

Chapter10
Image understanding

This chapter provides tools for extracting high-level information from images, building
models, and identifying their parameters.

RANSAC—Random sample consensus—(function ransac, p. 140) is a general and
widely used technique for identifying the most plausible model from data containing
a large proportion of outliers. It is typically used for geometry recovery in stereo and 3D
reconstruction tasks.

Gaussian mixture models (function gaussianmixture, p. 144) are standard for both
uni-dimensional and multidimensional data that come from several approximately Gaus-
sian sources. This is often the case for an image histogram or for positional measurements
of several moving objects.

Point distribution models describe shape families based on a set of landmark points
on their contours, capturing their typical variations by a mean shape and a small number
of eigenshapes. The model can be learned from a set of training contours (function
pointdistrmodel, p. 148). Using a priori shape information from a point distribution
model in segmentation (called active shape models, asmfit, p. 154) leads to very robust
techniques.

10.1 Problems
10.1. Give an example of a real-world image understanding technique based on a bottom-

up strategy.
10.2. Give an example of a real-world image understanding technique based on a top-down

strategy.
10.3. What information is represented by a point distribution model?
10.4. Define principal components analysis.
10.5. Explain the process of determining the modes of variation in point distribution

models. How is it possible that only a small number of modes is enough to cover
most of the shape variations?

10.1 Problems 139

10.6. Consider Table :10.1. How many principal components must be used in the point
distribution model to leave less than 5% of the variation unexplained?

10.7. What is an active appearance model? How does it differ from an active shape
model?

10.8. What is the purpose and principle of discrete labeling?
10.9. Explain how each of the terms of the objective function [Equation :10.36] con-

tributes to image interpretation.
10.10. Draw a simple image, label objects in it, and determine a region adjacency graph.
10.11. Draw a simple image and a corresponding region adjacency graph. Merge two

neighboring regions and explain how the adjacency graph is updated.
10.12. Define an order-k Markov model.
10.13. Define an order-k hidden Markov model.
10.14. Define (i) evaluation, (ii) decoding, and (iii) learning in the context of hidden

Markov models.
10.15. Explain the discrete relaxation strategy. Choose a small real world example and

show a possible relaxation sequence.
10.16. In the recursive contextual classification approach [Algorithm :10.10], after how

many recursive steps will image information at location (53, 145) influence the
labeling at location (45, 130)?

10.17. Considering the ‘ball on the lawn’ example [Figure :10.36], sketch a specific
region adjacency graph for the image segmentation and interpretation hypotheses
represented by the following genetic strings: (i) LLBLB, (ii) LLBBL, (iii) BLLLB.

10.18. Describe a genetic image interpretation algorithm for the task of labeling a segmented
scene.

10.19. Consider an alphabet {0, 1} and a string 000010000100001010000100. Construct
a first-order Markov model and estimate the transition probabilities. How likely is
it to observe the sequence 110111?

10.20. Suppose an image consists of 90% background and 10% foreground. The back-
ground pixels have a normal distribution with mean 5 and standard deviation 100,
the foreground pixels are also normally distributed with mean 150 and standard
deviation 30. What is the probability distribution of a randomly chosen pixel?
(Write an equation.)

10.21. Take an image and shift it by several pixels in an arbitrary direction. Detect feature
points in both images using the Harris detector (function harris, p. 61). Use
RANSAC (function ransac, p. 140) to determine the shift. How does the number
of points influence the computational time? Study the effect of adding random
perturbations to the point positions.

10.22. Write an algorithm for fitting a learned point distribution model (PDM) to a new
shape based on iteratively minimizing the number of misclassified pixels (pixels
marked as object by the PDM and background in the new shape, and vice versa).
Compare its speed, accuracy and capture range with the ASM fit, function asmfit
(p. 154). You can use the hand image from Figure 10.6.

140 Chapter 10: Image understanding

10.23. Determine empirically from a chosen text the transition probabilities of the charac-
ters of English words. (Hint: consider only letters within words, ignore punctuation).
Construct a first-order HMM, with hidden states corresponding to the true letters.
The input features might, for example, be the bay and lakes count [Figure :2.15]
for each letter. Take a set of words, convert each to a sequence of feature vectors,
and use the Viterbi algorithm [Section :10.9] to estimate the original words. How
much error do you make? Refine your feature set to improve the performance.

