efficiently using a cascade
of first-order causal and anti-causal recursive filters [93],

[96]. This algorithm is stable numerically and is faster and
easier to implement than any other numerical technique.
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lIR filter
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Two-scale relation
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where b5, (k) 1s the filter whose z-transform is
Hy(2)= Z (dlSCl‘CtC pulse of size m), By
convolving I:hlS equarion with itself (#+1)-times and per-
forming the appropriate normalization, one finds that

(xfm)=Y b (B (x— k), (29)

heZ
where

» 1 0 a+l 1 =l % il
H,,(z)zp(H,,,(z)) :m"(zz J .
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Spline pyramid

Let P,;s=5; denote the minimum error approxima-
tion of some continuously defined signal s(x) € L, at the

scale m=2'. We choose ro represent it by the following
expansion

5= s, (Rplx/2' ~ B, (31)

keZ

£y (B)=(h¥e 0 ) (2)
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Image interpolation

36 rotations by 10°.

Original

Linear

Resulting images (zoom).
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Splines - summary

vvyvyVvVyyy

To represent a continuous function in a discrete basis
Compact support

Simple to evaluate (low-order polynomials)

Smooth, continuously differentiable (up to some order)
Good approximation properties

Uniform B- splines

» coefficients fast to calculate
» multiscale version fast to calculate and exact

Applications: interpolation, approximation, signal /image
transformations, multiscale processing
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Thevenaz: Optimization of Mutual Information for Multiresolution
Image Registration, IEEE TMI 2000

Key points
» Registration by optimization
» a pixel-based similarity criterion - mutual information

» B-spline representation
» multiresolution
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Registration as minimization

“

criterion E

reference image

Y

optimization

deformation function g(x) \\

testimage deformed image
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Joint intensity histograms

MR/CT

registered misregistered by 2mm  misregistered by 5mm

MR/PET

registered misregistered by 2mm misregistered by 5mm

16/ 48



Mutual Information

I = H(X)+ H(Y) = H(X,Y) >0, entropy H(X) = — ¥, P(x;)log P(x),
H(X,Y)=Y,;¥; P(Xi,Y;)log P(X;,Y})

Note that lim,_,o+ plogp =0

Negative MI:

S==3 3 P, np
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Histogram estimation

Parzen window
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Criterion model

Deformation parameters
Taylor expansion

89(:’ (f.l‘,' - I/.;)

S(w) =5w )+Z

5‘28 v
+ 2 ;Zj '."3'}.-'(.,-_ ) g (=13 (o — 1) 4+ o

the gradient V.5 as

o5  ds
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Hessian approximation
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» from first-order derivatives
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Standard optimizers

The steepest-gradient descent is a minimization algorithm
that can be succinctly described by

p* ) = g _1rvs (n(""}) . (32)

Its local convergence is guaranteed, although it may be very
slow. A key problem 1is the determination of the appropriate
scaling diagonal matrix I".

The Newton method can be described by

pFHD = %) _ (VZS (p,(’”)))_l Vs (u(’”)) - (33
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Marquardt-Levenberg

[HS @i, = [V2S()li; (1+ 6,50

pHD ) _ (’Hs (ﬁm)))‘l vs (”m-))

adaptive A
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Multiresolution

256 x 256

128 x 128

64 x 64
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Kybic, Unser: Fast Parametric Elastic Image Registration. 2003
Key points

» Pixelwise similarity criterion
» Elastic (nonlinear) registration
> B-spline representation of the transformation and image
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Cost function
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Image interpolation

using uniform B-splines:?

f®) = > bfa(x—i) @)

iELCIN

where (3, is % tensor product of B-splines of degree n, that is
I (X) = H}al f.i,—t(.']’:k). with x = (.'1’21-. ey .']’:N),

Deformation model

g0 =x+ 3 cipi(x)

ieJ

gx)=x+ 3 cifh, (/h=)

JeL-CZN
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Spline based deformation

» Approximation
properties — precision

» Short support — speed
Scalability

» Representability of
linear transforms

v

g(x) =x+ > _c(i)B(x/h+d—1i)
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Optimization

If the step is successful, then the proposed point is accepted,
cl+1) = (i) 4 Ael®. Otherwise, a more conservative update
Acl?) is calculated, and the test is repeated.

