

MODERN ALGORITHMS (not only in computational geometry)

PETR FELKEL

FEL CTU PRAGUE

felkel@fel.cvut.cz

https://cw.felk.cvut.cz/doku.php/courses/a4m39vg/start

Based on [Kolingerova], [Brönnimann], and [Muthukrishnan]

Version from 19.12.2019

Modern algorithms

- 1. Computational geometry today
- Space efficient algorithms
 (In-place / in situ algorithms)
- 3. Data stream algorithms
- 4. Randomized algorithms

Computational geometry today

- Popular: beauty as discipline, wide applicability
- Started in 2D with linear objects (points, lines,...), now 3D and nD, hyperplanes, curved objects,...
- Shift from purely mathematical approach and asymptotical optimality ignoring singular cases
- to practical algorithms, simpler data structures and robustness => algorithms and data structures provable efficient in realistic situations (application dependent)

Space efficient algorithms

Space efficient algorithms

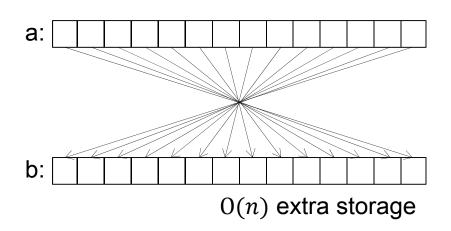
- output is in the same location as the input and
- need only a small amount of additionally memory
 - in-place O(1) extra storage
 sometimes including O(log n) bits for indices
 - in situ O(log n) extra storage

Space efficient algorithms - practical advantages

- Allow for processing larger data sets
 - Algorithms with separate input and output need space for 2n points to store – O(n) extra space
 - Space efficient algs. O(1) or O(log n) extra space
- Greater locality of reference
 - Practical for modern HW with memory hierarchies (e.g., registers – ram on chip (caches) – main RAM, disk latency, network latency)
- Less prone to failure
 - no allocation of large amounts of memory, which can fail at run time
 - good for mission critical applications

Ex: String reverse

```
function reverse(a[0..n])
    allocate b[0..n]
    for i from 0 to n
        b[n-i] = a[i]
    return b
```

