
ARRANGEMENTS (uspořádání)

PETR FELKEL
FEL CTU PRAGUE
felkel@fel.cvut.cz
https://cw.felk.cvut.cz/doku.php/courses/a4m39vg/start

Based on [Berg], [Mount]

Version from 3.12.2020

Talk overview

 Arrangements of lines
– Incremental construction
– Topological plane sweep

 Duality – next lesson

(2 / 60)

Arrangements

 The next most important structure in CG after
CH, VD, and DT

 Possible in any dimension
arrangement of (d-1)-dimensional hyperplanes

 We concentrate on arrangement of lines in plane
 Typical application: problems of point sets in dual

plane (collinear points, point on circles, …)

(3 / 60)

Some more applications (see CGAL)

 Finding the minimum-area triangle defined by a set of
points,

 computation of the sorted angular sequences of points,
 finding the ham-sandwich cut,
 planning the motion of a polygon translating among

polygons in the plane,
 computing the offset polygon,
 constructing the farthest-point Voronoi diagram,
 coordinating the motion of two discs moving among

obstacles in the plane,
 performing Boolean operations on curved polygons.

(4 / 60)

Line arrangement

 A finite set of lines subdivides the plane into a
cell complex, called arrangement

 In plane, arrangement defines a planar graph
– Vertices – intersections of (2 or more) lines
– Edges – intersection free segments (or rays or lines)
– Faces – convex regions containing no line

(possibly unbounded)

[Mount] (5 / 60)

 Simple arrangement assumption
= no three lines intersect in a single point

– Can be solved by careful implementation or symbolic
perturbation

Line arrangement

(6 / 60)

Line arrangement

 Formal problem: graph must have bounded edges
– Topological fix: add vertex in infinity
– Geometrical fix: BBOX, often enough as abstract

with corners −∞,−∞ , {∞,∞}

[Mount]

(7 / 60)

Combinatorial complexity of line arrangement


ଶ

 Given lines in general position, max numbers are
– Vertices → each line intersect ݊	– 1	others

– Edges n2 → ݊–1 intersections create ݊ edges
on each of ݊ lines

– Faces

2
)1(

2









 nnn

1
2

1
2

)1(











 n
nnn













n

i

nni

n

10n

1nn

0

1
2

)1(ff

ff
1f (celá rovina)

n=1 n=2 n=3

f1 = 2 f2 = 4 f3 = 7

n=0

f0 = 1

(8 / 60)

Construction of line arrangement

(0. Plane sweep method)– ܱ(݊ଶ	log	݊)	time and ܱ(݊) storage
plus ܱ(݊ଶ) storage for the arrangement
(݊ଶ vertices, edges, faces. log ݊ଶ - heap & BVS access)

A. Incremental method – ܱ(݊ଶ) time and ܱ(݊ଶ) storage
– Optimal method

B. Topological plane sweep– ܱ(݊ଶ) time and ܱ(݊) storage only
– Does not store the result arrangement
– Useful for applications that may throw out the

arrangement after processing

݊ଶ log ݊ଶ= 2݊ଶ log ݊= ܱ(݊ଶ log ݊)

(9 / 60)

A. Incremental construction of arrangement

 2 time, 2 space
~size of arrangement => it is an optimal algorithm

 Not randomized – depends on only, not on order
 Add line ௜ one by one ()

– Find the leftmost intersection with the BBOX
among 2(݅ − 1) + 4	edges already on the BBOX …ܱ(݅)

– Trace the line through the arrangement ܣ(ܮ௜ିଵ) and split
the intersected faces …ܱ(݅) – why? See later

– Update the subdivision (cell split) …ܱ(1)
 Altogether 2

(10 / 60)

A. Tracing the line through the arrangement

 Walk around edges of current face (face walking)
 Determine if the line ݅ intersects current edge
 When intersection found, jump to the face on the

other side of edge

[Berg]

n=8 lines, 7 faces in the zone, 16 edges tested of max 48

݈݅ ݈݅
݈݅

(11 / 60)

