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Murphy et al: A large-scale evaluation of automatic pulmonary nodule
detection in chest CT using local features and k-nearest-neighbor

classification

Key points
▶ Nodule (pre-cancer) detection
▶ Handcrafted features, simple classifier
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Pulmonary nodules

▶ small bright spots on chest CT (often round but not always)
▶ mostly benign but some may lead to cancer
▶ earlier detection →better prognosis

Martin Dolejší
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Nodule examples
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Nelson trial data

▶ 512×512pixels, 306 ∼ 860 slices
▶ two observers to mark nodules
▶ small nodules (diameter < 3mm) may not be marked
▶ if several scans per patient - the earliest chosen
▶ TP = within 7 pixels
▶ Datasets: A - all scans, B - all scans with at least one big nodule, C

- only big nodules
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Size distribution
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Flowchart
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Preprocessing

▶ downsampling to 256×256
▶ lung segmentation by registration with normal templates

from Jill Stein et al. DOI: 10.1007/s00247-016-3686-8
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Shape index and curvedness

Principal curvatures k1,k2
▶ minimum and maximum curvatures of the isosurface
▶ eigenvalues of the Hesssian with σ = 1

Shape index
▶ 1 local maximum = bright blob, 0.5 bright tubular structure, 0

saddle/flat...
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Seed point detection

▶ Cluster formation

▶ Cluster merging (distance < 3 and 7 voxels). Small objects (<15
voxels) discarded.

▶ Candidate location = highest locally averaged intensity
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Merging examples

Successive axial slices. (a) TP, (b) FP. Red/yellow — structures to be
merged
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False positive reduction

▶ Classify candidates
▶ k-NN classifier
▶ Two stages (15 and 50 features)
▶ Final stage on full resolution images
▶ Feature selection (Sequential forward floating selection)
▶ Operating point: sensitivity 90%
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Training set generation

Subsample N class, N:P ratio 3:1, preserving pdf.
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Features (1)
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Features (2)
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Results
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FROC curve
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FROC by location
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Example nodules

top row - easy detections (p>0.9), bottom row - not detected (p<0.35)
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Missed nodules
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False positives
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Setio et al: Pulmonary Nodule Detection in CT Images: False Positive
Reduction Using Multi-View Convolutional Networks. IEEE TMI 2016

Key points
▶ Nodule detection from 3D CT
▶ Candidate detection (by 3 specialized detectors)
▶ CNN for FP reduction
▶ 2D patches/planes + fusion
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Datasets

▶ LIDC - 1018 scans, 888 retained (ignore thick-slice cases), 4
observers

▶ ANODE09 - 55 scans, 2 observers,
▶ DLCST - 612 scans, 2 observers, 898 nodules
▶ considered nodules > 3mm
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Flowchart
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Candidate detection
▶ Solid nodules - Murphy’s detector (shape index, curvedness,

thresholding, clustering)
▶ Subsolid nodules (pure and part-solid ground-glass) - thresholding,

morphological opening, connected components, segmentation
▶ Large nodules (>10mm, possibly attached to pleura) - lung

segmentation, rolling-ball segmentation smoothing, density
thresholding, multi-scale morphological opening
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Patch classification

Patch extraction

▶ 50×50mm, 64×64pixels, nine planes

CNNs

▶ 3 convolutional layers, 3 max-pooling layers
▶ testing - 1 s per scan on a GPU
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Fusion

▶ Committee fusion
▶ FC layer + softmax + product rule
▶ each stream trained separately

▶ Late fusion
▶ concatenate FC layer outputs
▶ FC layer + softmax

▶ Mixed fusion
▶ group 9 patches into 3 groups of orthogonal views
▶ contenate within group (as in late fusion)
▶ FC layer + softmax + product rule (as in committee fusion)
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Training

▶ Negative training data pruning
▶ preliminary classification by existing algorithms
▶ eliminate candidates with low nodule probability

▶ 5-fold cross-validation on LIDC (3/5 training, 1/5 validation, 1/5
testing)

▶ cross-entropy error
▶ RMSprop optimizer
▶ random initialization
▶ dropout regularization
▶ augmentation of nodules (shift, scaling)
▶ random upsampling of nodules for training
▶ test-data augmentation (scaling)

28 / 53



FROC fusion

CPM (competition performance metric) = average sensitivity at
1/8,1/4,...,4,8 FP/s
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FROC test augmentation
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FROC number of views
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LIDC results
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DLCST results

sensitivity 76.5% at 6 FPs/scan, which is 94% of the true candidate
nodules
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True positives
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False positives
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False negatives
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Kooi: Large scale deep learning for computer aided detection of
mammographic lesions. MIA 2017

Key points
▶ detect lesions from mammographs
▶ candidate detection learned
▶ classification to reduce FPs
▶ combine deep and manual features
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Mammography
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Data overview
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Candidate detection

▶ 5 features based on Gaussian derivative kernels
▶ center of mass
▶ size
▶ spiculation (radiating lines)

▶ random forest classifier
▶ training data

▶ positive samples from annotated lesions
▶ negative samples randomly

▶ test time - apply RF to all pixels
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Candidate detection examples
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Patches for CNN
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Baseline (classical system)

▶ mass segmentation by dynamic programming in polar coordinates
▶ 74 features:

▶ candidate detector features,
▶ contrast features,
▶ texture features,
▶ geometry features
▶ context features (rest of the breast)
▶ patient features

▶ RF classifier (also tested SVM, gradient boosted tree, MLPs)
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CNN

▶ ReLU
▶ Binary cross-entropy loss
▶ Data augmentation (scale, translation, flip)
▶ scaled-down VGG model (6 layers with 3×3 kernels, 2×2

max-pooling), FC layer with 300 neurons
▶ positive samples randomly oversampled
▶ deep networks tried but did not improve the results
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Feature importance
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Dataset size importance
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Augmentation importance
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CNN versus baseline

excluding context, location, patient information
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CNN versus baseline
Lesion FROC

including context, location, patient information 49 / 53



CNN versus baseline
Case FROC
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CNN versus human readers

no significant difference between CNN and any readers
difference with mean of readers significant

51 / 53



False positives
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False negatives

mostly very large lesions, under-represented in the training set
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