
Solving Imperfect Information EFGs

Ondřej Kubíček

Artificial Intelligence Center
Faculty of Electrical Engineering
Czech Technical University in Prague October 22, 2024



Problems with solving
imperfect information games

X1

y1 y2

I1

i1

1 −1 −1 2

H T

h t h t

• First player in I1 chooses between H and T based on the
strategy that the player 2 plays.

• Second player in i1 chooses between h and t based on
the probability if it is in y1 or y2, that directly corresponds
to the strategy of player 1.

• Backward induction will not work because of this
interconnected dependency.

• Generally even in perfect recall imperfect information
games, the policy depends on both policy in previous and
subsequent parts of the game tree

FEE CTU Solving Imperfect Information EFGs 2/19



Example

• Induced normal-form game can include the same leaf multiple times.
• Playing some actions may invalidate different actions in future.

X1

y1 y2

Y1 Y2 Z1 Z2

I1

i1 i2

I2 I3

3 −2 1 3 2 1 0 3

A B

g h i j

C D C D E F E F

gi gj hi hj
ACE 3 3 1 1
ACF 3 3 1 1
ADE -2 -2 3 3
ADF -2 -2 3 3
BCE 2 0 2 0
BCF 1 3 1 3
BDE 2 0 2 0
BDF 1 3 1 3

FEE CTU Solving Imperfect Information EFGs 3/19



Sequences

• Ordered list of all the actions that may be played in a single playthrough of the
game is called Sequence.

• We denote all possible sequences of player i as Σi.

X1

y1 y2

Y1 Y2 Z1 Z2

I1

i1 i2

I2 I3

3 −2 1 3 2 1 0 3

A B

g h i j

C D C D E F E F

Σ1 Σ2

∅ ∅
A g
B h
AC i
AD j
BE
BF

FEE CTU Solving Imperfect Information EFGs 4/19



Realization plans

• Realization plan ri(σi) is a probability that σi will be played, assuming that the
other player plays only actions that allow σi to be executed

• Let us assume that σi leads to the infoset Ii. Behavioral strategy π(Ii,a) of
playing action a in this infoset is computed as

π(Ii,a) =

{
r(σia)
r(σi)

if r(σi) > 0

0 otherwise

• σia represents a extensions of sequence σi with action a.

FEE CTU Solving Imperfect Information EFGs 5/19



Example

X1

y1 y2

Y1 Y2 Z1 Z2

I1

i1 i2

I2 I3

3 −2 1 3 2 1 0 3

A B

g h i j

C D C D E F E F

Σ1 Σ2

∅ ∅
A g
B h
AC i
AD j
BE
BF

• r1(∅) = 1

• r1(A) + r1(B) = r1(∅)
• r1(AC) + r1(AD) = r1(A)
• r1(BE) + r1(BF) = r1(B)

• r2(∅) = 1

• r2(g) + r2(h) = r2(∅)
• r2(i) + r2(j) = r2(∅)

FEE CTU Solving Imperfect Information EFGs 6/19



Propagating chance node

X1 x1

y1 y2 Y1

I1 i1

i2 I2

15 −10 5 20 17 27 0 10

0.2 0.8

A B e f

g h g h 0.7 0.3 C D

• Chance nodes have fixed
probabilities in the game

• These probabilities can be
propagated from the chance node to
the terminal utilities

• Chance nodes that do not reveal any
information until the end of the game
can be prunned away completely

FEE CTU Solving Imperfect Information EFGs 7/19



Example

X1 x1

y1 y2 Y1

I1 i1

i2 I2

15 −10 5 20 17 27 0 10

0.2 0.8

A B e f

g h g h 0.7 0.3 C D

X1 x1

y1 y2 Y1

I1 i1

i2 I2

3 −2 1 4

16

0 8

1.0 1.0

A B e f

g h g h C D

FEE CTU Solving Imperfect Information EFGs 8/19



Extended utility function

• Extended utility function for sequences is g : Σ1 × Σ2 → R

g(σ1, σ2) =
∑
z∈Z′

C(z)u(z)

• C(z) is a probability that leaf z was reached due to chance nodes along the way.
• Z ′ ⊆ Z are all the terminal histories that could be reached by sequences σ1, σ2