A. Tracing the line through the arrangement

 Walk around edges of current face (face walking)
 Determine if the line ݅ intersects current edge
 When intersection found, jump to the face on the

other side of edge

[Berg]

n=8 lines, 7 faces in the zone, 16 edges tested of max 48

1݈݅ ݈݅
݈݅

(11 / 60)

A. Tracing the line through the arrangement

 Walk around edges of current face (face walking)
 Determine if the line ݅ intersects current edge
 When intersection found, jump to the face on the

other side of edge

[Berg]

n=8 lines, 7 faces in the zone, 16 edges tested of max 48

1

2

݈݅ ݈݅
݈݅

(11 / 60)

A. Tracing the line through the arrangement

 Walk around edges of current face (face walking)
 Determine if the line ݅ intersects current edge
 When intersection found, jump to the face on the

other side of edge

[Berg]

n=8 lines, 7 faces in the zone, 16 edges tested of max 48

1

2
3

݈݅ ݈݅
݈݅

(11 / 60)

A. Tracing the line through the arrangement

 Walk around edges of current face (face walking)
 Determine if the line ݅ intersects current edge
 When intersection found, jump to the face on the

other side of edge

[Berg]

n=8 lines, 7 faces in the zone, 16 edges tested of max 48

1

2
3

4

݈݅ ݈݅
݈݅

(11 / 60)

A. Tracing the line through the arrangement

 Walk around edges of current face (face walking)
 Determine if the line ݅ intersects current edge
 When intersection found, jump to the face on the

other side of edge

[Berg]

n=8 lines, 7 faces in the zone, 16 edges tested of max 48

1

2
3

4 5

݈݅ ݈݅
݈݅

(11 / 60)

A. Tracing the line through the arrangement

 Walk around edges of current face (face walking)
 Determine if the line ݅ intersects current edge
 When intersection found, jump to the face on the

other side of edge

[Berg]

n=8 lines, 7 faces in the zone, 16 edges tested of max 48

1

2
3

4 5

6݈݅ ݈݅
݈݅

(11 / 60)

A. Tracing the line through the arrangement

 Walk around edges of current face (face walking)
 Determine if the line ݅ intersects current edge
 When intersection found, jump to the face on the

other side of edge

[Berg]

n=8 lines, 7 faces in the zone, 16 edges tested of max 48

1

2
3

4 5

6
7

݈݅ ݈݅
݈݅

(11 / 60)

A. Tracing the line through the arrangement

 Walk around edges of current face (face walking)
 Determine if the line ݅ intersects current edge
 When intersection found, jump to the face on the

other side of edge

[Berg]

n=8 lines, 7 faces in the zone, 16 edges tested of max 48

1

2
3

4 5

6
7

8

݈݅ ݈݅
݈݅

(11 / 60)

A. Tracing the line through the arrangement

 Walk around edges of current face (face walking)
 Determine if the line ݅ intersects current edge
 When intersection found, jump to the face on the

other side of edge

[Berg]

n=8 lines, 7 faces in the zone, 16 edges tested of max 48

1

2
3

4 5

6
7

8 9

݈݅ ݈݅
݈݅

(11 / 60)

A. Tracing the line through the arrangement

 Walk around edges of current face (face walking)
 Determine if the line ݅ intersects current edge
 When intersection found, jump to the face on the

other side of edge

[Berg]

n=8 lines, 7 faces in the zone, 16 edges tested of max 48

1

2
3

4 5

6
7

8 9

10݈݅ ݈݅
݈݅

(11 / 60)

A. Tracing the line through the arrangement

 Walk around edges of current face (face walking)
 Determine if the line ݅ intersects current edge
 When intersection found, jump to the face on the

other side of edge

[Berg]

n=8 lines, 7 faces in the zone, 16 edges tested of max 48

1

2
3

4 5

6
7

8 9

10 11
݈݅ ݈݅

݈݅
(11 / 60)

A. Tracing the line through the arrangement

 Walk around edges of current face (face walking)
 Determine if the line ݅ intersects current edge
 When intersection found, jump to the face on the

other side of edge

[Berg]

n=8 lines, 7 faces in the zone, 16 edges tested of max 48

1

2
3

4 5

6
7

8 9

10 11

12

݈݅ ݈݅
݈݅

(11 / 60)