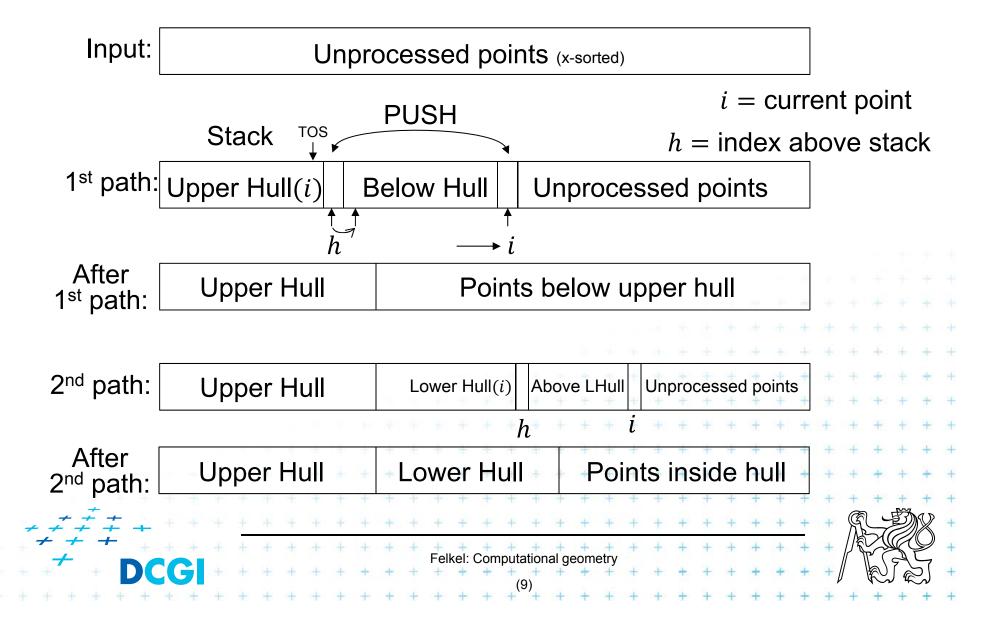


X

In-place sorting

- In array continuous block in memory
 - n^{th} element in O(1) time
 - Select sort, insert sort ... in-place, O(1) additional memory, $O(n^2)$ time
 - Heapsort in-place, O(1) add. memory, $O(n \log n)$ time
 - Quicksort in-situ, $O(\log n)$ add. memory for recursion
 - Mergesort not in-place, not in-situ, O(n) add. memory
- In list linked lists in dynamical memory
 - n^{th} element in O(n) time
 - Mergesort –in-situ, $O(\log n)$ add. memory, $O(n \log n)$ time

Graham in-place algorithm principle



Graham in-place algorithm

```
n-1
Graham-InPlaceScan(S, n, d)
Input: S – pointer to array of length n with points in plane, d = \pm 1 direction
Output: Upper or lower Convex Hull in clockwise order
                                    // d controls the sort direction:
     InPlace-Sort(S, n, d) // d = 1 sort ascending for upper hull
    h \leftarrow 1 // 1st point in stack // d = -1 sort descending for lower hull
    for i \leftarrow 1 \dots n - 1 do
       while h \ge 2 and not right turn(S[h - 2], S[h - 1], S[i]) do
          h \leftarrow h - 1 // pop top element from the stack
       swap S[i] \leftrightarrow S[h] // push the new point to the stack
                          // increment stack length
       h \leftarrow h + 1
                            // end of convex hull (the first point above the stack)
     return h
              S = \text{pointer to the sub-array (to its first point)}
The array:
              h = \text{index of the first point above the stack (offset to } S)
              i = index of the current point
```


Graham in-place algorithm

```
Graham-InPlaceHull(S,n)
Input: S – an array of length n with points in plane
Output: Convex Hull in clockwise order (CW)

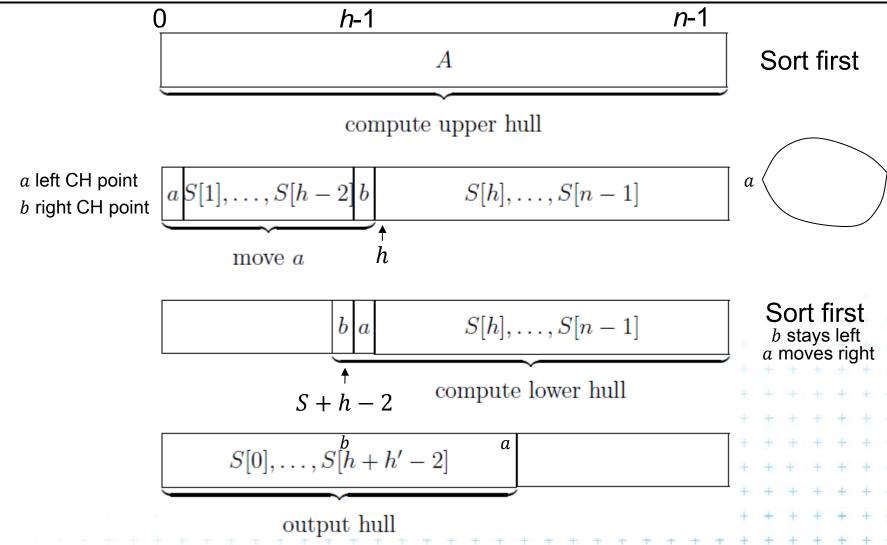
1. h \leftarrow \text{Graham-InPlaceScan}(S,n,1) // 1= ascending – CW upper hull
2. for i \leftarrow 0...h - 2 do
3. swap S[i] \leftrightarrow S[i+1] // bubble a to the right O(h)
4. h' \leftarrow \text{Graham-InPlaceScan}(S+h-2,n-h+2,-1) // lower hull
5. return h + h' - 2
```

Principle:

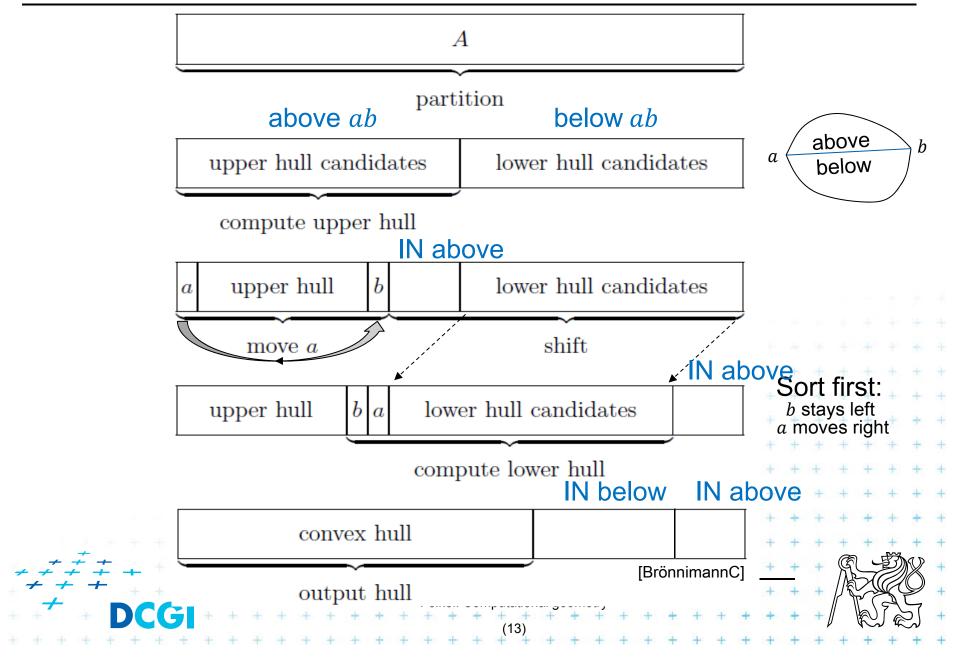
Stack at the beginning of the array S on indices [0...h-1] Exchange by swap operation

We need the in-place sort

Graham in-place algorithm



Optimized Graham in-place algorithm



Data stream algorithms

|data| >> |RAM or disk|

- Data stream = a massive sequence of data
 - Too large to store (on disk, memory, cache,...)
- Examples
 - Network traffic
 - Database transactions
 - Sensor networks
 - Satellite data feeds
 - **—** ...
- Approaches
 - Ignore it (CERN ignores 9/10 of the data)
 - Develop algorithms for dealing with such data

- Paul presents numbers $x = \{1 ... n\}$ in random order, one number missing
- Carole must determine the missing number but has only $O(\log n)$ bits of memory

Any idea?

 Compute the sum of the numbers and subtracts the incoming numbers one by one.

missing number =
$$\frac{n(n+1)}{2} - \sum_{i < n} x[i]$$

The missing number "remains"

And two missing numbers i, j?

Store sum of numbers s and sum of squares s'

$$i + j = \frac{n(n+1)}{2} - s$$

$$i^{2} + j^{2} = \frac{n(n+1)(2n+1)}{6} - s'$$

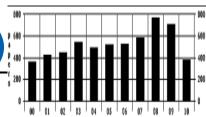
(this principle is applicable for k-missing numbers)

- Single pass over the data: a_1, a_2, \dots, a_n
 - Typically n is known
- Bounded storage (typically n^{α} or $\log^{c} n$ or only c)
 - Units of storage: bits, words, or elements (such as points, nodes/edges, ...)
 - Impossible to store the complete data
- Fast processing time per element
 - Randomness is OK (in fact, almost necessary)
 - Often sub-linear time for the whole data (skip some)
 - Often approximation of the result

