ALTERNATIVES TO NASH EQUILIBRIUM

Tomáš Kroupa

Al Center
Department of Computer Science
Faculty of Electrical Engineering
Czech Technical University in Prague

MOTIVATION

- Players' decisions may be correlated, unlike in Nash equilibrium, where players act independently
- 2. One player may *publicly disclose* their chosen strategy to the other players, unlike in a Nash Equilibrium setting

CORRELATION OF ACTIONS

Bach or Stravinski

- Pure NE: (B, B) and (S, S)
- Mixed NE: $p_1^*(B) = 2/3$, $p_2^*(S) = 2/3$ with utility $0.\overline{6}$ for each player

How to choose between (B, B) and (S, S)?

- 1. The mediator tosses a fair coin: $heads \Rightarrow (B, B), tails \Rightarrow (S, S)$
- 2. Each player receives advice about what action to play
- 3. If both players accept the recommendation, the utility is 1.5

METAGAME

Extensive-form game with imperfect information $\Gamma(p)$

1. The mediator uses a probability distribution *p* over

$$\mathbf{S} = S_1 \times \cdots \times S_n$$

to sample an action profile **s** ∈ **S**

- 2. The mediator tells player i only s_i
- 3. Every player *i* picks some $s_i' \in S_i$

NASH EQUILIBRIUM IN THE METAGAME

• A strategy of player *i* in $\Gamma(p)$ is a mapping

$$\sigma_i:S_i\to S_i$$

Player i follows the suggestion of the mediator using strategy

$$\sigma_i^*(s_i) := s_i$$

• Strategy profile $(\sigma_1^*, \dots, \sigma_n^*)$ is a NE in $\Gamma(p)$ if no player has an incentive to deviate from their advice, assuming all others follow theirs

CORRELATED EQUILIBRIUM

Definition

A correlated equilibrium in a strategic game is a probability distribution p such that $(\sigma_1^*, \ldots, \sigma_n^*)$ is a NE in $\Gamma(p)$,

$$\sum_{\mathbf{s}_{-i} \in \mathbf{S}_{-i}} p(\mathbf{s}_{-i} \mid s_i) u_i(s_i', \mathbf{s}_{-i}) \leq \sum_{\mathbf{s}_{-i} \in \mathbf{S}_{-i}} p(\mathbf{s}_{-i} \mid s_i) u_i(s_i, \mathbf{s}_{-i}),$$

for every player i and every $s_i, s_i' \in S_i$ such that $p(s_i) > 0$.

CORRELATED EQUILIBRIUM, EQUIVALENTLY

Proposition

The following are equivalent for a probability distribution p over **S**.

- 1. *p is a CE*.
- 2. For each player i and all $s_i, s_i' \in S_i$,

$$\sum_{\mathbf{s}_{-i}\in\mathbf{S}_{-i}}p(s_i,\mathbf{s}_{-i})u_i(s_i',\mathbf{s}_{-i}) \leq \sum_{\mathbf{s}_{-i}\in\mathbf{S}_{-i}}p(s_i,\mathbf{s}_{-i})u_i(s_i,\mathbf{s}_{-i}).$$

EXAMPLE

Bach or Stravinski

B
 S

 B | 2,1 | 0,0 |

$$2p(S,B) \le p(S,S)$$

 S | 0,0 | 1,2 |
 $2p(S,B) \le p(S,B)$

 P(B,S) \le 2p(S,S)

Some solutions:

1.
$$p(B,B) = \alpha$$
, $p(S,S) = 1 - \alpha$, for any $\alpha \in [0,1]$

2.
$$p(B,B) = 1$$

3.
$$p(S,S) = 1$$

3.
$$p(S,S) = 1$$

4. $p(B,B) = p(S,S) = 2/9$, $p(B,S) = 4/9$, $p(S,B) = 1/9$

NF

NE

NE

EXISTENCE OF CE

Proposition

Any NE (p_1^*, \ldots, p_n^*) of a strategic game induces a CE p^* such that

$$p^*(\mathbf{s}) = \prod p_i^*(s_i) \quad \forall \mathbf{s} \in \mathbf{S}.$$

COMPUTATION OF CE

Optimal solution:

Maximize the social welfare

$$\sum_{i \in N} \sum_{\mathbf{s} \in \mathbf{S}} p(\mathbf{s}) u_i(\mathbf{s})$$

subject to the constraint that *p* is a CE.

Bach or Stravinski	
Bach of Stravinski $ \begin{array}{c c} B & S \\ B & 2,1 & 0,0 \\ S & 0,0 & 1,2 \end{array} $	Maximize $3p(B,B) + 3p(S,S)$ $p(B,S) \le 2p(B,B)$ $2p(S,B) \le p(S,S)$ $2p(S,B) \le p(B,B)$ $p(B,S) \le 2p(S,S)$

 $p(B,B) = \alpha$, $p(S,S) = 1 - \alpha$, for any $\alpha \in [0,1]$

COARSE CORRELATED EQUILIBRIUM

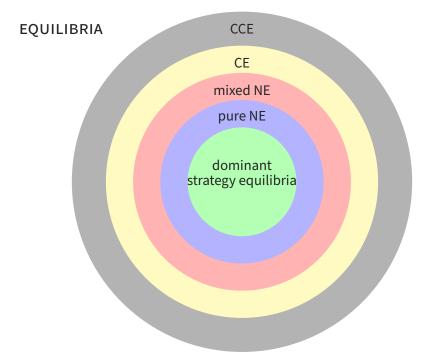
Is the player better off always following p, ignoring the mediator's advice?

