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Problems with solving SN e
imperfect information games

® First playerin /; chooses between Hand T based on the
strategy that the player 2 plays.

e Second player ini; chooses between h and t based on
the probability if it is in y; or ys, that directly corresponds
to the strategy of player 1.

e Backward induction will not work because of this
interconnected dependency.

e Generally even in perfect recall imperfect information
games, the policy depends on both policy in previous and
subsequent parts of the game tree
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Example

Al CENTER

\ ‘ FEE CTU
® Induced normal-form game can include the same leaf multiple times.
® Playing some actions may invalidate different actions in future.
gi[g|hi|hj
ACE | 3 | 3 |11
ACF | 3 | 3 | 1|1
ADE | -2 | -2 3| 3
ADF | -2 | -2 | 3 | 3
BCE| 2 |0 |2|0
BCF| 1|3 |13
BDE| 2 | 0 | 2|0
3 -2 1 3 2 1 0 BOF | 1 |3 ]1]3
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Sequences AN e

e Ordered list of all the actions that may be played in a single playthrough of the
game is called Sequence.
® e denote all possible sequences of player i as 3;.

Xy | Yo
[N
Alg
B h
AC i
AD |
BE

BF
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Realization plans SN e

e Realization plan rj(o}) is a probability that o; will be played, assuming that the
other player plays only actions that allow o; to be executed

® Let us assume that o, leads to the infoset /;. Behavioral strategy = (/;, a) of
playing action a in this infoset is computed as

r(oia) )
(i, a) = { e (o) >0

0 otherwise

® g,arepresents a extensions of sequence g; with action a.
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Example CN REon

S| 2y
0|0

Ale
B | h
AC | i

AD | ]

BE

BF

* r(0)
() =
* ri(A) +n(B) =ri(0) . r2 B
® ri(AC) + ri(AD) = ri(A) . :2% :rrg(()h): _r m@()@)
® ri(BE) +r1(BF) = ri(B) 2 2(j) = r2
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Propagating chance node § s

L\

® Chance nodes have fixed
probabilities in the game

® These probabilities can be
propagated from the chance node to
the terminal utilities

® Chance nodes that do not reveal any
information until the end of the game
can be prunned away completely
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Example Sy o
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Extended utility function O e

e Extended utility function for sequencesisg: 31 x 3o - R

0‘1,02 ZC

zeZ!

® (C(z)is a probability that leaf zwas reached due to chance nodes along the way.
e Z' C Z are all the terminal histories that could be reached by sequences o1, o9
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Example

0 g(BF.j) =3 a(,
g(AC,i) =0 g(AD, () =0 g(A,

e
4
[}

W >=
— = T|m|=

AD
BE
BF
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Sequence-form Linear Program (SQF) R

Iﬁla‘?{ V(froot) m

s.t fl(m = (2)

rl(Ul)ZO Vo, € 31 (3)

Zr(ola):rl(ol) V/l EZl,O'lzgl(ll) (4)
acAi(h)

D vty + > glor,o2a)ri(01) = v(l) Vi € Iy, 00 = s2(l),Va € Ally)  (5)

Ih€Tz:o2a=62(ly) 01€X1

¢ Variables are realization plans r; for all the sequences of player 1 and expected
values v for each opponents infoset, if it plays a best response.
e ¢ returns for a given infoset /; a sequence ¢; that leads to this infoset.
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ri(A )—fl(A)
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Example Sy mem

FEE CTU

1}53@(’1))

re(0) =1

ra(g) + ra(h) = r2(0)
ra(i) + ra(j) = r2(0)

v(le) < v(h)

v(ls) < v(h)

3ra(g) + 1ra(h) < v(ly
—2r2(g) + 3ra(h) < v(k)
2ra(i) + 0ra(j) < v(l3)
Lra(i) + 3r2(j) < v(l3)
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Sequence-form properties

Q ’ ) FEE CTU

The fastest exact algorithm

® Fasy toimplement

Poor scaling due to memory requirements of the linear program

Hard to fine-tune for specific domains to increase performance

Cannot be used to solve the game only partially
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Double Oracle Algorithm R

® Not all strategies in the game are necessary to find Nash equilibrium.