10.2 Random sample consensus: ransac

RANSAC [Section :10.2] is a stochastic parameter estimation technique which is
especially useful for data containing a large number of outliers. The implementation
described here extends the basic version [Algorithm :10.4] by automatic estimation of
the number of iterations to perform. Whenever an iteration is successful, the number
of points Q consistent with the currently best model (the number of inliers) is used to
calculate an estimate of the inlier ratio ξ = Q/N , where N is the total number of data
points. If we accept a failure probability ζ that RANSAC does not find a correct solution,
the total number of iterations to perform is

K = log ζ
log(1− ξM) , (10.1)

where M is the number of data points used to determine the model parameters.
The interface between the RANSAC core and the particular model to be determined

consists of two user-provided functions: get_model calculates the model parameter from
a small part (sample) of the data and get_inliers determines which data points are
consistent with a given model.

function [best_model,inliers] =
ransac(x,m,get_model,get_inliers,zeta,maxit,xi,verbosity)

input
x [d×N] Input data matrix. Each column is one d-dimensional data

point.
m [1] The number M of points used to determine the model parame-

ters.
get_model function A function called as model=get_model(sample), where sample

is a randomly selected subset of M columns from x and model
contains the model parameters determined from sample.

get_inliers function A function called as inl=get_inliers(x,model) where x is the
input data matrix and model describes the model to evaluate.
The binary row vector inl should contain 1 for each column
of x that is considered to be an inlier, i.e., consistent with the
model.

zeta {10−3} The probability ζ of RANSAC not finding the correct solution
that we are ready to accept. It is used to determine the num-
ber of iterations to perform. Larger values (10−2) make the
algorithm run somewhat faster at the expense of an increased
failure ratio.

10.2 Random sample consensus: ransac 141

maxit {104} The maximum number of iterations to perform unless K from
equation (10.1) stops us first.

xi {0} An initial estimate of the inlier ratio ξ = Q/N . The value is
not critical since ξ is re-estimated after each succesful iteration.

verbosity {0} If set to 2, progress is reported after each iteration. If set to 1,
there is only one message at convergence. The corresponding
code is omitted here.

output
best_model The best model parameters found, as returned by get_model.

inliers [1×N] A binary row vector determining inliers (data points consistent
with the model), as returned by get_inliers.

We initialize the iteration counter iter and the best-so-far model parameters (best_model,
best_support, inliers). The number of iterations to perform is estimated using function
numiters that implements Equation 10.1.
[d,n] = size(x);
iter = 0;
best_model = [];
best_support = 0;
inliers = [];
maxiter = min(maxit, numiters(xi,zeta,m));

The main loop starts by randomly drawing a set ind containing M unique numbers from
1 . . . N . It is used to get the M -column subset sample of x.
while iter<maxiter

ind = randsample(n, m);
sample = x(:,ind);

If the function :randsample is not available (because it belongs to Matlab’s Statistical
toolbox) we can use ind=randperm(n); ind=ind(1:m) instead at the expense of some
slowdown. We calculate the model parameters and the corresponding support (number of
data points consistent with the model) by calling the user-provided functions get_model
and get_inliers.

model = get_model(sample);
inl = get_inliers(x, model);
support = sum(inl);

If the support is smaller than M , there is something wrong, so we alert the user.
if support<m

warning(’ransac:␣Support␣of␣the␣generated␣model␣is␣smaller␣than␣M.’)
end

If the current model is better than the best model so far, we update the best model
parameters and the number of iterations maxiter.

if support>best_support
best_support = support; best_model = model; inliers = inl;
xi = support/n;
maxiter = min(maxit, numiters(xi,zeta,m));

end

142 Chapter 10: Image understanding

We increment the iteration counter and loop again.
iter = iter+1;

end % while loop

function iters = numiters(xi, zeta, m)

Function numiter determines the total number of iterations to perform from equa-
tion (10.1). Parameter xi is the inlier ratio and zeta the acceptable failure probability.
if xi<eps

iters = Inf;
else

iters = max(1, ceil(log(zeta)/log(1-xi^m)));
end

Example
We demonstrate RANSAC on the task of identifying a straight line from a cloud of points.
The line will be described as y = a0 + a1x with a model parameter vector

[
a0, a1

]
. In

particular we choose a line a0 = 10, a1 = 0.3. We generate N = 1000 points of which ξN
are inliers, distributed regularly on the given straight line for x ∈

[
0; 100

]
, with normal

noise with a standard deviation σ = 1 (sigma) added to the y component. The remaining
(1− ξ)N points are outliers, distributed uniformly over the rectangle (x, y) ∈

[
0; 100

]2.
Finally, the data points are randomly permuted.
n = 1000;
ninl = ceil(xi*n); % number of inliers
noutl = n-ninl; % number of outliers
a1 = 0.3; a0 = 10; % straight line parameters
t = 100*(0:ninl-1)/(ninl-1);
xinl = [t; a0+t*a1+sqrt(sigma)*randn(1,ninl)];
xoutl = 100 * rand(2, noutl);
x = [xinl xoutl];
x = x(:,randperm(n));

RANSAC is called with the default parameters. Functions find_line and close_to_line
are defined below. For comparison, we also calculate a least squares estimate of the line
parameters using function :regress.
[model,inliers] = ...

ransac(x, 2, @find_line, @(x,model)close_to_line(x,model,sigma));
outliers = not(inliers);
lregr = regress(x(2,:)’, [ones(n,1) x(1,:)’]);

Finally, we show the original samples, the true line (blue), the line found by linear
regression (green) and the line found by RANSAC (red).
t1 = [0 100];
plot(x(1,inliers),x(2,inliers),’b.’, t1,a0+a1*t1,’b-’, ’LineWidth’,6);
hold on
plot(x(1,outliers), x(2,outliers), ’c.’, ...