Definition

A coarse CE in a strategic game is a probability distribution p such that

$$\sum_{\mathbf{s} \in \mathbf{S}} p(\mathbf{s}) u_i(s_i', \mathbf{s}_{-i}) \le \sum_{\mathbf{s} \in \mathbf{S}} p(\mathbf{s}) u_i(\mathbf{s})$$

for every player *i* and every $s_i' \in S_i$.



CCE = NE FOR SOME GAMES

Matching pennies

$$\begin{array}{c|ccc}
h & t \\
h & 1 & -1 \\
t & -1 & 1
\end{array}$$

Every CCE induces a NE.

Prisoner's dilemma

$$\begin{array}{c|cccc}
 & q & s \\
 & q & -1, -1 & -4, 0 & \\
 & s & 0, -4 & -3, -3 &
\end{array}$$

Every CCE induces a NE.

Proposition

Every CCE p in a two-player zero-sum game induces a NE (p_1, p_2) , where

$$p_1(s_1) := \sum_{t_2 \in S_2} p(s_1, t_2)$$
 and $p_2(s_2) := \sum_{t_1 \in S_1} p(t_1, s_2)$ $\forall s_1 \in S_1, s_2 \in S_2$.

PUBLIC COMMITMENT TO AN ACTION

Example (Conitzer, 2006)

$$\begin{array}{c|cc}
c & d \\
a & 2,1 & 4,0 \\
b & 1,0 & 3,1
\end{array}$$

Strategy profile (a, c) is the only NE

The row player (leader) publicly commits to

- action b, the column player (follower) plays d and utility is (3, 1)
- mixed strategy $p_1(a) = p_1(b) = 1/2$, the follower is indifferent between $c \Rightarrow U_1(p_1, c) = 1.5$ and $d \Rightarrow U_1(p_1, d) = 3.5$

TWO-PLAYER STACKELBERG GAME

Player 1 (leader) and player 2 (follower) interact as follows:

- 1. The leader publicly commits to a mixed strategy $p_1 \in \Delta_1$
- 2. The follower then selects a pure strategy $s_2 \in BR_2(p_1)$

Bilevel optimization

The leader maximizes $U_1(p_1,s_2)$ depending on $s_2 \in BR_2(p_1)$, which is typically non-unique. We need a tie-breaking rule.

TIE-BREAKING RULES

1. If $|BR_2(p_1)| = 1$ for every $p_1 \in \Delta_1$, the leader simply solves

$$\max_{p_1 \in \Delta_1} U_1(p_1, \mathsf{BR}_2(p_1))$$

- 2. Otherwise we assume that the follower breaks ties
 - to the disadvantage of the leader
 - in favor of the leader

WEAK AND STRONG STACKELBERG EQUILIBRIUM

The follower picks $s_2 \in BR_2(p_1)$

1. to the disadvantage of the leader:

$$\max_{p_1 \in \Delta_1} \min_{s_2 \in \mathsf{BR}_2(p_1)} U_1(p_1, s_2)$$

2. in favor of the leader:

$$\max_{p_1 \in \Delta_1} \max_{s_2 \in \mathsf{BR}_2(p_1)} U_1(p_1, s_2)$$

Definition

- 1. Weak SE (p_1^*, s_2^*) is a solution to the 1st problem.
- 2. Strong SE (p_1^*, s_2^*) is a solution to the 2nd problem.

WEAK SE MAY NOT EXIST

Example

$$c \quad d \\ a \mid 2,1 \mid 4,0 \mid \\ b \mid 1,0 \mid 3,1 \mid$$

$$p_1 := p_1(a)$$

$$BR_2(p_1) = \begin{cases} d \quad 0 \le p_1 < 1/2 \\ \{c,d\} \quad p_1 = 1/2 \\ c \quad 1/2 < p_1 \le 1 \end{cases}$$

1. Weak SE doesn't exist since there is no maximizer of function

$$p_1 \in [0,1]$$
 $\mapsto \min_{s_2 \in \mathsf{BR}_2(p_1)} U_1(p_1, s_2) = \begin{cases} p_1 + 3 & 0 \le p_1 < 1/2 \\ p_1 + 1 & 1/2 \le p \le 1 \end{cases}$

2. Strong SE for the leader is $p_1^* = 1/2$

HOW TO COMPUTE STRONG SE?

$$\max_{p_1 \in \Delta_1} \max_{s_2 \in \mathsf{BR}_2(p_1)} U_1(p_1, s_2) = \max_{s_2 \in S_2} \max_{\substack{p_1 \in \Delta_1 \\ s_2 \in \mathsf{BR}_2(p_1)}} U_1(p_1, s_2)$$

Algorithm based on LP

• For each $s_2 \in S_2$ solve the LP:

$$\max \quad U_1(p_1,s_2)$$
 subject to
$$U_2(p_1,s_2) \geq U_2(p_1,t_2) \qquad \forall \, t_2 \in S_2$$

$$p_1 \in \Delta_1$$

• Strong SE p_1^* is the optimal solution for an LP with the maximal value

SE IN TWO-PLAYER ZERO-SUM GAMES

Proposition

In any two-player zero-sum game, weak SE and strong SE coincide, and both are equal to the set of NE.

- In a two-player zero-sum game, whether a player publicly discloses their strategy or not is inconsequential
- This stands in stark contrast with general-sum games