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Problems with solving
imperfect information games
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• First player in I1 chooses between H and T based on the
strategy that the player 2 plays.

• Second player in i1 chooses between h and t based on
the probability if it is in y1 or y2, that directly corresponds
to the strategy of player 1.

• Backward induction will not work because of this
interconnected dependency.

• Generally even in perfect recall imperfect information
games, the policy depends on both policy in previous and
subsequent parts of the game tree
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Example

• Induced normal-form game can include the same leaf multiple times.
• Playing some actions may invalidate different actions in future.
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gi gj hi hj
ACE 3 3 1 1
ACF 3 3 1 1
ADE -2 -2 3 3
ADF -2 -2 3 3
BCE 2 0 2 0
BCF 1 3 1 3
BDE 2 0 2 0
BDF 1 3 1 3
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Sequences

• Ordered list of all the actions that may be played in a single playthrough of the
game is called Sequence.

• We denote all possible sequences of player i as Σi.
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Realization plans

• Realization plan ri(σi) is a probability that σi will be played, assuming that the
other player plays only actions that allow σi to be executed

• Let us assume that σi leads to the infoset Ii. Behavioral strategy π(Ii,a) of
playing action a in this infoset is computed as

π(Ii,a) =

{
r(σia)
r(σi)

if r(σi) > 0

0 otherwise

• σia represents a extensions of sequence σi with action a.
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Example
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• r1(∅) = 1

• r1(A) + r1(B) = r1(∅)
• r1(AC) + r1(AD) = r1(A)
• r1(BE) + r1(BF) = r1(B)

• r2(∅) = 1

• r2(g) + r2(h) = r2(∅)
• r2(i) + r2(j) = r2(∅)
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Propagating chance node
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• Chance nodes have fixed
probabilities in the game

• These probabilities can be
propagated from the chance node to
the terminal utilities

• Chance nodes that do not reveal any
information until the end of the game
can be prunned away completely
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Example
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Extended utility function

• Extended utility function for sequences is g : Σ1 × Σ2 → R

g(σ1, σ2) =
∑
z∈Z′

C(z)u(z)

• C(z) is a probability that leaf z was reached due to chance nodes along the way.
• Z ′ ⊆ Z are all the terminal histories that could be reached by sequences σ1, σ2
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Example

g(∅, ∅) = 0
g(AC, i) = 0

g(BF, j) = 3
g(AD, ∅) = 0

g(∅, g) = 0
g(A, g) = 0
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Sequence-form Linear Program (SQF)

max
r1,v

v(Iroot) (1)

s.t. r1(∅) = 1 (2)

r1(σ1) ≥ 0 ∀σ1 ∈ Σ1 (3)∑
a∈A1(I1)

r(σ1a) = r1(σ1) ∀I1 ∈ I1, σ1 = ς1(I1) (4)

∑
I′2∈I2:σ2a=ς2(I′2)

v(I′2) +
∑

σ1∈Σ1

g(σ1, σ2a)r1(σ1) ≥ v(I2) ∀I2 ∈ I2, σ2 = ς2(I2), ∀a ∈ A(I2) (5)

• Variables are realization plans r1 for all the sequences of player 1 and expected
values v for each opponents infoset, if it plays a best response.

• ςi returns for a given infoset Ii a sequence σi that leads to this infoset.
FEE CTU Solving Imperfect Information EFGs 11/19



Example

x0
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max
r1,v

(v(iroot))

r1(∅) = 1

r1(A) + r1(B) = r1(∅)
r1(AC) + r1(AD) = r1(A)

r1(BE) + r1(BF) = r1(B)

v(i1) + v(i2) ≥ v(iroot)

3r1(AC)− 2r1(AD) ≥ v(i1)

1r1(AC) + 3r1(AD) ≥ v(i1)

2r1(BE) + 1r1(BF) ≥ v(i2)

0r1(BE) + 3r1(BF) ≥ v(i2)
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Example

X1
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min
r2,v

(v(I1))

r2(∅) = 1

r2(g) + r2(h) = r2(∅)
r2(i) + r2(j) = r2(∅)
v(I2) ≤ v(I1)

v(I3) ≤ v(I1)

3r2(g) + 1r2(h) ≤ v(I2)

− 2r2(g) + 3r2(h) ≤ v(I2)

2r2(i) + 0r2(j) ≤ v(I3)

