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MOTIVATION

1. Players’ decisions may be correlated, unlike in Nash equilibrium,
where players act independently

2. One player may publicly disclose their chosen strategy to the other
players, unlike in a Nash Equilibrium setting



CORRELATED EQUILIBRIUM



CORRELATION OF ACTIONS

Bach or Stravinski

B S
B 2, 1 0, 0
S 0, 0 1, 2

• Pure NE: (B,B) and (S,S)

• Mixed NE: p∗1(B) = 2/3, p∗2(S) = 2/3 with utility 0.6̄ for each player

How to choose between (B,B) and (S,S)?

1. The mediator tosses a fair coin: heads⇒(B,B), tails⇒(S,S)

2. Each player receives advice about what action to play

3. If both players accept the recommendation, the utility is 1.5



METAGAME

Extensive-form gamewith imperfect information Γ(p)
1. The mediator uses a probability distribution p over

S = S1 × ⋅ ⋅ ⋅ × Sn

to sample an action profile s ∈ S

2. The mediator tells player i only si
3. Every player i picks some s′i ∈ Si



NASH EQUILIBRIUM IN THE METAGAME

• A strategy of player i in Γ(p) is a mapping

σi∶Si → Si

• Player i follows the suggestion of the mediator using strategy

σ∗i (si) := si

• Strategy profile (σ∗1 , . . . ,σ∗n) is a NE in Γ(p) if no player has an
incentive to deviate from their advice, assuming all others follow theirs



CORRELATED EQUILIBRIUM

Definition
A correlated equilibrium in a strategic game is a probability distribution p
such that (σ∗1 , . . . ,σ∗n) is a NE in Γ(p),

∑
s−i∈S−i

p(s−i ∣ si)ui(s′i , s−i) ≤ ∑
s−i∈S−i

p(s−i ∣ si)ui(si, s−i),

for every player i and every si, s′i ∈ Si such that p(si) > 0.



CORRELATED EQUILIBRIUM, EQUIVALENTLY

Proposition
The following are equivalent for a probability distribution p over S.

1. p is a CE.

2. For each player i and all si, s′i ∈ Si,

∑
s−i∈S−i

p(si, s−i)ui(s′i , s−i) ≤ ∑
s−i∈S−i

p(si, s−i)ui(si, s−i).



EXAMPLE

Bach or Stravinski

B S
B 2, 1 0, 0
S 0, 0 1, 2

p(B,S) ≤ 2p(B,B)

2p(S,B) ≤ p(S,S)

2p(S,B) ≤ p(B,B)

p(B,S) ≤ 2p(S,S)

Some solutions:

1. p(B,B) = α, p(S,S) = 1 −α, for any α ∈ [0, 1]

2. p(B,B) = 1 NE

3. p(S,S) = 1 NE

4. p(B,B) = p(S,S) = 2/9, p(B,S) = 4/9, p(S,B) = 1/9 NE



EXISTENCE OF CE

Proposition
Any NE (p∗1 , . . . ,p∗n) of a strategic game induces a CE p∗ such that

p∗(s) =∏
i∈N

p∗i (si) ∀s ∈ S.



COMPUTATION OF CE
Maximize the social welfare

∑
i∈N
∑
s∈S

p(s)ui(s)

subject to the constraint that p is a CE.

Bach or Stravinski

B S
B 2, 1 0, 0
S 0, 0 1, 2

Maximize 3p(B,B) + 3p(S,S)

p(B,S) ≤ 2p(B,B)

2p(S,B) ≤ p(S,S)

2p(S,B) ≤ p(B,B)

p(B,S) ≤ 2p(S,S)

Optimal solution: p(B,B) = α, p(S,S) = 1 −α, for any α ∈ [0, 1]



COARSE CORRELATED EQUILIBRIUM

Is the player better off always following p, ignoring the mediator’s advice?

Definition
A coarse CE in a strategic game is a probability distribution p such that

∑
s∈S

p(s)ui(s′i , s−i) ≤ ∑
s∈S

p(s)ui(s)

for every player i and every s′i ∈ Si.