FEE CTU Solving Imperfect Information EFGs 9/19



Example

g(∅, ∅) = 0
g(AC, i) = 0

g(BF, j) = 3
g(AD, ∅) = 0

g(∅, g) = 0
g(A, g) = 0

X1

y1 y2

Y1 Y2 Z1 Z2

I1

i1 i2

I2 I3

3 −2 1 3 2 1 0 3

A B

g h i j

C D C D E F E F

Σ1 Σ2

∅ ∅
A g
B h
AC i
AD j
BE
BF

FEE CTU Solving Imperfect Information EFGs 10/19



Sequence-form Linear Program (SQF)

max
r1,v

v(Iroot) (1)

s.t. r1(∅) = 1 (2)

r1(σ1) ≥ 0 ∀σ1 ∈ Σ1 (3)∑
a∈A1(I1)

r(σ1a) = r1(σ1) ∀I1 ∈ I1, σ1 = ς1(I1) (4)

∑
I′2∈I2:σ2a=ς2(I′2)

v(I′2) +
∑

σ1∈Σ1

g(σ1, σ2a)r1(σ1) ≥ v(I2) ∀I2 ∈ I2, σ2 = ς2(I2), ∀a ∈ A(I2) (5)

• Variables are realization plans r1 for all the sequences of player 1 and expected
values v for each opponents infoset, if it plays a best response.

• ςi returns for a given infoset Ii a sequence σi that leads to this infoset.
FEE CTU Solving Imperfect Information EFGs 11/19



Example

x0

X1

y1 y2

Y1 Y2 Z1 Z2

iroot

I1

i1 i2

I2 I3

3 −2 1 3 2 1 0 3

aroot

A B

g h i j

C D C D E F E F

max
r1,v

(v(iroot))

r1(∅) = 1

r1(A) + r1(B) = r1(∅)
r1(AC) + r1(AD) = r1(A)

r1(BE) + r1(BF) = r1(B)

v(i1) + v(i2) ≥ v(iroot)

3r1(AC)− 2r1(AD) ≥ v(i1)

1r1(AC) + 3r1(AD) ≥ v(i1)

2r1(BE) + 1r1(BF) ≥ v(i2)

0r1(BE) + 3r1(BF) ≥ v(i2)

FEE CTU Solving Imperfect Information EFGs 12/19



Example

X1

y1 y2

Y1 Y2 Z1 Z2

I1

i1 i2

I2 I3

3 −2 1 3 2 1 0 3

A B

g h i j

C D C D E F E F

min
r2,v

(v(I1))

r2(∅) = 1

r2(g) + r2(h) = r2(∅)
r2(i) + r2(j) = r2(∅)
v(I2) ≤ v(I1)

v(I3) ≤ v(I1)

3r2(g) + 1r2(h) ≤ v(I2)

− 2r2(g) + 3r2(h) ≤ v(I2)

2r2(i) + 0r2(j) ≤ v(I3)

1r2(i) + 3r2(j) ≤ v(I3)

FEE CTU Solving Imperfect Information EFGs 13/19



Sequence-form properties

• The fastest exact algorithm
• Easy to implement
• Poor scaling due to memory requirements of the linear program
• Hard to fine-tune for specific domains to increase performance
• Cannot be used to solve the game only partially

FEE CTU Solving Imperfect Information EFGs 14/19



Double Oracle Algorithm

• Not all strategies in the game are necessary to find Nash equilibrium.
• Double oracle creates smaller game with less strategies and iteratively adds

new strategies until it finds Nash equilibrium of the underlying game.
• In the worst case scenario the double oracle algorithm has to add all the

strategies from the original game.
• However, in most cases, the restricted game is much smaller than the original

game.

FEE CTU Solving Imperfect Information EFGs 15/19



Double Oracle Algorithm in Extensive-form

• Using sequences instead of pure strategies is more complicated.
• With limited amount of sequences, some reachable parts of the game tree may

not have any sequence to be played.
• To avoid this, in each information set, there is some default action that should

be played.
• Default action does not have to be defined explicitly.
• Instead of keeping the full tree, the nodes with default action can be replaced

by terminal node.
• The value of this terminal node corresponds to the value if opponent picks best

response against the default action.