A. Tracing the line through the arrangement

 Walk around edges of current face (face walking)
 Determine if the line ݅ intersects current edge
 When intersection found, jump to the face on the

other side of edge

[Berg]

n=8 lines, 7 faces in the zone, 16 edges tested of max 48

1

2
3

4 5

6
7

8 9

10 11

12

13

݈݅ ݈݅
݈݅

(11 / 60)

A. Tracing the line through the arrangement

 Walk around edges of current face (face walking)
 Determine if the line ݅ intersects current edge
 When intersection found, jump to the face on the

other side of edge

[Berg]

n=8 lines, 7 faces in the zone, 16 edges tested of max 48

1

2
3

4 5

6
7

8 9

10 11

12

13

14
݈݅ ݈݅

݈݅
(11 / 60)

A. Tracing the line through the arrangement

 Walk around edges of current face (face walking)
 Determine if the line ݅ intersects current edge
 When intersection found, jump to the face on the

other side of edge

[Berg]

n=8 lines, 7 faces in the zone, 16 edges tested of max 48

1

2
3

4 5

6
7

8 9

10 11

12

13

14

15

݈݅ ݈݅
݈݅

(11 / 60)

A. Tracing the line through the arrangement

 Walk around edges of current face (face walking)
 Determine if the line ݅ intersects current edge
 When intersection found, jump to the face on the

other side of edge

[Berg]

n=8 lines, 7 faces in the zone, 16 edges tested of max 48

1

2
3

4 5

6
7

8 9

10 11

12

13

14

15

16
݈݅ ݈݅

݈݅
(11 / 60)

Input:
Output:

A. Incremental construction of arrangement
Arrangement(L)

Set of lines L in general position (no 3 intersect in 1 common point)
Line arrangement A(L) (resp. part of the arrangement stored in
BBOX B(L) containing all the vertices of A(L))

1. Compute the BBOX B(L) containing all the vertices of A(L) …ܱ(݊ଶ)
2. Construct DCEL for the subdivision induced by BBOX B(L) …ܱ(1)
3. for i = 1 to n do // insert line ࢏࢒
4. find edge e, where line ݈݅ intersects the BBOX of 2(i-1)+4 edges …ܱ(݅)
5. f = bounded face incident to the edge e
6. while f is in B(L) (bounded face f = f is in the BBOX) …ܱ(݅)
7. split f and set f to be the next intersected face

across the intersected edge
8. update the DCEL (split the cell) …ܱ(1)

See later…

The Zone of edge ݅

݈ଽ: ݅ − 1 = 8 lines, 7 of max 9 faces in the zone

Zone ஺ܼ ݈௜ = set of ݅ faces of (ܮ)ܣ intersected by ݈݈݅௜ crosses max ݅ − 1 lines ⇒ ݅ faces

݈݅
The zone of ݈݅ for ݅ = 9

1
2

3

4

5

6 7

(13 / 60)

Edges in the cells of the zone

1

2
3

4 5

6
7

8 9

10 11

12

13

14

15

16
݈݅
Total number of edges in all zone faces

Naïve upper bound
edge ݈݅ passes max ݅ faces … ܱ(݅)
each face bounded by at most ݅ lines

Tight upper bound 6݅ = 	ܱ(݅) ܱ(݅ଶ) ????

n=8 lines, 16 edges tested of max 48

(14 / 60)

Tracing the line through the arrangement

 Number of traversed edges determines the
insertion complexity

 Naïve estimation would be 2 traversed edges
(faces, lines per face, 2 edges)

 According to the Zone theorem, it is edges
only!

Zone theorem
= given an arrangement of lines in the plane

and given any line in the plane, the total number
of edges in all the cells of the zone ܣ is at
most .

