

O OTEVŘENÁ INFORMATIKA

Auctions 2: Design of Auctions

Michal Jakob Tomáš Kroupa Vojta Kovarik

Artificial Intelligence Center,

Dept. of Computer Science and Engineering, FEE, CTU

CGT Autumn 2024 - Lecture 10

Efficiency of Single-Item Auctions?

Efficiency in single-item auctions: the item allocated to the agent who values it the most.

With independent private values (IPV):

Auction		Efficient
English (without reserve price)	(~s.b. 2nd price)	yes
Dutch	(~s.b. 1st price)	no
Sealed bid second price		yes
Sealed bid first price		no

Note: Efficiency (often) lost in the correlated value setting.

Optimal Auctions

Optimal Auction Design

The seller's problem is to design an auction mechanism which has a Nash equilibrium giving him/her the highest possible expected utility.

assuming individual rationality

Second-price sealed bid auction **does not maximize** expected revenue \square not the best choice if (short-term) profit maximization is important.

Designing an Optimum Auction

We assume the IPV setting and risk-neutral bidders.

Each bidder i's valuation is drawn from some **strictly increasing** cumulative density function $F_i(v)$, having probability density function $f_i(v)$ that is continuous and bounded below.

• Allow $F_i(v) \neq F_j(v)$: asymmetric valuations

The **risk neutral** seller knows each F_j and has **zero value** for the object.

The auction that maximizes the **seller's expected revenue** subject to **individual rationality** and **Bayesian incentive-compatibility** for the buyers is an **optimal auction**. =ppl don't lie

=ppl participate voluntarily

Optimal auctions = state exam requirement

Example

- 2 bidders
- v_1 50:50 between 0 and 11
- v_1 50:50 between 0 and 12
- **Second-price** sealed bid auction.
- no reserve price
 ⇒ expected profit ¼ * 11 + ¾ * 0
- reserve price 10
 ⇒ expected profit ½ * 11 + 2 * ½ * 10 + ½ * 0
- reserve price $12 \Rightarrow$ no profit

Outcome with reserve price

Tradeoffs:

- Lose the sale when both bids too low: but low revenue then in any case and low probability of happening.
- Increase the sale price when one bidder has low valuation and the other high: happens with probability 1/2.
- Optimality requires knowledge of distributions!

Setting a reserve price is like **adding another bidder**: it increases competition in the auction.

Optimal Price for a Single Buyer

Lemma: The optimal price for a single buyer is r^* s.t. $r^* - (1 - F(r^*)) / f(r^*) = 0$.

Optimal Single Item Auction

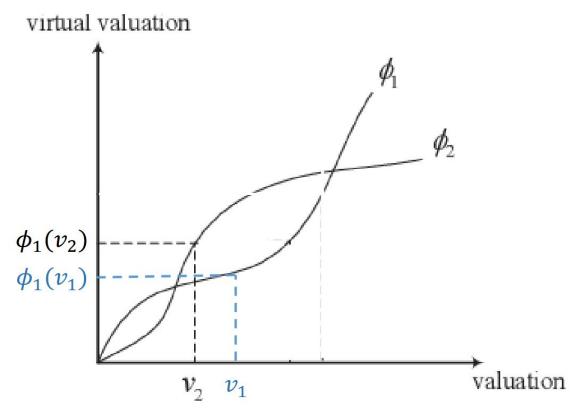
Definition (Virtual valuations)

Consider an **IPV setting** where bidders are **risk neutral** and each bidder i's valuation is drawn from some **strictly increasing** cumulative density function $F_i(v)$, having probability density function $f_i(v)$. We then define: where

- Bidder i's **virtual valuation** is $\psi_i(v_i) = v_i \frac{1 F_i(v_i)}{f_i(v_i)}$
- Bidder i's **bidder-specific reserve price** r_i^* is the value for which $\psi_i(r_i^*) = 0$

Example: uniform distribution over [0,1]: $\psi(v) = 2v - 1$

Example virtual valuation functions



Optimal Single Item Auction

Theorem (Optimal Single-item Auction)

The **optimal (single-good) auction** is a sealed-bid auction in which every agent is asked to **declare his valuation**. The good is sold to the agent $i = \operatorname{argmax}_i \psi_i(\widehat{v_i})$, as long as $\widehat{v_i} > r_i^*$. If the good is sold, the winning agent i is charged the smallest valuation that it could have declared while still remaining the winner:

$$\inf \{ v_i^* : \psi_i(v_i^*) \ge 0 \land \forall j \ne i, \psi_i(v_i^*) \ge \psi_j(\widehat{v_j}) \}$$

Can be understood as a second-price auction with a reserve price, held **in virtual valuation space** rather than in the space of actual valuations.

Remains dominant-strategy truthful.

Second-Price Auction with Reservation Price

Symmetric case: second-price auction with reserve price r^*

satisfying:
$$\psi(r^*)=r^*-\frac{1-F(r^*)}{f(r^*)}=0$$

- Truthful mechanism when $\psi(v)$ is non-decreasing.
- Uniform distribution over [0, p]: optimum reserve price = p/2.