Data stream models classification

- Input stream a_1, a_2, \dots, a_n
 - arrives sequentially, item by item
 - describes an underlying signal A, signal is a 1D function A: $[1..N] \rightarrow R$
- Models differ on how the input a_i's describe the signal A for increasing i
 (in increasing order of generality):
 - a) Time series model a_i equals to signal A[i]
 - b) Cash register model- a_i are increments to A[j], $I_i > 0$
 - c) Turnstile model a_i are updates to A[j], $U_i \in R$

a) Time series model (časová řada)



- Stream elements a_i are equal to A[i] (a_i 's are samples of the signal)
- a_i 's appear in increasing order of i ($i \sim time$)
- Applications
 - Observation of the traffic on IP address each 5 minutes
 - NASDAQ volume of trades per minute

b) Cash register model (pokladna)

- a_i are increments to signal A[j]'s
- Stream elements $a_i = (j, I_i), I_i \ge 0$ to mean

+ only

 I_i = Increment

$$A_i[j] = A_{i-1}[j] + I_i$$

where

 $(i\sim time, j\sim bucket)$

- $A_i[j]$ is the state of the signal after seeing *i*-th item
- multiple a_i can increment given A[j] over time
- A most popular data stream model
 - IP addresses accessing web server (histogram)
 - Source IP addresses sending packets over a link
 - access many times, send many packets,...

c) Turnstile model (turniket)

• a_i are updates to signal A[j]'s

where

■ Stream elements $a_i = (j, U_i), U_i \in R$ to mean

+ _

$$A_i[j] = A_{i-1}[j] + U_i$$

(*i*~time, j~bucket, turnstile)

- A_i is the state of the signal after seeing *i*-th item
- U_i may be positive or negative
- multiple a_i can update given A[j] over time
- A most general data stream model
 - Passengers in NY subway arriving and departing
 - Useful for completely dynamic tasks
 - Hard to get reasonable solution in this model

c) Turnstile model variants (for completeness)

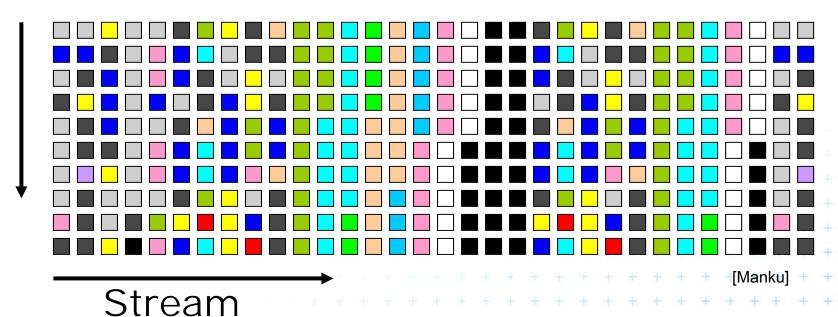
- strict turnstile model $-A_i[j] \ge 0$ for all i Store (sklad)
 - The signal A never drops below zero
 - People can only exit via the turnstile they entered in
 - Databases delete only a record you inserted
 - Storage you can take items only if they are there
- non-strict turnstile model $-A_i[j] < 0$ for some i Metro
 - Difference between two cash register streams
 - $-(A_i[j] < 0 \dots$ negative amount of items for some i)

Examples: Iceberg queries

[Manku]

• Identify all elements whose current frequency f exceeds given threshold s=0.1%

$$f \geq sN$$



Ex: Iceberg queries – a) ordinary solution

The ordinary solution (not data stream) in two passes

- 1. Pass identify frequencies (count the hashes)
 - a set of counters is maintained. Each incoming item is hashed onto a counter, which is incremented.
 - These counters are then compressed into a bitmap, with a 1 denoting a large counter value.
- 2. Pass count exact values for large counters only
 - exact frequencies counters for only those elements which hash to a value whose corresponding bitmap value is 1
- Hard to modify for (single pass) data stream –
 Junknown frequencies after only one pass

Ex: Iceberg queries – data stream definition

Input: threshold $s \in (0,1)$, error $\varepsilon \in (0,1)$, $\varepsilon \ll s$, stream Output: list of items and frequencies

Guarantees:

- No item omitted (reported all items with frequency > sN)
- No item added (no item with frequency $< (s \varepsilon)N$)
- Estimated frequencies are not less than εN of the true frequencies
- Ex: s = 0.1%, $\varepsilon = 0.01\%$, ε should be $\sim \frac{1}{10}$ to $\frac{1}{20}$ of s
 - All elements with freq. > 0.1% of N will output
 - None of element with freq. < 0.09% of N will output

Some elements between 0.09% and 0.1% will output

- Probabilistic algorithm, given threshold s, error ε , and probability of failure δ
 - Data structure S of entries (e, f), //S = subset of counters e element, f estimated frequency, r sampling rate, sampling probability $\frac{1}{r}$
- $S \leftarrow \emptyset, r \leftarrow 1$
- If $e \in S$ then (e, f++) //count, if the counter exists else insert (e, f) into S with probability $\frac{1}{r}$
- S sweeps along the stream as a magnet, attracting all elements which already have an entry in S

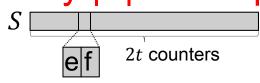
- data are processed in blocks
- s =threshold

• $t = \frac{1}{\varepsilon} \log \left(\frac{1}{s\delta} \right)$,

- $\varepsilon = \text{error}$
- δ = probability of failure

S = subset of counters, |S| < 2t

■ size of structure with counters |S| < 2t⇒ space complexity |S| is independent on N



- r changes over the stream
 - 2t elements r=1
 - next 2t elements r=2
 - next 4t elements r = 4 ...

- whenever r changes, we update S
 - only some counters survive
 - for each entry (e, f) in S // random decrement of counters
 - toss a coin until successful (head) // with probability 1/2
 - if not successful (tail), decrement *f*
 - if f becomes 0, remove entry (e, f) from S
- Output: list of items with threshold s i.e. all entries in S where $f \ge (s \varepsilon)N$

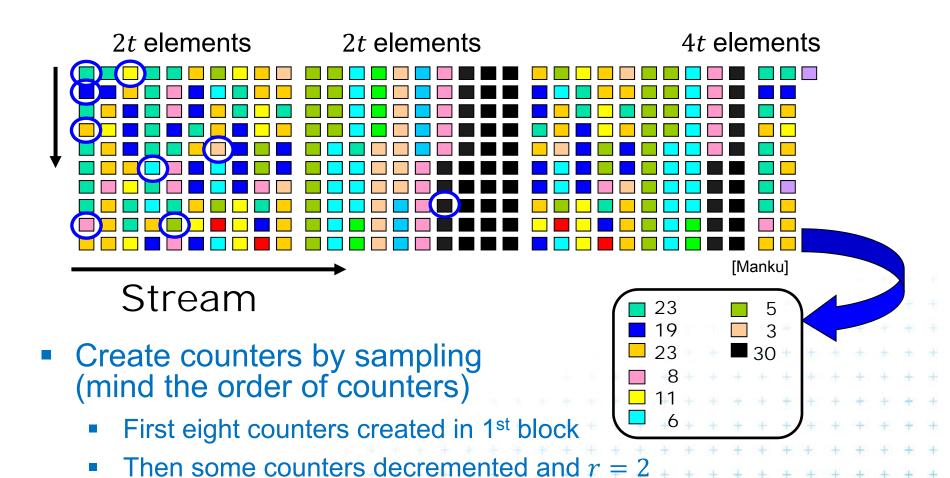
Example for

- support threshold s = 0.1%,
- error $\varepsilon = 0.01\%$,
- and probability of failure $\delta = 1\%$