(15 / 60)

Key idea of a proof

 Find a way to add up edges so that
each line will induce a constant number of edges

 Split edges of the zone into – 3݊ left bounding edges – 3݊ right bounding edges – 6݊ bounding edges total

[Mount 2014, page 75]

(16 / 60)

The proof (left bounding edges)

True for lines
holds for lines݈ଵ= rightmost line intersecting ݈

Without ݈ଵ3 ݊ − 1 left bounding edges
Insert ݈ଵ+1 left bounding edge ݈ଵ+2 split ݁௔ and ݁௕3 ݊ − 1 + 3 = 3݊ ⇒ hold
or less if right bounding edges

, one left bounding edge,

[Mount 2014, page 75]

(17 / 60)

Cell split in O(1)

 1 new vertex
 2 new face records, 1 face record (f) destroyed
 3x2 new half-edges, 2 half-edges destroyed
 update pointers … O(1)

[Berg]

ଵ݂
ଶ݂

(18 / 60)

Complexity of incremental algorithm

 insertions
 time for one line insertion

instead of ଶ
(Zone theorem)

=> Complexity: 2 2
bbox edges walked

(19 / 60)

B. Topological plane sweep algorithm

 Complete arrangement needs 2 storage
 Often we need just to process each arrangement

element just once – and we can throw it out then
 Classical Sweep line algorithm (for arrangement of lines)

– needs ܱ(݊) storage
– needs log	݊ for heap manipulation in ܱ(݊2) event points
=> ܱ(݊2	log	݊)	algorithm

 Topological sweep line - TSL
– no ܱ(log	݊) factor in time complexity in ܱ(݊2) event points

– array of ݊ neighbors and a stack of ready vertices 	ܱ(1)
=> ܱ(݊2) algorithm

(20 / 60)

Illustration from Edelsbrunner & Guibas

(21 / 60)

Topological line (curve)
(an intuitive notion)

 Monotonic curve in ݕ-dir
 intersects each line

exactly once
(as a sweep line)

Cut in an arrangement ܣ
 is an ordered sequence of edges ܿଵ, ܿଶ, … , ܿ௡	in ܣ

(one taken from each line), such that for 1 ≤ ݅ ≤ ݊ − 1, ܿ௜ and ܿ௜ାଵ are incident to the same face of ܣ and ܿ௜ is above and ܿ௜ାଵ below the face
 Edges in the cut are not necessarily connected (as ܿଶ and ܿଷ)

Topological line and cut
1

2

3

4
5 Topological line

(22 / 60)

Topological line (curve)
(an intuitive notion)

 Monotonic curve in ݕ-dir
 intersects each line

exactly once
(as a sweep line)

Cut in an arrangement ܣ
 is an ordered sequence of edges ܿଵ, ܿଶ, … , ܿ௡	in ܣ

(one taken from each line), such that for 1 ≤ ݅ ≤ ݊ − 1, ܿ௜ and ܿ௜ାଵ are incident to the same face of ܣ and ܿ௜ is above and ܿ௜ାଵ below the face
 Edges in the cut are not necessarily connected (as ܿଶ and ܿଷ)

Topological line and cut
1

2

3

4
5 Topological line

www.nejbaby.cz

(22 / 60)

Topological plane sweep algorithm
 Starts at the leftmost cut

– Consist of left-unbounded edges of ܣ (ending at −¶)
– Computed in ܱ(݊	log	݊)	time – order of slopes

 The sweep line is
– pushed from the leftmost cut to the rightmost cut
– Advances in elementary steps

 Elementary step
= Processing of any ready vertex

(intersection of consecutive edges at their right-point)
– Swaps the order of lines along the sweep line
– Is always possible (e.g., the point with smallest ݔ)
– Searching of smallest ݔ would need ܱ(log ݊) time …

ready
vertex

topological
sweep line

(23 / 60)

Step 0 – the leftmost cut

Topological line

1

2

3

4
5

c1

c2

c3

c4

c5

ci = ordered sequence of edges along the topological sweep line

Slope

ready
vertex

ready
vertex

(24 / 60)

Step 1 – after processing of c4 x c5

Topological line

1

2

3

4
5

c1

c2

c3
c4 c5

Slope

ready
vertex

ready
vertex

(25 / 60)

Step 2 – after processing of c3 x c4

1

2

3

4
5

Topological line

1

2

3

4
5

c1

c2

c3

c5

c4

Slope

(26 / 60)

How to determine the next right point?