Second-price sealed bid auction with Reserve Price is not efficient!

Second-Price Auction with Reservation Price

Why does this increase revenue?

- Reservation prices are like competitors: increase the payments of winning bidders.
- The virtual valuation can increase the impact of weak bidders' bids, making the more competitive.
- Bidders with higher expected valuations bid more aggressively.

Optimal Auctions: Remarks

For **optimal revenue** one needs to **sacrifice** some **efficiency**.

Impossibility results that we don't have time for.

Optimal auctions require information about seller

■ □ rarely used in practice

Theorem (Bulow and Klemperer): *revenue* of an efficiency-maximizing auction with k+1 bidder is at least as high as that of the revenue-maximizing one with k bidders.

☐ better to spend energy on attracting more bidders

Winner's curse

- Selling a painting, all buyers only interested for resale value
- English auction
- valuations = true value + independent noise
- winner = the one who over-estimated the value the most
- winner's curse = it's not as valuable as you thought

Multi-unit Auctions

Multi-unit Auctions

Multiple identical copies of the same good on sale.

Multi-unit Japanese auction:

- After each increment, the bidder specifies the amount he is willing to buy at that price
- The amount needs to decrease over time: cannot buy more at a higher pirce
- The auction is over when the supply equals or exceeds the demand.
 - Various options if supply exceeds demand

Similar extension possible for English and Dutch auctions.

Single-unit Demand

Assume there are k identical goods on sale and risk-neutral bidders who only want one unit each.

 $k+1^{\rm st}$ -price auction is the equivalent of the second-price auction: sell the units to the k highest bidders for the same price, and to set this price at the amount offered by the highest losing bid.

Note: Seller will not always make higher profit by selling more items! Example:

Bidder	Bid amount	
1	\$25	
2	\$20	
3	\$15	
4	\$8	

Combinatorial Auctions

Auctions for bundles of goods.

Let $G = \{g_1, ..., g_n\}$ be a set of items (goods) to be auctioned

A valuation function $v_i: 2^{\mathcal{G}} \mapsto \mathbb{R}$ indicates how much a bundle $G \subseteq \mathcal{G}$ is worth to agent i.

We typically assume the following properties:

- normalization: $v(\emptyset) = 0$
- free disposal: $G_1 \subseteq G_2$ implies $v(G_1) \le v(G_2)$

Example

Buying a computer gaming rig: PC, Monitor, Keyboard and mouse. Different types/brands available for each category of items.

Non-Additive Valuations

Combinatorial auctions are interesting when the valuation function is **not additive.**

Two main types on non-additivity.

Substitutability

The valuation function v exhibits **substitutability** if there exist two sets of goods $G_1, G_2 \subseteq G$ such that $G_1 \cap G_2 = \emptyset$ and $v(G_1 \cup G_2) < v(G_1) + v(G_2)$. Then this condition holds, we say that the valuation function v is **subadditive**.

Ex: Two different brands of TVs.

Complementarity

The valuation function v exhibits **complementarity** if there exist two sets of goods $G_1, G_2 \subseteq G$ such that $G_1 \cap G_2 = \emptyset$ and $v(G_1 \cup G_2) > v(G_1) + v(G_2)$. Then this condition holds, we say that the valuation function v is **superadditive**.

Ex: Left and right shoe.

How to Sell Goods with Non-Additive Valuations?

- Ignore valuations dependencies and sell sequentially via a sequence of independent single-item auctions.
 - ☐ **Exposure problem**: A bidder may bid aggressively for a set of goods in the hope of winning a bundle but only succeed in winning a subset (a thus paying too much).
- Run separate but connected single-item auctions simultaneously.
 - a bidder bids in one auction he has a reasonably good indication of what is transpiring in the other auctions of interest.
- 3. Combinatorial auction: bid directly on a bundle of goods.

Anecdote about auction failure

- 10 simultaneous English auctions for radio frequencies
- bids must increase by >=10%
- realistically, only two serious buyers
- collusion (communication, etc) illegal
- seller's estimate: valuations ~100M EUR per frequency
- strategy of buyer 1:
 - o bid 20M for #1-5
 - o bid 18.181M for #6-10 (18.181 * 110% = 20M)
- ...and that was the end of the bidding war

Allocation in Combinatorial Auction

Allocation is a list of sets $G_1, ..., G_n \subseteq G$, one for each agent i such that $G_i \cap G_j = \emptyset$ for all $i \neq j$ (i.e. not good allocated to more than one agent)

Which way to choose an allocation for a combinatorial auction?

 \rightarrow The simples is to maximize social welfare (efficient allocation):

$$U(G_1, ..., G_n, v_1, ..., v_n) = \sum_{i=1}^{n} v_i(G_i)$$

Simple Combinatorial Auction Mechanism

The mechanism determines the social welfare maximizing allocation and then charges the winners their bid (for the bundle they have won), i.e., $\rho_i = \hat{v}_i$.