t1, model(1)+model(2)*t1, ’r-’, ...
t1, lregr(1)+lregr(2)*t1, ’g-’, ’LineWidth’,2);

hold off

10.3 Gaussian mixture model estimation: gaussianmixture 143

function model = find_line(x)

Function find_line identifies line parameters
[
a0 a1

]
from two points passed as columns

of x. For simplicity, we temporarily ignore division by zero as such deficient models will
be refused later.
[d,n] = size(x);
s = warning(’off’, ’MATLAB:divideByZero’);
a1 = (x(2,1)-x(2,2)) / (x(1,1)-x(1,2));
warning(s);
a0 = x(2,1) - a1*x(1,1);
model = [a0 a1];

function inl = close_to_line(x,model,sigma)

Function close_to_line determines which points of x are ‘sufficiently close’ to the line
described by model. We know that the y coordinate has been corrupted by Gaussian
noise with a known standard deviation σ. We choose the threshold to determine ‘sufficient
closeness’ as 3σ, which corresponds to a 95% confidence interval.

[d,n] = size(x);
y = model(1)*ones(1,n) + model(2)*x(1,:);
inl = abs(x(2,:)-y) < 3*sigma;

Figure 10.1 shows the results of the experiment above for different values of the inlier
ratio ξ. For ξ = 1 (only inliers, top left), the least-squares approach is marginally better
than RANSAC. With increasing ξ, the least-squares estimate deteriorates significantly
and eventually breaks down completely, while RANSAC always identifies the correct line,
even for ξ as low as 0.1. However, bear in mind that the number of RANSAC iterations
increases significantly with decreasing ξ; from 5 for ξ = 0.9 to 281 for ξ = 0.1. This effect
would be even more pronounced for higher M .

10.3 Gaussian mixture model estimation:
gaussianmixture

A Gaussian mixture model [Section :10.10] is described by means µk, covariances Σk

and weights wk. The probability density is given as

p(x) =
K∑

k=1
wk

1
(2π) d

2 |Σk|
1
2

exp
(
−1

2(x− µk)T Σ−1
k (x− µk)

)
,

where d is the dimension. The parameters µk, Σk, and wk can be estimated fromN samples
x1, . . . ,xN using the expectation-maximization (EM) algorithm [Algorithm :10.17]. The
algorithm performs well in practice even though global optimality of the result is not
guaranteed.

144 Chapter 10: Image understanding

0 10 20 30 40 50 60 70 80 90 100
5

10

15

20

25

30

35

40

45

(a) ξ = 1

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

(b) ξ = 0.9

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

(c) ξ = 0.5

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

(d) ξ = 0.1

Figure 10.1: Scatter plot of input data points for different values of the inlier ratio ξ. The true
straight line to be identified is show in blue, its least squares estimate in green, and the RANSAC
estimate in red. The points identified by RANSAC as inliers are shown in blue, outliers in light
blue.

function [mu,C,w] = gaussianmixture(x,k,verbosity)

input
x [d×N] Input data matrix. Each column is one d-dimensional sample

(point).
k [1×1] The number K of Gaussians to use.

verbosity {0} If set to 1, progress is reported. The corresponding code is
omitted here.

output
mu [d×K] Centers µk.
C [d× d×K] Covariances Σk.
w [K×1] Weights wk.

A suitable number of Gaussians K can be found either experimentally or by using
more sophisticated approaches, such as the minimum description length principle [Sec-
tion :10.10].

10.3 Gaussian mixture model estimation: gaussianmixture 145

The initial centers µk are found using :kmeans clustering. The transpose (x’, mu’)
serves to harmonize row/column conventions which are unfortunately not consistently
used in Matlab.

[d,n] = size(x);
[idx,mu] = kmeans(x’, k);
mu = mu’;

The initial covariances C of each cluster (Gaussian) are calculated. Note that C is a 3D
matrix (table). The weights w are initialized as uniform.

C = zeros(d, d, k);

for i = 1:k
C(:,:,i) = cov(x(:,idx==i)’);

end

w = ones(n,1)/k;

The expectation-maximization (EM) core consists of a loop which is normally exited
through the break statement (below) when convergence is detected. In the expectation
step, we calculate for all data points xi and all Gaussian components the probability that
a particular point is generated by a particular component. (The function gausspdf is
given below.) This probability is stored in p and normalized to sum to one for each point.
The new weights w are the means of p for each Gaussian over all points.

for iter = 1:10000
p = zeros(k, n);
for i = 1:k

p(i,:) = w(i) * gausspdf(x, mu(:,i), C(:,:,i));
end
p = p ./ repmat(sum(p),k,1);
w = mean(p, 2);

In the maximization step, the new parameters µk and Σk are calculated using sample
means and covariances weighted by the probabilities p [Equation :10.75]. sump serves
to normalize p across components.