FEE CTU Solving Imperfect Information EFGs 16/19



Double Oracle properties

• Can solve larger games than SQF.
• Without any additional information the algorithm identifies, which strategies are

not important for good solution.
• Computing best response is faster than solving the Linear program and can be

improved with some heuristics for specific problems.
• Harder to implement, due to the need to construct the valid restricted game.
• Still requires SQF to solve the restricted game, which is the primary limitation of

the method.
• In games where all sequences have to be considered, it is slower than the SQF.

FEE CTU Solving Imperfect Information EFGs 17/19



Policy-space response oracles

• Framework that generalizes double oracle algorithm with empirical game
thoeretical analysis.

• It was designed to use double oracle with deep learning with application to very
large games.

• Instead of using pure strategies, it uses the full policies.
• The utility of 2 policies against each other can be computed by just letting them

play in heads-to-heads.
• This creates matrix game that can be solved through usual means
• Best response can be computed through reinforcement learning, since policy

of 1 player is fixed.

FEE CTU Solving Imperfect Information EFGs 18/19



Summary

• Mixed strategies are not well suited for solving the imperfect information EFGs.
• Sequences can be used only in perfect recall games, but avoid necessity to

define each action for each information set.
• Probability from chance nodes can be propagated up to the leaf utilities.
• If chance node does not reveal any information until the end of the game, it can

be removed from the game completely.
• Sequence-form linear program for solving EFGs expands the ideas from linear

program for normal-form games to the extensive-form setting.
• It uses the realization plans instead of mixed strategies and expected values for

each opponent’s infoset.
• Double oracle algorithm can be generalized to a very large games.

FEE CTU Solving Imperfect Information EFGs 19/19



Appendix: Depth-limited solving

• What if we do not want to solve the whole game, but we only want the strategy in
some part of the game.

• In perfect information games, this is done by Monte-Carlo Tree Search.
• What about imperfect information games?
• There are several problems not present in perfect information games.
• One is that the algorithm cannot assume the current state of the game since it

is not observable.
• Least amount of considered states has to be closed on the information known

by all players.

FEE CTU Solving Imperfect Information EFGs 1/5



Appendix: Depth-limited solving

X1

y1 y2

I1

i1

1 −1 −1 2

H T

h t h t

• Optimal strategy in this game is by both players playing
heads with 60%.

• What if we are first player and we want to solve this game
with depth-limit?

• What if we are the second player and we want to solve
this game from our decision onward?

• Let us assume we know opponent’s optimal strategy.

FEE CTU Solving Imperfect Information EFGs 2/5



Appendix: Depth-limited solving

X1I1

0.2 0.2

H T

X1I1

0.2 + ϵ 0.2− ϵ

H T

• We assume optimal opponent.
• Value of playing heads is 0.6 · 1− 0.4 · 1 = 0.2

• Value of playing tails is−0.6 · 1 + 0.4 · 2 = 0.2

• Is solution of such a game optimal in the original game?
• What happens with the solution if ϵ > 0 or ϵ < 0?

FEE CTU Solving Imperfect Information EFGs 3/5



Appendix: Depth-limited solving

y1 y2i1

1 −1 −1 2

0.6 0.4

h t h t

y1 y2i1

1 −1 −1 2

0.6 + ϵ 0.4− ϵ

h t h t

• We still assume optimal opponent
• Value of playing heads is−0.6 · 1 + 0.4 · 1 = −0.2

• Value of playing tails is 0.4 · 1− 0.6 · 2 = −0.2

• What would be a solution of such a game?
• What happens with the solution if ϵ > 0 or ϵ < 0?

FEE CTU Solving Imperfect Information EFGs 4/5



Appendix: Depth-limited solving

• Both of these problems happen because of the indifference principal.
• In order to have safe depth-limited solving these has to be addressed.
• One possible solution to the first problem is to allow players use several

strategies in the future.
• Second is to use iterative approach to converge to a Nash, where after the

depth-limit the value depends on the policy in preceding parts
• Second problem is solved by allowing opponent to pick any strategy in the

previous part of the game.

FEE CTU Solving Imperfect Information EFGs 5/5


	Problems with solving imperfect information EFGs
	Linear programming to solve EFGs
	Appendix
	Depth-limited solving