1r2(i) + 3r2(j) ≤ v(I3)
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Sequence-form properties

• The fastest exact algorithm
• Easy to implement
• Poor scaling due to memory requirements of the linear program
• Hard to fine-tune for specific domains to increase performance
• Cannot be used to solve the game only partially
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Double Oracle Algorithm

• Not all strategies in the game are necessary to find Nash equilibrium.
• Double oracle creates smaller game with less strategies and iteratively adds

new strategies until it finds Nash equilibrium of the underlying game.
• In the worst case scenario the double oracle algorithm has to add all the

strategies from the original game.
• However, in most cases, the restricted game is much smaller than the original

game.
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Double Oracle Algorithm in Extensive-form

• Using sequences instead of pure strategies is more complicated.
• With limited amount of sequences, some reachable parts of the game tree may

not have any sequence to be played.
• To avoid this, in each information set, there is some default action that should

be played.
• Default action does not have to be defined explicitly.
• Instead of keeping the full tree, the nodes with default action can be replaced

by terminal node.
• The value of this terminal node corresponds to the value if opponent picks best

response against the default action.
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Double Oracle properties

• Can solve larger games than SQF.
• Without any additional information the algorithm identifies, which strategies are

not important for good solution.
• Computing best response is faster than solving the Linear program and can be

improved with some heuristics for specific problems.
• Harder to implement, due to the need to construct the valid restricted game.
• Still requires SQF to solve the restricted game, which is the primary limitation of

the method.
• In games where all sequences have to be considered, it is slower than the SQF.
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Policy-space response oracles

• Framework that generalizes double oracle algorithm with empirical game
thoeretical analysis.

• It was designed to use double oracle with deep learning with application to very
large games.

• Instead of using pure strategies, it uses the full policies.
• The utility of 2 policies against each other can be computed by just letting them

play in heads-to-heads.
• This creates matrix game that can be solved through usual means
• Best response can be computed through reinforcement learning, since policy

of 1 player is fixed.
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Summary

• Mixed strategies are not well suited for solving the imperfect information EFGs.
• Sequences can be used only in perfect recall games, but avoid necessity to

define each action for each information set.
• Probability from chance nodes can be propagated up to the leaf utilities.
• If chance node does not reveal any information until the end of the game, it can

be removed from the game completely.
• Sequence-form linear program for solving EFGs expands the ideas from linear

program for normal-form games to the extensive-form setting.
• It uses the realization plans instead of mixed strategies and expected values for

each opponent’s infoset.
• Double oracle algorithm can be generalized to a very large games.
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Appendix: Depth-limited solving

• What if we do not want to solve the whole game, but we only want the strategy in
some part of the game.

• In perfect information games, this is done by Monte-Carlo Tree Search.
• What about imperfect information games?
• There are several problems not present in perfect information games.
• One is that the algorithm cannot assume the current state of the game since it

is not observable.
• Least amount of considered states has to be closed on the information known

by all players.
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Appendix: Depth-limited solving
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• Optimal strategy in this game is by both players playing
heads with 60%.

• What if we are first player and we want to solve this game
with depth-limit?

• What if we are the second player and we want to solve
this game from our decision onward?

• Let us assume we know opponent’s optimal strategy.
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Appendix: Depth-limited solving

X1I1

0.2 0.2

H T

X1I1

0.2 + ϵ 0.2− ϵ

H T

• We assume optimal opponent.
• Value of playing heads is 0.6 · 1− 0.4 · 1 = 0.2

• Value of playing tails is−0.6 · 1 + 0.4 · 2 = 0.2

• Is solution of such a game optimal in the original game?
• What happens with the solution if ϵ > 0 or ϵ < 0?
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Appendix: Depth-limited solving
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• We still assume optimal opponent
• Value of playing heads is−0.6 · 1 + 0.4 · 1 = −0.2

• Value of playing tails is 0.4 · 1− 0.6 · 2 = −0.2

• What would be a solution of such a game?
• What happens with the solution if ϵ > 0 or ϵ < 0?
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Appendix: Depth-limited solving

• Both of these problems happen because of the indifference principal.
• In order to have safe depth-limited solving these has to be addressed.
• One possible solution to the first problem is to allow players use several

strategies in the future.
• Second is to use iterative approach to converge to a Nash, where after the

depth-limit the value depends on the policy in preceding parts
• Second problem is solved by allowing opponent to pick any strategy in the

previous part of the game.
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