oldmu = mu; oldC = C;
sump = sum(p, 2);
for i = 1:k

mu(:,i) = x*p(i,:)’/sump(i);
dif = x - repmat(mu(:,i), 1, n);
C(:,:,i) = (repmat(p(i,:),d,1).*dif) * dif’/sump(i);

end

Convergence is detected by comparing the maximum change of the Gaussian parameters
µk and Σk with a threshold. This normally works well, however, for better flexibility,
relative error could be tested too and both thresholds could be made user-selectable.

e = max([abs(mu(:)-oldmu(:))’ abs(C(:)-oldC(:))’]);
if e<1e-6, break; end

end % for iter

146 Chapter 10: Image understanding

function prob = gausspdf(x,mean,sigma)

Given a mean mean (as a column vector) and covariance matrix sigma of a d-dimensional
Gaussian distribution, evaluate the probability density function at all points x. Each
column of x corresponds to one point.

[d,n] = size(x);
prb = zeros(n, 1);
sigmainv = inv(sigma);
c = (2*pi)^(-0.5*d) * sqrt(det(sigmainv));
for i = 1:n

dif = x(:,i)-mean;
prob(i) = c * exp(-0.5*dif’*sigmainv*dif);

end

Example
In a 1D example (d = 1), we randomly generate N = 1000 points using a mixture of
K = 3 Gaussians with weights w1 = 0.2, w2 = 0.5, w3 = 0.3, means µ1 = 10, µ2 = 20,
µ2 = 30, and variances Σ1 = 4, Σ2 = 25, Σ3 = 1. Note that the third parameter given to
:random is a standard deviation (the square root of the variance).

n = 1000;
w1 = 0.2; w2 = 0.5; w3 = 0.3;
x = [random(’norm’, 10*ones(1,floor(n*w1)), 2*ones(1,floor(n*w1))) ...

random(’norm’, 20*ones(1,floor(n*w2)), 5*ones(1,floor(n*w2))) ...
random(’norm’, 30*ones(1,floor(n*w3)), 1*ones(1,floor(n*w3)))];

Then the EM algorithm gaussianmixture (p. 144) is run. It takes about 230 iterations.

[mu,C,w] = gaussianmixture(x, 3);

The estimated parameters are very close to the true ones, up to a permutation:

mu = 20.0356 10.1856 29.9062

C(:,:,1) = 24.5475
C(:,:,2) = 3.8672
C(:,:,3) = 1.0375

w’ = 0.5024 0.1928 0.3048

Figure 10.2a shows the histogram of the generated samples calculated using function
:hist with bin size 1, over which we superimpose the probability density functions

of the three Gaussians and the total mixture density (Figure 10.2b). Observe that the
estimate (in red) closely follows the true p.d.f. (in blue).

We continue with a 2D example (d = 2), with N = 1000 points generated with weights
w1 = w2 = 0.5, means µ1 =

[
0 0
]
, µ2 =

[
30 10

]
and covariances

Σ1 =
[
104 50
50 109

]
, Σ2 =

[
25 0
0 9

]
.

10.3 Gaussian mixture model estimation: gaussianmixture 147

−5 0 5 10 15 20 25 30 35 40
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

(a)

−5 0 5 10 15 20 25 30 35 40
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

(b)

Figure 10.2: Histogram of samples generated from a weighted mixture of three Gaussians with
superimposed probability density functions of the Gaussians (a) and of the mixture (b). The
blue curve represents the true underlying p.d.f., while the red curve was generated using the
estimated parameters. Note that the curves overlap, indicating a very good fit.

We generate samples from a random variable with identity covariance matrix. These
samples are then linearly transformed to obtained the desired distribution. Note that
the covariance matrices are the squares of the matrices used to multiply the original xy
values.

xy = random(’norm’, zeros(2,n), ones(2,n));
xy(:,1:n/2) = [2 10; 10 3] * xy(:,1:n/2);
xy(:,n/2+1:end) = [5 0; 0 3] * xy(:,n/2+1:end) + repmat([30 10]’,1,n-n/2);

The EM algorithm gaussianmixture (p. 144) only needs about 30 iterations to converge
and the results are reasonably good (again, up to a permutation).

[mu,C,w] = gaussianmixture(xy, 2);

mu = 30.2204 -0.5529
9.9383 0.0610

C(:,:,1) = 25.9354 1.3044
1.3044 10.0829

C(:,:,2) = 102.9239 54.8432
54.8432 125.7839

w’ = 0.5053 0.4947

Figure 10.3a shows the generated point set. Points generated from the two Gaussian
distributions are distinguished by color. Figure 10.3b adds contour levels for both Gaussian
components and the mixture p.d.f. calculated from the parameters estimated by the
EM algorithm. The contour level thresholds were chosen so that they delineate a 95%
confidence region, i.e. 95% percent of the samples from the particular group are supposed
to lie inside on the average. This turns out to correspond very well to reality in our case,
there are 49 points outside the confidence region for the mixture p.d.f. (in red).