Example:

Bidder 1	Bidder 2	Bidder 3
$v_1(x,y) = 100$	$v_2(x) = 75$	$v_3(y) = 40$
$v_1(x) = v_1(y) = 0$	$v_2(x,y) = v_2(y) = 0$	$v_3(x,y) = v_3(x) = 0$

Is this incentive-compatible? No.

VCG auction

= another state exam requirement

VCG auction

A Vickrey–Clarke–Groves (VCG) auction is a type of sealed-bid auction of multiple items. Bidders submit bids that report their valuations for the items, without knowing the bids of the other bidders. The auction system assigns the items in a <u>socially optimal</u> manner: it charges each individual the harm they cause to other bidders. [1]

Vickrey-Clarke-Groves (VCG) auction, an analogy to secondprice sealed bid single-unit auctions, exists for the combinatorial setting and it is dominant-strategy truthful and efficient.

VCG example

Suppose two apples are being auctioned among three bidders.

- Bidder A wants one apple and is willing to pay \$5 for that apple.
- Bidder B wants one apple and is willing to pay \$2 for it.
- **Bidder C** wants two apples and is willing to pay \$6 to have both of them but is uninterested in buying only one without the other.

First, the outcome of the auction is determined by maximizing social welfare:

- the apples go to bidder A and bidder B, since their combined bid of \$5 + \$2
 = \$7 is greater than the bid for two apples by bidder C who is willing to pay only \$6.
- Thus, after the auction, the value achieved by bidder A is \$5, by bidder B is \$2, and by bidder C is \$0 (since bidder C gets nothing).

VCG example

Payment of bidder A:

- an auction that excludes bidder A, the social-welfare maximizing outcome would assign both apples to bidder C for a total social value of \$6.
- the total social value of the original auction excluding A's value is computed as \$7 \$5 = \$2.
- Finally, subtract the second value from the first value.
 Thus, the payment required of A is \$6 \$2 = \$4.

Payment of bidder **B**:

- the best outcome for an auction that excludes bidder B assigns both apples to bidder C for \$6.
- The total social value of the original auction minus B's portion is \$5. Thus, the payment required of B is \$6 \$5 = \$1.

Finally, the payment for bidder C is (\$5 + \$2) - (\$5 + \$2) = \$0.

After the auction, A is \$1 better off than before (paying \$4 to gain \$5 of utility), B is \$1 better off than before (paying \$1 to gain \$2 of utility), and C is neutral (having not won anything).

Winner Determination Problem

Definition

The winner determination problem for a combinatorial auctions, given the agents' declared valuations \widehat{v}_i is to find the social-welfare-maximizing allocation of goods to agents. This problem can be expressed as the following integer program

$$\begin{aligned} & \text{maximize } \sum_{i \in N} \sum_{Z \subseteq \mathcal{Z}} \widehat{v_i}(Z) x_{Z,i} \\ & \text{subject to } \sum_{Z,j \in Z} \sum_{i \in N} x_{Z,i} \leq 1 \quad \forall j \in \mathcal{Z} \\ & \sum_{Z \subseteq \mathcal{Z}} x_{Z,i} \leq 1 \quad \forall i \in N \\ & x_{Z,i} = \{0,1\} \quad \forall Z \subseteq \mathcal{Z}, i \in N \end{aligned}$$

Complexity of the Winner Determination Problem

Equivalent to a **set packing problem** (SSP) which is known to be **NP-complete**.

Worse: SSP cannot be **approximated uniformly** to a fixed constant.

Two possible solutions:

- Limit to instance where polynomial-time solutions exist.
- Heuristic methods that drop the guarantee of polynomial runtime, optimality or both.

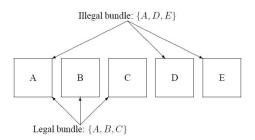
Restricted instances

Use **relaxation** to solve WDP in polynomial time: Drop the integrality constraint and solve as a **standard** linear program.

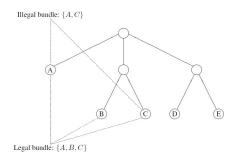
The solution is guaranteed to be integral when the constraints matrix is **unimodular**.

Two important real-world cases fulfills this condition.

Contiguous ones property (continuous bundles of goods)



Tree-structured bids



Heuristics Methods

Incomplete methods do not guarantee to find optimal solution.

Methods do exist that can guarantee a solution that is within

 $1/\sqrt{k}$ of the optimal solution, where k is the number of goods.

Works well in practice, making it possible to solve WDPs with many hundreds of goods and thousands of bids.

Auctions Summary

- Auctions = mechanisms for allocating scarce resource among self-interested agents
- Mechanism-design and game-theoretic perspective
- Various auction mechanisms: English, Dutch, 1st/2nd-price sealed bid, others
 - but note the strategic equivalences
 - o also: revelation principle
- **Desirable** properties: truthfulness, efficiency, optimality, ...
- Applications worth billions of dollars
- Reading: [Shoham] Chapter 11; [Maschler] Chapter 12