EQUILIBRIA CCE

CE

mixed NE

pure NE

dominant
strategy equilibria



CCE = NE FOR SOME GAMES

Matching pennies

h t
h 1 −1
t −1 1

Every CCE induces a NE.

Prisoner’s dilemma

q s
q −1,−1 −4, 0
s 0,−4 −3,−3

Every CCE induces a NE.

Proposition
Every CCE p in a two-player zero-sum game induces a NE (p1,p2), where

p1(s1) := ∑
t2∈S2

p(s1, t2) and p2(s2) := ∑
t1∈S1

p(t1, s2) ∀s1 ∈ S1, s2 ∈ S2.



STACKELBERG EQUILIBRIUM



PUBLIC COMMITMENT TO AN ACTION

Example (Conitzer, 2006)

c d
a 2, 1 4, 0
b 1, 0 3, 1

• Strategy profile (a, c) is the only NE

The row player (leader) publicly commits to

• action b, the column player (follower) plays d and utility is (3, 1)

• mixed strategy p1(a) = p1(b) = 1/2, the follower is indifferent
between c⇒U1(p1, c) = 1.5 and d⇒U1(p1,d) = 3.5



TWO-PLAYER STACKELBERG GAME

Player 1 (leader) and player 2 (follower) interact as follows:

1. The leader publicly commits to a mixed strategy p1 ∈ ∆1

2. The follower then selects a pure strategy s2 ∈ BR2(p1)

Bilevel optimization
The leader maximizes U1(p1, s2) depending on s2 ∈ BR2(p1), which is
typically non-unique. We need a tie-breaking rule.



TIE-BREAKING RULES

1. If ∣BR2(p1)∣ = 1 for every p1 ∈ ∆1, the leader simply solves

max
p1∈∆1

U1(p1, BR2(p1))

2. Otherwise we assume that the follower breaks ties
– to the disadvantage of the leader
– in favor of the leader



WEAK AND STRONG STACKELBERG EQUILIBRIUM

The follower picks s2 ∈ BR2(p1)

1. to the disadvantage of the leader:

max
p1∈∆1

min
s2∈BR2(p1)

U1(p1, s2)

2. in favor of the leader:

max
p1∈∆1

max
s2∈BR2(p1)

U1(p1, s2)

Definition
1. Weak SE (p∗1 , s∗2) is a solution to the 1st problem.

2. Strong SE (p∗1 , s∗2) is a solution to the 2nd problem.



WEAK SE MAY NOT EXIST

Example
c d

a 2, 1 4, 0
b 1, 0 3, 1

p1 := p1(a)
BR2(p1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

d 0 ≤ p1 < 1/2

{c,d} p1 = 1/2

c 1/2 < p1 ≤ 1

1. Weak SE doesn’t exist since there is no maximizer of function

p1 ∈ [0, 1] ↦ min
s2∈BR2(p1)

U1(p1, s2) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

p1 + 3 0 ≤ p1 < 1/2

p1 + 1 1/2 ≤ p ≤ 1

2. Strong SE for the leader is p∗1 = 1/2



HOW TO COMPUTE STRONG SE?

max
p1∈∆1

max
s2∈BR2(p1)

U1(p1, s2) = max
s2∈S2

max
p1∈∆1

s2∈BR2(p1)
U1(p1, s2)

Algorithm based on LP
• For each s2 ∈ S2 solve the LP:

max U1(p1, s2)

subject to U2(p1, s2) ≥ U2(p1, t2) ∀t2 ∈ S2

p1 ∈ ∆1

• Strong SE p∗1 is the optimal solution for an LP with the maximal value



SE IN TWO-PLAYER ZERO-SUM GAMES

Proposition
In any two-player zero-sum game, weak SE and strong SE coincide, and both
are equal to the set of NE.

• In a two-player zero-sum game, whether a player publicly discloses
their strategy or not is inconsequential

• This stands in stark contrast with general-sum games