148 Chapter 10: Image understanding

−40 −30 −20 −10 0 10 20 30 40 50
−50

−40

−30

−20

−10

0

10

20

30

40

(a)

−40 −30 −20 −10 0 10 20 30 40 50
−50

−40

−30

−20

−10

0

10

20

30

40

(b)

Figure 10.3: (a) Scatter plot of samples generated from a weighted mixture of two Gaussians,
with components distinguished by color. In (b) we also show 95% confidence regions calculated
from the estimated parameters for both components (in blue and green) and the mixture (in
red).

10.4 Point distribution models: pointdistrmodel

The point distribution model [Section :10.3] describes a family of shapes by their mean
and a small number of eigenvectors. The shapes are represented by landmark coordinates
on their contours. We show here how to automatically create the statistical description
from a set of training examples [Algorithm :10.5].

function [P,pmean,lambda] = pointdistrmodel(pts,alpha)

input
pts [2N×M] A set of M training shapes. Each column corresponds to one shape

and contains alternating x and y coordinates of N landmarks de-
scribing the shape:

[
x1, y1, x2, y2, . . . , xN , yN

]
.

alpha {0.95} The constant 0 ≤ α ≤ 1 determines how much variation of the input
data is captured by the reduced model [Section :10.3].

output
P [2N×K] The most important eigenvectors P of the model, corresponding to

the K largest eigenvalues. The ordering of the eigenvectors in P
corresponds to the ordering of the eigenvalues lambda.

pmean [N×1] The mean shape p̄.
lambda [K×1] K largest eigenvalues λi, sorted in decreasing order.

On return, the mean shape pmean is aligned with the first training shape pts(:,1).
Modified shapes can be obtained as p̄ + Pb [Equation :10.5].
Start by aligning all other shapes with the first shape using function pointalign (p. 150).
The mean pmean is calculated by averaging the transformed shapes.
[n,m] = size(pts);
for i = 2:m

pts(:,i) = pointalign(pts(:,1), pts(:,i));
end
pmean = mean(pts, 2);

10.4 Point distribution models: pointdistrmodel 149

We iterate in the main while-loop until the change of the mean shape between iterations
as measured by r (in pixels) becomes smaller than a predefined threshold. The convergence
is fast, so a fixed threshold can be used.
r = inf;
while r<1e-6

In the main loop, we repeatedly align the mean shape pmean to the first shape pts(:,1),
align all other shapes to the mean shape pmean, and recalculate the mean.

pmean = pointalign(pts(:,1), pmean);
for i = 2:m

pts(:,i) = pointalign(pmean, pts(:,i));
end

oldmean = pmean;
pmean = mean(pts, 2);
r = norm((oldmean-pmean)/n);

end % while loop

The covariance matrix S is calculated from the differences from the mean shape deltap.
We calculate its eigenvalues lambda and eigenvectors P.
deltap = pts - repmat(pmean,1,m);
S = cov(deltap’);
[P,D] = eig(S);
lambda = diag(D);

Finally, we simplify the model by considering only the K largest eigenvalues, with the
smallest K such that

∑K
i=1 λi ≥ α

∑N
i=1 λi. Note that the function :eig returns the

eigenvalues in increasing order, so we need to consider the K last ones and reverse them.
limit = alpha*sum(lambda);
K = n; partsum = lambda(K);
while K>1

if partsum>limit, break; end
K = K-1; partsum = partsum+lambda(K);

end
lambda = lambda(end:-1:K);
P = P(:,end:-1:K);

Aligning the shapes
Suppose we have a moving shape and a reference shape described by landmark coordinates
(xi, yi) and (x′i, y′i), respectively. We need to find a transformation consisting of rotation,
translation, and scaling that transforms the moving shape onto the reference shape in the
‘best’ way [Section :10.3], defined as minimizing a sum of squared distances

E =
M∑

i=1
wi

∥∥∥∥∥ s
[
cos θ − sin θ
sin θ cos θ

] [
xi

yi

]
+
[
tx
ty

]
−
[
x′i
y′i

] ∥∥∥∥∥
2

(10.2)

with parameters θ, s, tx, ty. We have included weights wi into the formulation [Equa-
tion :10.2], however, this possibility is not used in our code.

150 Chapter 10: Image understanding

We decompose the minimization of E(θ, s, tx, ty) to an outer minimization with respect
to θ and inner minimization with respect to s, tx, ty. Minimization with respect to s, tx,
ty is performed by setting the corresponding partial derivatives to zero

∂E

∂tx
= 0 , ∂E

∂ty
= 0 , ∂E

∂s
= 0 ,

which leads to the following system of linear equations

s

M∑
i=1

wi q(yi,−xi, θ)−N tx = −
M∑

i=1
wi x

′
i

s

M∑
i=1

wi q(−xi,−yi, θ)−N ty = −
M∑

i=1
wi y

′
i

s

M∑
i=1

w2
i

(
q2(yi,−xi, θ) + q2(xi, yi, θ)