1)

2)

Gradient descent with feedback step size adjustment with
update rule: Ac(?) = —;J:VCE(C(")). After a successful
step, g is multiplied by i, otherwise it is divided by
py

Gradient descent with quadratic step size estimation. We
choose a step size ;* minimizing the following approxi-
mation of the criterion around ¢(¥: E(C(t) +x) = E(C{"_))
+ xTVE(c) + af[x||2. where ¢ is identified from
the two last calculated criterion values F. As a fallback
strategy, the previous step size is divided by _.-_.r,'}, as above.
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Landmarks

of corresponding points together. We augment the data part of
the criterion I with a term F, corresponding to the poten-
tial energy of the springs, and minimize the sum of the two:
FE. = F + FE,. The spring term is

5
Es=Y " aillgx) -z (5)
i=1
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Examples
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Examples (2)




Examples (3)
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Thirion: Image matching...analogy with Maxwell's demons

Key points

>

vvyVvyyvyy

Non-rigid, no global deformation model
Registration by boundary motion

Needs to find boundaries / keypoints
Iterative

Localize points/bounaries and interpolate

Fast, local and parallelizable

. MIA 1998
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Maxwell demons
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Membrane with demons

Second law of thermodynamics: The total entropy of an isolated system
never decreases. Isolated systems evolves towards thermodynamic
equilibrium (maximum entropy).
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Deformable model

Points attracted by the scene

Deformable model M <™

_ Scene S

™~ Line of attractors

Figure 2. Deformable model with attraction.

. K(P.P) -
P =S ——_pp.
S ;g D(P, P')
& K similarity, D distance,

complexity O(N?), similar to ICP and CPD
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Diffusion model

deformable grid =, -

Figure 1. Diffusing models: a deformed image, considered as a
deformable grid, is diffusing through the contours of the objects in
the static image, by the action of effectors, called demons, situated
in these interfaces.
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Demons for registration
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» demons on boundary —normal forces. Top: Closest point attraction
Bottom: dark — inside, white — outside

37/48



Demons for registration (2)
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Initialization

Figure 7. Example of problematic initializations: left, when the
two objects to be matched do not overlap, diffusing models are
inefficient. Right, with an attraction model that does not take
polarity into account, and with forces decreasing with the distance,
the model can get trapped in a local minimum.
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Algorithm

1. extract demons from image S, find normals (gradients)
2. Until convergence

2.1 Compute elementary demon forces
2.2 Fit global update model or smooth by a Gaussian
2.3 Update transformation
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Variants

1. Complete grid demons, force from optical flow, multiscale

2. Contour demons on edges, rigid/nonrigid transformation by least
squares fitting + outlier rejection,

fiP)=K

K(m)
3

Fin+Fout

(m(P" i

S out

K(m)

o+

S out

3. Demons for segmented images, on boundaries, rigid/nonrigid
transformation, different classes — constant magnitude forces
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Bijectivity
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3D example

Figure 18. Corresponding diastolic and systolic slice before
matching (dog).
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3D examples

Figure 19. Corresponding diastolic and systolic slices after 3-D
matching and re-sampling.
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Segmentation example

Figure 17. Top left, original label image (/); top right, deformed
label image (f2). Bottom left, [, deformed toward f| using the
implementation “demons 3°; bottom right, deformed [, with a
superimposition of /| contours.
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Intersubject registration example

Figure 24. Two slices of two different patients (256 x 256 x 128
voxels).
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Intersubject registration example (2)

Figure 25. The two different patients after automatic matching.
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Atlas based segmentation
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