 Elementary step (intersection at edges right-point)
– Is always possible (e.g., the point with smallest ݔ)
– But searching the smallest ݔ would need ܱ(log	݊) time
– We need ܱ(1) time

 Right endpoint of the edge in the cut results from
– a line of smaller slope intersecting it from above (traced

from L to R) or
– line of larger slope intersecting it from below.

 Use Upper and Lower Horizon Trees (UHT, LHT)
– Common segments of UHT and LHT belong to the cut
– Intersect the trees, find pairs of consecutive edges
– use the right points as legal steps (push to stack)

Slope

UHT

LHT

(27 / 60)

Upper and lower horizon tree

 Upper horizon tree (UHT)
– Insert lines in order of decreasing slope (cw)
– When two edges meet, keep the edge with higher slope

and trim the inserted edge (with lower slope)
– To get one tree and not the forest of trees (if not

connected) add a vertical line in +¶ (slope +90°)
– Left endpoints of the edges in the cut

do not belong to the tree

 Lower horizon tree (LHT) construction is symmetrical
 UHT and LHT serve for right endpts determination

(28 / 60)

Upper horizon tree (UHT) – initial tree

Insert lines in order of decreasing slope (“cw”)

Topological line

1

2

3

4
5

Slope

Insertion order: 6, 5, 4, 3, 2, 1

6

(29 / 60)

Upper horizon tree (UHT) – initial tree

Insert lines in order of decreasing slope (“cw”)

Topological line

1

2

3

4
5

Slope

Insertion order: 6, 5, 4, 3, 2, 1

6

(29 / 60)

Upper horizon tree (UHT) – initial tree

Insert lines in order of decreasing slope (“cw”)

Topological line

1

2

3

4
5

Slope

Insertion order: 6, 5, 4, 3, 2, 1

6

(29 / 60)

Upper horizon tree (UHT) – initial tree

Insert lines in order of decreasing slope (“cw”)

Topological line

1

2

3

4
5

Slope

Insertion order: 6, 5, 4, 3, 2, 1

6

(29 / 60)

Upper horizon tree (UHT) – initial tree

Insert lines in order of decreasing slope (“cw”)

Topological line

1

2

3

4
5

Slope

Insertion order: 6, 5, 4, 3, 2, 1

6

(29 / 60)

Upper horizon tree (UHT) – initial tree

Insert lines in order of decreasing slope (“cw”)

Topological line

1

2

3

4
5

Slope

Insertion order: 6, 5, 4, 3, 2, 1

6

(29 / 60)

Upper horizon tree (UHT) – initial tree

Insert lines in order of decreasing slope (“cw”)

Topological line

1

2

3

4
5

Slope

Insertion order: 6, 5, 4, 3, 2, 1

6

(29 / 60)

Upper horizon tree (UHT) – initial tree

Insert lines in order of decreasing slope (“cw”)

Topological line

1

2

3

4
5

Slope

Insertion order: 6, 5, 4, 3, 2, 1

6

(29 / 60)

Upper horizon tree (UHT) – initial tree

Insert lines in order of decreasing slope (“cw”)

Topological line

1

2

3

4
5

Slope

Insertion order: 6, 5, 4, 3, 2, 1

6

(29 / 60)

Upper horizon tree (UHT) – initial tree

Insert lines in order of decreasing slope (“cw”)

Topological line

1

2

3

4
5

Slope

Insertion order: 6, 5, 4, 3, 2, 1

6

(29 / 60)

Upper horizon tree (UHT) – initial tree

Insert lines in order of decreasing slope (“cw”)

Topological line

1

2

3

4
5

Slope

Insertion order: 6, 5, 4, 3, 2, 1

6

(29 / 60)

Upper horizon tree (UHT) – initial tree

Insert lines in order of decreasing slope (“cw”)

Topological line

1

2

3

4
5

Slope

Insertion order: 6, 5, 4, 3, 2, 1

6

(29 / 60)

Lower horizon tree (LHT) – initial tree

Insert lines in order of increasing slope (“ccw”)

Topological line

1

2

3

4
5

Slope

6

Insertion order: 6, 1, 2, 3, 4, 5

(30 / 60)