)
− tx

M∑
i=1

wi q(yi,−xi, θ)− ty
M∑

i=1
wi q(−xi,−yi, θ) =

−
M∑

i=1
wi x

′
i q(yi,−xi, θ) +

M∑
i=1

wi y
′
i q(xi,−yi, θ) ,

(10.3)
where q(a, b, θ) = a sin θ + b cos θ. The dependency E(θ) = min(s,tx,ty) E(θ, s, tx, ty) is
non-linear, so the outer minimization with respect to θ is performed numerically. This
normally only needs a few iterations, as the function is smooth and one dimensional.

function [ptransf,theta,s,tx,ty] =
pointalign(pref,p,theta0,w)

input
pref [2N×1] The reference shape

[
x′1, y

′
1, . . . , x

′
N , y

′
N

]
.

p [2N×1] The moving shape
[
x1, y1, . . . , xN , yN

]
to be aligned to the

reference shape.
theta0 {0} Initial guess of the angle θ, in radians.

w [N×1] Weights wi, default to wi = 1.
output

ptransf [2N×1] Transformed shape p aligned with the reference shape pref
in the sense of criterion E (10.2).

theta,s,tx,ty [1] Parameters θ, s, tx, and ty of the optimal fit.

The minimization with respect to θ is performed by the function fminunc1. The criterion
function E(θ) is evaluated by a function crit (below). Once the optimal θ is found, the
transformed shape ptransf and the rest of the parameters are calculated using function
transf (p. 151).
theta = fminunc(@(theta)(crit(p,pref,theta,w)), theta0, ...

optimset(’Display’,’off’,’LargeScale’,’off’));
[E,ptransf,s,tx,ty] = transf(p, pref, theta, w);

1If this function is not available—it is part of the Matlab’s Optimization Toolbox— :fminsearch will
work equally well.

10.4 Point distribution models: pointdistrmodel 151

function E = crit(p,pref,theta,w)

Function crit is only a wrapper around transf.
[E,ptransf,s,tx,ty] = transf(p, pref, theta, w);

function [E,ptransf,s,tx,ty] = transf(p,pref,theta,w)

Function transf takes the moving and reference shapes p and pref and the parameter
θ and weights wi. It calculates optimal s, tx, ty from (10.3) and the transformed shape
ptransf, and evaluates the criterion E (10.2).

We extract the x and y coordinates of the landmarks and precalculate sin θ, cos θ.
xy = reshape(p, 2, []);
xyref = reshape(pref, 2, []);
n = size(xy, 2);
x = xy(1,:); y = xy(2,:);
xref = xyref(1,:); yref = xyref(2,:);
st = sin(theta); ct = cos(theta);

Assemble and solve the linear system of equations (10.3) for unknowns s, tx, ty.
xw = x.*w’; yw = y.*w’;
xrefw = xref.*w’; yrefw = yref.*w’;
sx = sum(xw); sy = sum(yw);
yst = st*sy; xct = ct*sx; xst = st*sx; yct = ct*sy;
A = [yst-xct -n 0; -xst-yct 0 -n; ...

sum((st.*yw-ct.*xw).^2+(st.*xw+ct.*yw).^2) -yst+xct xst+yct];
b = [-sum(xrefw) -sum(yrefw) dot(xrefw,-y*st+x*ct)+dot(yrefw,x*st+y*ct)]’;
q = A\b;
s = q(1); tx = q(2); ty = q(3);

Transform the points using function pointtransf (below) and evaluate the criterion E.
ptransf = pointtransf(p, theta, s, tx, ty);
ptransf = reshape(ptransf, [], 1);
E = sum(reshape(repmat(w’,2,1),[],1).*(ptransf-pref).^2);

function ptransf = pointtransf(p,theta,s,tx,ty)

Transform shape p according to parameters theta, s, tx, ty (see Equation 10.2).
xy = reshape(p, 2, []);
n = size(xy, 2);
st = sin(theta); ct = cos(theta);
ptransf = [s*ct (-s*st) tx; s*st s*ct ty] * [xy; ones(1,n)];
ptransf = reshape(ptransf, [], 1);

152 Chapter 10: Image understanding

Example
We use the hand point data made available by T. Cootes2. Figure 10.4a shows an example
of one shape, drawn as follows:
xy = readpointfile([dataDir ’hand.0.pts’]);
drawcontour(xy);

Functions readpointfile and drawcontour are given below.
We read all 18 datasets and store them into a matrix pts, each dataset to one column.

m = 18;
n = 2*size(xy,2);
pts = zeros(n,m);
for i = 1:m

xy = readpointfile([dataDir ’hand.’ num2str(i-1) ’.pts’]);
pts(:,i) = xy(:);

end

Unaligned shapes 1 and 8 are shown in Figure 10.4b. Figure 10.4b shows the same shape
after alignment using
ptransf = pointalign(pts(:,1), pts(:,8));

Create the point distribution model. Setting α = 0.95 (accounting for 95% of the
variations) needs 5 eigenvectors.
alpha = 0.95;
[P,pmean,lambda] = pointdistrmodel(pts, alpha);