Sticky sampling computes results

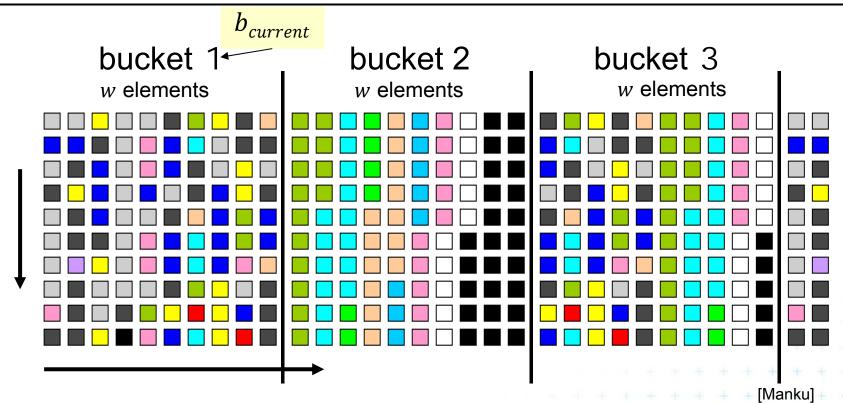
- with $(1 \delta) = 99\%$ probability
- using at most 2t = 80 000 entries

$$- t = \frac{1}{\varepsilon} \log \left(\frac{1}{s\delta} \right) = 40\ 000, |S| < 2t$$



Black counter in the second block (with probability $\frac{1}{r} = \frac{1}{2}$)

Ex: Iceberg queries – c) lossy counting



- Divide the stream into buckets
- Keep exact counters for items in the buckets
- Prune entries at bucket boundaries (remove entries for which $f + \Delta \le b_{current}$

Ex: Iceberg queries – c) lossy counting

- **Deterministic algorithm** (user specifies error ε and threshold s)
- Stream conceptually divided into buckets
 - With bucket size $w = \lceil 1/\epsilon \rceil$ items each
 - Numbered from 1, current bucket id is $b_{current}$
- Data structure D of entries (e, f, Δ) ,
 - e element,
 - f estimated frequency,
 - Δ maximum possible error of f, Δ = b_{current} 1
 (max number of occurrences in the previous buckets)
- At most $\frac{1}{\varepsilon}\log(\varepsilon N)$ entries

Ex: Iceberg queries – c) lossy counting alg.

- $D \leftarrow \emptyset$ // data structure D of entries (e, f, Δ)
- New element e
 - If $e \in D$ then increment its f
 - If $e \notin D$ then
 - Create a new entry $(e, 1, b_{current} 1)$
 - If on the bucket border, i.e., $N \mod w = 0$ then delete entries with $f + \Delta \leq b_{current}$
 - i.e., with zero or one occurrence in each of the previous buckets
 - New $\Delta = b_{current} 1$ is maximum number of times e could have occurred in the first $b_{current} 1$ buckets
- Output: list of items with threshold s i.e., all entries in S where $f \geq (s \varepsilon)N$

Comparison of sticky and lossy sampling

Sticky sampling performs worse

- Tendency to remember every unique element
- The worst case is for sequence without duplicates

Lossy counting

- Is good in pruning low frequency elements quickly
- Worst case for pathological sequence which never occurs in reality

- Input: stream $a_1, a_2, ..., a_n$, with repeated entries
- Output: Estimate of number c of different entries
- Appl: # of different transactions in one day
- a) Precise deterministic algorithm:
 - Array b[1...U], $U = \max \text{ number of different entries}$
 - Init by b[i] = 0 for all i, counter c = 0
 - for each a_i if $b[a_i] = 0$ then $\mathrm{inc}(c)$, b[i] = 1 (value has been used)
 - Return c as number of different entries in b
 - O(1) update and query times, O(U) memory

b) Approximate algorithm

- Array $b[1...\log U]$, $U = \max \text{ number of different entries}$
- Init by b[i] = 0 for all i
- Hash function h: {1..U} → {0.. $\log U$ }
- For each a_i Set $b[h(a_i)] = 1$ (value has been used)
- Extract probable number of different entries from b[] (many elements hashed to each counter)

Sublinear time example

$$O(\text{alg}) < O(n)$$

- Given mutually different numbers $a_1, a_2, ..., a_n$
- Determine any number from upper half of values
- Alg: select k numbers equally randomly
 - Compute their maximum
 - Return this estimation as solution
- Probability of wrong answer = probability of all selected numbers are from the lower half = $\left(\frac{1}{2}\right)^k$
- For error ϵ take $\log \frac{1}{\epsilon}$ samples
- Not useful for MIN, MAX selection

