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MOTIVATION

Players’ decisions may be correlated, unlike in Nash equilibrium,
where players act independently

One player may publicly disclose their chosen strategy to the other
players, unlike in a Nash Equilibrium setting



CORRELATED EQUILIBRIUM



CORRELATION OF ACTIONS

Bach or Stravinski
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Pure NE: (B,B) and (S, S)
Mixed NE: p} (B) = 2/3, p5(S) = 2/3 with utility 0.6 for each player

How to choose between (B,B) and (S, S)?
The mediator tosses a fair coin: heads = (B, B), tails = (S, S)
Each player receives advice about what action to play

If both players accept the recommendation, the utility is 1.5



METAGAME

Extensive-form game with imperfect information I'(p)
The mediator uses a probability distribution p over

S:S]_X"'XSn

to sample an action profiles € S
The mediator tells playerionly s;

Every player i picks some s,f €S



NASH EQUILIBRIUM IN THE METAGAME

A strategy of playeriinT'(p) is a mapping
0j:S; = S;

Player i follows the suggestion of the mediator using strategy
o7 (s7) =i

Strategy profile (07,...,05) isaNEinT'(p) if no player has an

incentive to deviate from their advice, assuming all others follow theirs



CORRELATED EQUILIBRIUM

Definition
A correlated equilibrium in a strategic game is a probability distribution p
suchthat (o7,...,05)isaNEinT(p),

> p(scilspui(sis—) < > p(s—ilspui(sis=i)s

S_jeS_; S_jeS_;

for every playeriand every s;, s; € S; such that p(s;) > 0.



CORRELATED EQUILIBRIUM, EQUIVALENTLY

Proposition
The following are equivalent for a probability distribution p over S.

pisa CE.
For each playeriand all s;, s,f €S,

> p(sis-pui(shs—i) < D p(siyS)ui(Siys-))-

S_,'ES_,' S_,'ES_,'



EXAMPLE

Bach or Stravinski

B S
2,11 0,0
0,0 | 1,2

B
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Some solutions:

p(B,B) =, p(S,S)=1-q,

p(B,B) =1
p(s,S)=1

p(BaB) = p(S,S) = 2/9:

p(B,S) = 4/9,

p(8,S) < 2p(5,B)

20(S,B) <p(5,S)

20(S,B) < p(8,5)
p(8,S) < 2p(s, )

forany oc e [0,1]

p(S,B) =1/9

NE
NE
NE



EXISTENCE OF CE

Proposition
Any NE (p3,...,pp) of a strategic game induces a CE p* such that

p*(9)=[1pi(s)  Vses.
ieN



COMPUTATION OF CE

Maximize the social welfare

> > p(s)ui(s)

ieN seS

subject to the constraint that p is a CE.

Bach or Stravinski
Maximize 3p(B,B) +3p(S,S)
B S p(B,S) <2p(B,B)
2,110,0 2p(S,B) <p(S,$)
S0l L2 2p(5,8) < p(B,E)
P(B,S) <2p(S,9)

B
S

Optimal solution: p(B,B) =«, p(S,S)=1-«, foranyoe][0,1]



COARSE CORRELATED EQUILIBRIUM

Is the player better off always following p, ignoring the mediator’s advice?

Definition
A coarse CE in a strategic game is a probability distribution p such that

> p(s)ui(slys.5) < X p(s)ui(s)

scS seS

for every playeriand everys; € S;.



EQUILIBRIA

dominant



CCE = NE FOR SOME GAMES

Matching pennies

h t
h|1]-1
t|-1] 1

Every CCE induces a NE.

Proposition

Prisoner’s dilemma

q s
SN =G
0,-4 | -3,-3

q
S

Every CCE induces a NE.

Every CCE p in a two-player zero-sum game induces a NE (p1,p2), where

pi(s1) = Y. p(si,t2) and pa(sy) = ) p(ty,s2) Vsi€S1,5;€S.

t2€52

tlEsl



STACKELBERG EQUILIBRIUM



PUBLIC COMMITMENT TO AN ACTION

Example (Conitzer, 2006)

c d
2,1 | 4,0
1,0 | 3,1

a
b

Strategy profile (a,c) is the only NE

The row player (leader) publicly commits to
action b, the column player (follower) plays d and utility is (3,1)

mixed strategy p1(a) = p1(b) = 1/2, the follower is indifferent
between ¢ = U;(p1,¢) = 1.5and d = U1(p1,d) =3.5



TWO-PLAYER STACKELBERG GAME

Player 1 (leader) and player 2 (follower) interact as follows:
The leader publicly commits to a mixed strategy p; € A;

The follower then selects a pure strategy s, € BRy(p1)

Bilevel optimization
The leader maximizes U1 (p1,S,) depending on s, € BRy(p;1), which is
typically non-unique. We need a tie-breaking rule.



TIE-BREAKING RULES

If |BRy(p1)| = 1 for every p; € Aq, the leader simply solves

max U (p1, BRa(p1))
p1eA;

Otherwise we assume that the follower breaks ties

to the disadvantage of the leader
in favor of the leader



WEAK AND STRONG STACKELBERG EQUILIBRIUM

The follower picks s, € BRy(p1)

to the disadvantage of the leader:

max min  Ui(p1,52)
p1€A1 5,€BRy(p1)

in favor of the leader:

max max U;(p1,S2)
p1€A1 5,€BRy(p1)

Definition
Weak SE (p7,s;) is a solution to the 1st problem.
Strong SE (pj,s5) is a solution to the 2nd problem.



WEAK SE MAY NOT EXIST

Example
c d

2,11 4,0
1,0 | 3,1

a
b

p1:=pi(a)

d 0<p; < 1/2
BR2(p1) = {{c,d} p1=1/2
c 1/2<p1<1

Weak SE doesn’t exist since there is no maximizer of function

p1€[0,1] +~ min
SzéBRz(pl)

p1+3 0<p1<1/2

Ur(p1,52) =

p1+1 1/2<p<1

Strong SE for the leaderis p] = 1/2



HOW TO COMPUTE STRONG SE?

max max Uj;(p1,Sp) =max max Ui(p1,S7)
P1€A1 5,€BRy (p1) 5268y p1ef
s2€BRy (p1)

Algorithm based on LP
For each s, € S, solve the LP:

max  Ui(p1,$2)

subjectto Uy (p1,$2) > Ua(p1,t2) Vtp e S
p1€A;

Strong SE p] is the optimal solution for an LP with the maximal value



SE IN TWO-PLAYER ZERO-SUM GAMES

Proposition
In any two-player zero-sum game, weak SE and strong SE coincide, and both
are equal to the set of NE.

In a two-player zero-sum game, whether a player publicly discloses

their strategy or not is inconsequential

This stands in stark contrast with general-sum games