The mean shape and all aligned shapes are shown in Figure 10.5a. We can now show the
principal modes of variation of the shape. Commands
p1 = pmean - 3*sqrt(lambda(i))*P(:,i);
p2 = pmean + 3*sqrt(lambda(i))*P(:,i);

calculate the extremal variations corresponding to ±3σ for mode i. Figures 10.5bc
illustrate these variations for the first principal modes corresponding to the two largest
eigenvalues. Note that the first mode makes the fingers spread out, while the second mode
makes them move right and left. Finally, we save the learned model for later analysis
(Section 10.5).
save handpdm pmean P lambda

function xy = readpointfile(filename)

Read a file filename with point coordinates in the format used for T. Cootes’ hand point
data: the first line contains the number of points N , the remaining lines contain each
two numbers corresponding to the x and y coordinates. It returns a 2×N array of point
coordinates.
f = fopen(filename);
n = fscanf(f, ’%d’, 1);
xy = fscanf(f, ’%g’, [2 n]);

2http://www.isbe.man.ac.uk/~bim/data/hand_data.html

http://www.isbe.man.ac.uk/~bim/data/hand_data.html

10.4 Point distribution models: pointdistrmodel 153

0 100 200 300 400 500

50

100

150

200

250

300

350

400

450

500

(a) (b) (c)

Figure 10.4: (a) Hand shape from dataset 1 with marked landmark points. Shapes 1 and (b) 8
before and (c) after alignment.

(a) (b) (c)

Figure 10.5: (a) The mean shape (in red) superimposed over all shapes after alignment. Changes
corresponding to the (b) first and (c) second mode. The mean shape is in red, the shape
corresponding to −3

√
λ in blue and the shape corresponding to +3

√
λ in green.

function drawcontour(xy)

Draws a smooth contour through given points. Matrix xy has size 2×N and each column
determines one point.

This function uses B-spline interpolation bsplineinterp (p. 107). Note how the first
and last points are duplicated to create neutral boundary conditions.
t = 2:0.01:size(xy,2) + 1;
degree = 2;
xt = bsplineinterp([xy(1,1) xy(1,:) xy(1,end)], t, degree);
yt = bsplineinterp([xy(2,1) xy(2,:) xy(2,end)], t, degree);
plot(xy(1,:),xy(2,:),’ko’, xt,yt,’b-’, ’LineWidth’,2);

154 Chapter 10: Image understanding

10.5 Active shape model fit: asmfit

In Section 10.4, we have seen a function pointdistrmodel (p. 148) that creates a point
distribution model (PDM) from a set of training shapes. Here we show how to fit the
learned point distribution model to a given image [Algorithm :10.6]. It is a segmentation
method similar to active contours such as snakes (Section 7.3).

The method is useful for images with pronounced edges that correspond well to the
learned PDM. It is based on examining a narrow band around the current shape for
improved landmark positions. The method is relatively fast but requires a good guess of
the initial position.

The fitted shape is given by its pose parameters θ, s, tx, ty and shape parameters b
[Equation, :10.1–10.5]

p = s

[
cos θ − sin θ
sin θ cos θ

]
(Pb + p̄) +

[
tx
ty

]
, (10.4)

where the mean shape p̄ and principal eigenvectors P are provided by pointdistrmodel.

function [p,theta,s,tx,ty,b] =
asmfit(im,pmean,P,lambda,theta0,s0,tx0,ty0,width,rtol,display)

input
im [m×n] Input image, normally an edge map. The higher the value, the

larger the probability of a pixel being an edge. Zero value pixels are
considered background.

pmean [N×1] The mean shape p̄, as returned by pointdistrmodel.
P [2N×K] Principal shape eigenvectors, as returned by pointdistrmodel.

lambda [K×1] Principal eigenvalues, as returned by pointdistrmodel.
theta0 [1] Initial pose rotation parameter θ (10.4).

s0 [1] Initial pose scaling parameter s (10.4).
tx0,ty0 [1] Initial pose translation parameters tx, ty (10.4).

width {10} Width of the band around the current shape position to be searched
in each iteration, in pixels.

rtol {0.5} Threshold on the maximum change of landmark coordinates to
determine convergence.

display {1} Set to 1 for animation of the fitting procedure, 0 otherwise. The
corresponding code is not included below.

output
p [2N×1] Final fitted shape p =

[
x1, y1, . . . , xN , yN

]
.

theta [1] Parameter θ of the final pose (10.4).
s [1] Parameter s of the final pose (10.4).

tx,ty [1] Parameters tx, ty of the final pose (10.4).
b [K×1] Final shape parameters b (10.4).

see also pointdistrmodel (p. 148).

Initialize pose parameters theta, s, tx, ty and shape parameters b. Variable pold is
used in the stopping criterion and stores the previous value of p; iter is the iteration
counter.