Lower horizon tree (LHT) – initial tree

Insert lines in order of increasing slope (“ccw”)

Topological line

1

2

3

4
5

Slope

6

Insertion order: 6, 1, 2, 3, 4, 5

(30 / 60)

Lower horizon tree (LHT) – initial tree

Insert lines in order of increasing slope (“ccw”)

Topological line

1

2

3

4
5

Slope

6

Insertion order: 6, 1, 2, 3, 4, 5

(30 / 60)

Lower horizon tree (LHT) – initial tree

Insert lines in order of increasing slope (“ccw”)

Topological line

1

2

3

4
5

Slope

6

Insertion order: 6, 1, 2, 3, 4, 5

(30 / 60)

Lower horizon tree (LHT) – initial tree

Insert lines in order of increasing slope (“ccw”)

Topological line

1

2

3

4
5

Slope

6

Insertion order: 6, 1, 2, 3, 4, 5

(30 / 60)

Lower horizon tree (LHT) – initial tree

Insert lines in order of increasing slope (“ccw”)

Topological line

1

2

3

4
5

Slope

6

Insertion order: 6, 1, 2, 3, 4, 5

(30 / 60)

Lower horizon tree (LHT) – initial tree

Insert lines in order of increasing slope (“ccw”)

Topological line

1

2

3

4
5

Slope

6

Insertion order: 6, 1, 2, 3, 4, 5

(30 / 60)

Lower horizon tree (LHT) – initial tree

Insert lines in order of increasing slope (“ccw”)

Topological line

1

2

3

4
5

Slope

6

Insertion order: 6, 1, 2, 3, 4, 5

(30 / 60)

Lower horizon tree (LHT) – initial tree

Insert lines in order of increasing slope (“ccw”)

Topological line

1

2

3

4
5

Slope

6

Insertion order: 6, 1, 2, 3, 4, 5

(30 / 60)

Lower horizon tree (LHT) – initial tree

Insert lines in order of increasing slope (“ccw”)

Topological line

1

2

3

4
5

Slope

6

Insertion order: 6, 1, 2, 3, 4, 5

(30 / 60)

Lower horizon tree (LHT) – initial tree

Insert lines in order of increasing slope (“ccw”)

Topological line

1

2

3

4
5

Slope

6

Insertion order: 6, 1, 2, 3, 4, 5

(30 / 60)

Lower horizon tree (LHT) – initial tree

Insert lines in order of increasing slope (“ccw”)

Topological line

1

2

3

4
5

Slope

6

Insertion order: 6, 1, 2, 3, 4, 5

(30 / 60)

Overlap UHT and LHT – detect ready vertices

Topological line

1
2

3

4
5

Topological line

1
2

3

4
5

UHT LHT

6 6

6
Topological line

1
2

3

4
5

Overlapready
vertex

ready
vertex

(31 / 60)

Upper horizon tree (UHT) – init. construction

 Insert lines in order of decreasing slope (cw)
 Each new line starts above all the current lines
 The uppermost face = convex polygonal chain
 Walk left to right along the chain

to determine the intersection
 Never walk twice over a segment

– Such segment is no longer part of
the upper chain– ܱ(݊) segments in UHT

=> ܱ(݊) initial construction
(after ݊	log	݊ 	sorting of the lines ~slope)

(32 / 60)

Upper horizon tree (UHT) – update

l

Ready vertex After the elementary step
 Two edges swap position along

the sweep line
 Lower edge l (lower slope, comes from above)

– Reenter to UHT
– Terminate at nearest edge of UHT
– Start in edge below in the current cut
– Traverse the face in CCW order
– Intersection must exist, as l has lower

slope than the other edge from v
and both belong to the same face

(33 / 60)

Data structures for topological sweep alg.