® Double oracle creates smaller game with less strategies and iteratively adds
new strategies until it finds Nash equilibrium of the underlying game.

® |n the worst case scenario the double oracle algorithm has to add all the
strategies from the original game.

® However, in most cases, the restricted game is much smaller than the original
game.
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Double Oracle Algorithm in Extensive-form . 4 acue

® Using sequences instead of pure strategies is more complicated.

e With limited amount of sequences, some reachable parts of the game tree may
not have any sequence to be played.

e To avoid this, in each information set, there is some default action that should
be played.

e Default action does not have to be defined explicitly.

¢ |nstead of keeping the full tree, the nodes with default action can be replaced
by terminal node.

® The value of this terminal node corresponds to the value if opponent picks best
response against the default action.
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Double Oracle properties R

® Can solve larger games than SQF.

¢ Without any additional information the algorithm identifies, which strategies are
not important for good solution.

® Computing best response is faster than solving the Linear program and can be
improved with some heuristics for specific problems.

® Harder to implement, due to the need to construct the valid restricted game.

o Still requires SQF to solve the restricted game, which is the primary limitation of
the method.

® |n games where all sequences have to be considered, it is slower than the SQF.
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Policy-space response oracles SN B

® Framework that generalizes double oracle algorithm with empirical game
thoeretical analysis.

¢ |t was designed to use double oracle with deep learning with application to very
large games.

® |nstead of using pure strategies, it uses the full policies.

® The utility of 2 policies against each other can be computed by just letting them
play in heads-to-heads.

® This creates matrix game that can be solved through usual means

® Best response can be computed through reinforcement learning, since policy
of 1 player is fixed.
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Summary ) Aoguren

® Mixed strategies are not well suited for solving the imperfect information EFGs.

® Sequences can be used only in perfect recall games, but avoid necessity to
define each action for each information set.

® Probability from chance nodes can be propagated up to the leaf utilities.

¢ |f chance node does not reveal any information until the end of the game, it can
be removed from the game completely.

® Sequence-form linear program for solving EFGs expands the ideas from linear
program for normal-form games to the extensive-form setting.

¢ |t uses the realization plans instead of mixed strategies and expected values for
each opponent’s infoset.

® Double oracle algorithm can be generalized to a very large games.
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Appendix: Depth-limited solving SN B

¢ What if we do not want to solve the whole game, but we only want the strategy in
some part of the game.

® |n perfect information games, this is done by Monte-Carlo Tree Search.
e What about imperfect information games?
® There are several problems not present in perfect information games.

® One is that the algorithm cannot assume the current state of the game since it
is not observable.

® |east amount of considered states has to be closed on the information known
by all players.

FEE CTU Solving Imperfect Information EFGs 1/5



Appendix: Depth-limited solving SN B

e Optimal strategy in this game is by both players playing
heads with 60%.

e What if we are first player and we want to solve this game
with depth-limit?

¢ What if we are the second player and we want to solve
this game from our decision onward?

® | et us assume we know opponent’s optimal strategy.
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Appendix: Depth-limited solving T

® \We assume optimal opponent.

Value of playing headsis0.6-1—-0.4-1=0.2

Value of playing tailsis —0.6 - 1+ 0.4 -2 = 0.2

Is solution of such a game optimal in the original game?

What happens with the solutionif e > 0 or e < 0?

0.2+¢ 0.2—¢
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Appendix: Depth-limited solving T

We still assume optimal opponent

Value of playing headsis —0.6 -1+ 0.4-1 = —-0.2
Value of playing tailsis0.4-1—-0.6-2 = —0.2
What would be a solution of such a game?

What happens with the solutionif e > 0 or e < 0?
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Appendix: Depth-limited solving SN B

e Both of these problems happen because of the indifference principal.
® |n order to have safe depth-limited solving these has to be addressed.

® One possible solution to the first problem is to allow players use several
strategies in the future.

® Second is to use iterative approach to converge to a Nash, where after the
depth-limit the value depends on the policy in preceding parts

e Second problem is solved by allowing opponent to pick any strategy in the
previous part of the game.
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