10.5 Active shape model fit: asmfit 155

theta = theta0; s=s0; tx = tx0; ty = ty0;
b = zeros(size(P,2), 1);
[n,junk] = size(pmean);
pold = pmean;
iter = 1;

The main cycle is repeated until the change r of landmark positions between iterations
decreases below the threshold rtol.

while true
p = pointtransf(P*b+pmean, theta, s, tx, ty);
r = max(abs(p-pold));
if (iter>1 && r<rtol) || iter>1000, break; end
pold = p;

For each landmark we find a line (described by a vector qx, qy) normal to the shape
contour at that point using function perpendicular (p. 156). We evaluate the edge
map im for values v on the line qx, qy with step 1. The new landmark position pnew is
the position of the maximum in v, unless the maximum is zero—in this case we are in
a background region with no edges and the landmark is not moved. Note how the x, y
coordinates need to be extracted from and stored into the 1D vectors p, pnew.

t = -width:1:width;
pnew = p;
for i = 1:n/2

x = p(2*i-1); y = p(2*i);
[qx,qy] = perpendicular(p, i);
v = interp2(im, x+qx*t, y+qy*t, ’*linear’);
[maxv,j] = max(v);
xn = x+qx*t(j); yn = y+qy*t(j);
if maxv>0
pnew(2*i-1:2*i) = [xn yn];

end
end % for i

Once the new proposed landmark positions pnew are known, we call pointalign (p. 150)
to find new pose parameters θ, s, tx, ty.

[ptransf,theta,s,tx,ty] = pointalign(pnew, P*b+pmean, theta0);

To find new shape parameters b, we first transform the landmark positions pnew into the
original (canonical) coordinate space by applying an inverse transform using function
pointtransfinv (p. 156). The difference from the mean shape pmean is then projected
into the space spanned by the modes using the orthogonality of P [Algorithm :10.6].

porig = pointtransfinv(pnew, theta, s, tx, ty);
b = P’*(porig-pmean);

We repeat the whole loop until convergence.

iter = iter+1;
end % while loop

156 Chapter 10: Image understanding

function [qx,qy] = perpendicular(p,i)

Function perpendicular finds a unitary vector (qx, qy) perpendicular to the boundary
described by points p at point number i. Indexes of neighbors used to calculate the
normal direction—normally the left and right neighbors, except for the first and last
points—are im, ip, with coordinates (xm, ym) and (xp, yp).
[n,junk] = size(p);
im = max(1, i-1);
ip = min(n/2, i+1);
xm = p(2*im-1); ym = p(2*im);
xp = p(2*ip-1); yp = p(2*ip);
qx = yp-ym;
qy = xm-xp;
mag = sqrt(qx*qx + qy*qy); % normalize length to 1
qx = qx/mag; qy = qy/mag;

function ptransf = pointtransfinv(p,theta,s,tx,ty)

Inverse transformation to pointtransf (p. 151).
xy = reshape(p, 2, []);
n = size(xy,2);
st = sin(-theta); ct = cos(-theta);
rs = 1/s;
ptransf = [rs*ct (-rs*st); rs*st rs*ct] * (xy-repmat([tx;ty],1,n));
ptransf = reshape(ptransf, [], 1);

Example
We read a previously learnt hand shape model (Section 10.4) and a hand image im
(Figure 10.6a).
load handpdm
im = im2double(imread([ImageDir ’hand.jpg’]));

The image is smoothed and a gradient magnitude image calculated in each color channel.
The final edge map g is a maximum over the three color channels, thresholded to obtain
a clean background.
h = fspecial(’gaussian’, 10, 1);
g = zeros(size(im,1), size(im,2));
for i = 1:3

f = imfilter(im(:,:,i), h, ’symmetric’);
[px,py] = gradient(f);
g = max(g, sqrt(px.^2+py.^2));

end
g = g .* (g>0.4*max(g(:)));

10.5 Active shape model fit: asmfit 157

Figure 10.6b shows the shape model in the initial position superimposed over the inverted
edge map g (black on white background). Initial pose parameters of the shape model
were obtained manually.
s0 = 0.6; theta0 = 0.0; tx0 = 40; ty0 = 50;
[p,theta,s,tx,ty,b] = asmfit(g, pmean, P, lambda, theta0, s0, tx0, ty0);

Active shape model fitting takes 25 iterations. Figure 10.6c illustrates the first iteration,
with normal search lines through each landmark and maxima (new proposed landmark
positions) found. You can follow the fitting process in real-time by running asmfit
(p. 154) with default parameters. The final position is shown in Figure 10.6d.

(a)

50 100 150 200 250 300 350

50

100

150

200

250

300

350

(b)

50 100 150 200 250 300 350

50

100

150

200

250

300

350

(c)

50 100 150 200 250 300 350

50

100

150

200

250

300

350

(d)

Figure 10.6: (a) Hand image. (b) The corresponding edge map with superimposed initial shape.
(c) First iteration of the fitting process with the shape contour in red, current landmarks positions
as blue circles, search lines in green, and new landmark positions as red circles. (d) Final fit.