Topological sweep line algorithm uses 5 arrays:

1) Line equation coefficients – E [1:n]
2) Upper horizon tree – UHT [1:n]
3) Lower horizon tree – LHT [1:n]
4) Order of lines cut by the sweep line – C [1:n]
5) Edges along the sweep line – N [1:n]
6) Stack for ready vertices (events) – S

(n number of lines)

1) Line equation coefficients E [1:n]

 Array of line equation coefs. E
– Contains coefficients ai and bi

of line equations ݕ = ܽ௜ݔ + ܾ௜
– E is indexed by the line index
– Lines are ordered according to

their slope (angle from -90° to
90°)

1 a1 b1

2 a2 b2

3 a3 b3

4 a4 b4

5 a5 b5

Array of line
equations Eݕ = ܽ௜ݔ + ܾ௜

1
2

3
4
5

(6)

In
di

ce
s

of
 li

ne
s

Slope

(35 / 60)

2) and 3) – Horizon trees UHT and LHT

 Store pairs of line indices in E
that delimit segment li to the left
and to the right

 Segments are half open
 Unlimited line has “indices”

(–¶, +¶] (+¶, –¶]
 One additional vertical line

– prevents the tree from splitting into
forest of trees

– is inserted first and never trimmed
– is (–¶, +¶] for UHT
– is (+¶, –¶] for LHT

Topological line

1
2

3
4
5Topological line

1
2

3
4
5

UHT LHT

1 −∞ 6
2 −∞ 1
3 −∞ 1
4 −∞ 3
5 −∞ 4
6 +∞ −∞

1 −∞ 2
2 −∞ 5
3 −∞ 5
4 −∞ 5
5 −∞ 6
6 −∞ +∞

UHT array
Delimiting

lines indices

LHT array
Delimiting

lines indices

6 6

Their intersection is
used for searching
of legal steps
(right points)
- the shorter edge wins

(36 / 60)

4) Order of lines cut by sweep line – C [1:n]

 The topological sweep line cuts each line once
 Order of the cuts (along the topological sweep

line) is stored in array C as a sequence of line
indices

 Array C “points” to the array E
of line equations

 For the initial leftmost cut,
the order is the same as in E

 Index ci addresses i-th line from top
along the sweep line

c1 1
c2 2
c3 3
c4 4
c5 5

CUT Lines C
Indexes of sup-

porting lines

(37 / 60)

5) Edges along the sweep line – N [1:n]

 Edges intersected by the topological sweep line are
stored here (edges along the sweep line)

 Instead of endpoints themselves, we store the
indices of lines whose intersections delimit the edge

 Order of these edges is
the same as in C
(both use the index ci)

 Index ci stores the index
of i-th edge from top along
the sweep line

c1 −∞ 2
c2 −∞ 1
c3 −∞ 5
c4 −∞ 5
c5 −∞ 4

CUT edges N
Pairs of line indices
delimiting the edge The first edge

along the sweep line:
- lies on line C[c1]
- Comes from infinity
- is delimited by edge E[2]

(38 / 60)

6) Stack S

 The exact order of events is not important
(event = intersection in ready vertex)

 Alg. can process any “ready vertex”
 Event queue is therefore replaced by a stack

(faster: instead of for queue)
 The stack stores just the upper edge ci

from the pair intersecting in ready vertex
 Intersection in the ready vertex

is computed between stored ci and ci+1
c4

c1

Stack S
Ready vertex
first edge idx

c4 x c5
c1 x c2

(39 / 60)

Topological sweep line demo

Input
 set of lines L in the plane
 ordered in increasing slope

( -90° to 90°), simple,
not vertical

 line parameters in array E

1
2

3
4
5

1 a1 b1

2 a2 b2

3 a3 b3

4 a4 b4

5 a5 b5

Array of line
equations E

y = aix + b

Slope

In
di

ce
s

of
 li

ne
s

In
di

ce
s

of
 li

ne
s

(40 / 60)

1) Initial leftmost cut - C

 Store the indices of lines in E
into the Cut lines array C
in increasing slope order

Topological line

1
2

3
4
5

CUTc1

c2

c3
c4

c5

1 a1 b1

2 a2 b2

3 a3 b3

4 a4 b4

5 a5 b5

Array of line
equations E

y = aix + b

c1 1
c2 2
c3 3
c4 4
c5 5

CUT Lines C
Indexes of sup-

porting lines

Li
ne

 in
di

ce
s

al
on

g
th

e
cu

t

In
di

ce
s

of
 li

ne
s

(41 / 60)