Randomized algorithms

Randomized algorithms

Motivation

- Array of elements, half of char "a", half of char "b", Find "a"
- Deterministic alg:
 - n/2 steps of sequential search (when all "b" are first)
- Randomized:
 - Try random indices
 - Probability of finding "a" soon is high regardless of the order of characters in the array
 (Las Vegas algorithm keep trying up to n/2 steps)

Why to use randomized algorithms

- May be simpler even if the same worst time
- Deterministic algorithm
 - is not known (prime numbers)
 - does not exist
- Randomization
 - can improve the average running time (with the same worst case time), while
 - the worst time depends on our luck not on the data distribution

(It is "hard" to prepare killing datasets)

Randomized algorithms

- a) Incremental algorithms (insert something in random order)
 - Linear programming (random plane insertion)
 - Convex hulls
 - Intersections, space subdivisions (trapezoids)
- Divide and conquer (split in random place)
 - Random sampling
 - Nearest neighbors, trapezoidal subdivisions

Another classification

Monte Carlo

- We always get an answer, often not correct
- Fast solution with risk of an error
- It is not possible to determine, if the answer is correct
 - → run multiple times and compare the results
- Output can be understand as a random variable
- Example: prime number test
 - Task: Find $a \in \left\langle 2, \frac{n}{2} \right\rangle$ such as n is divisible by a
 - · Algorithm: Sample 10 numbers from the given interval, answer

Las Vegas

Las Vegas algorithms

Las Vegas

- We always get a correct answer
- The run time is random (typically ≤ deterministic time)
- Sometimes fails -> perform restart
- Example: Randomized quicksort
 - No median necessary
 - Simpler algorithm
 - Independent on data distribution
 - Return a correct result
 - The result will be ready in $\theta(n \log n)$ time with a high probability
 - Bad luck we select the smallest element -> Selection sort

Randomized quicksort (Las Vegas alg.)

RQS(S) = Randomized Quicksort Input: sequence of data elements, $a_1, a_2, ..., a_n \in S$ Output: sorted set S

- 1. Step 1: choose $i \in \langle 1, n \rangle$ in random
- 2. Step 2: Let A is a multiset $\{a_1, a_2, ..., a_n\}$
 - if n = 1 then output(S)
 - else create three subsets of $S_{<}$, $S_{=}$, $S_{>}$

$$S_{<} = \{b \in A : b < a_i\}$$

 $S_{=} = \{b \in A : b = a_i\}$
 $S_{>} = \{b \in A : b > a_i\}$

- 3. Step 3: $RQS(S_{<})$ and $RQS(S_{>})$
- 4. Return: $RQS(S_{<})$, $S_{=}$, $RQS(S_{>})$

Conclusion on randomized algs.

- Randomized algorithms are often experimental
- We would not get perfect results, but nicely good
- We use randomized algorithm if we do not know how to proceed

References

[Manku]

[Kolingerová] Nové směry v algoritmizaci a výpočetní geometrii (1 a 2), přednáška z předmětu Aplikovaná výpočetní geometrie, MFF UK, 2008

[Brönnimann] Hervé Brönnimann. Towards Space-Efficient Geometric Algorithms, Polytechnic university, Brooklyn, NY,USA, ICCSA04, Italy, 2004

[BrönnimannC]Hervé Brönnimann, et al. 2002. In-Place Planar Convex Hull Algorithms. In *Proceedings of the 5th Latin American Symposium on Theoretical Informatics* (LATIN '02), Sergio Rajsbaum (Ed.). Springer-Verlag, London, UK, UK, 494-507.

http://dl.acm.org/citation.cfm?id=690520

[Indyk] Piotr Indyk. 6.895: Sketching, Streaming and Sub-linear Space Algorithms, MIT course

[Muthukrishnan] Data streams: Algorithms and applications, ("adorisms" in Google)

[Mulmuley] Ketan Mulmuley. Computational Geometry. An Introduction

Through Randomized Algorithms. Prentice Hall, NJ, 1994

Felkel: Computational geometry