1) Initial leftmost cut - N

 Prepare array N for endpoints of
the cut edges (resp. for line
indices delimiting these edges)

 Init it by line “ends” −∞,+∞
1 a1 b1

2 a2 b2

3 a3 b3

4 a4 b4

5 a5 b5

Array of line
equations E

y = aix + b

c1 1
c2 2
c3 3
c4 4
c5 5

c1 −∞ ¶

c2 −∞ ¶

c3 −∞ ¶

c4 −∞ ¶

c5 −∞ ¶

CUT edges N
Pairs of line indices
delimiting the edge

CUT Lines C
Indexes of sup-

porting lines

indices of lines

Topological line

1
2

3
4
5

CUTc1

c2

c3
c4

c5

(42 / 60)

1) Initial leftmost cut - N

 Prepare array N for endpoints of
the cut edges (resp. for line
indices delimiting these edges)

 Init it by line “ends” −∞,+∞
1 a1 b1

2 a2 b2

3 a3 b3

4 a4 b4

5 a5 b5

Array of line
equations E

y = aix + b

c1 1
c2 2
c3 3
c4 4
c5 5

c1 −∞ ¶

c2 −∞ ¶

c3 −∞ ¶

c4 −∞ ¶

c5 −∞ ¶

CUT edges N
Pairs of line indices
delimiting the edge

CUT Lines C
Indexes of sup-

porting lines

indices of lines

Topological line

1
2

3
4
5

CUTc1

c2

c3
c4

c5

Index of delimiter edge in	−∞
(42 / 60)

2a) Compute Upper Horizon Tree - UHT

1 a1 b1

2 a2 b2

3 a3 b3

4 a4 b4

5 a5 b5

c1 1
c2 2
c3 3
c4 4
c5 5

c1 −∞ ¶

c2 −∞ ¶

c3 −∞ ¶

c4 −∞ ¶

c5 −∞ ¶

1 −∞ 2
2 −∞ 5
3 −∞ 5
4 −∞ 5
5 −∞ 6
6 −∞ +¶

UHT array
Delimiting

lines indices

CUT edges N
Pairs of line indices
delimiting the edge

CUT Lines C
Indexes of sup-

porting lines

Array of line
equations E

y = aix + b

Topological line

1
2

3
4
5

CUTc1

c2

c3
c4

c5
Topological line

1
2

3
4
5

6

UHT

Additional “help edge“
Unlimited, bottom-up
Inserted first, never changed

Order of
insertion
into UHT

(43 / 60)

2b) Compute Lower Horizon Tree - LHT

1 a1 b1

2 a2 b2

3 a3 b3

4 a4 b4

5 a5 b5

Topological line

1
2

3
4
5Topological line

1
2

3
4
5

UHT LHT

c1 1
c2 2
c3 3
c4 4
c5 5

Topological line

1
2

3
4
5

CUTc1

c2

c3
c4

c5

c1 −∞ ¶

c2 −∞ ¶

c3 −∞ ¶

c4 −∞ ¶

c5 −∞ ¶

1 −∞ 6
2 −∞ 1
3 −∞ 1
4 −∞ 3
5 −∞ 4
6 +∞ –¶

1 −∞ 2
2 −∞ 5
3 −∞ 5
4 −∞ 5
5 −∞ 6
6 −∞ +¶

UHT array
Delimiting

lines indices

LHT array
Delimiting

lines indices

CUT edges N
Pairs of line indices
delimiting the edge

CUT Lines C
Indexes of sup-

porting lines

Stack S
Ready vertex
first edge idx

Array of line
equations E

y = aix + b

6 6

Inserted first, never changed
top to bottomOrder of

insertion
into LHT (44 / 60)

Intersect the trees – take the shorter edge

3a) Determine right delimiters of edges - N

1 a1 b1

2 a2 b2

3 a3 b3

4 a4 b4

5 a5 b5

Topological line

1
2

3
4
5Topological line

1
2

3
4
5

UHT LHT

c1 1
c2 2
c3 3
c4 4
c5 5

Topological line

1
2

3
4
5

CUTc1

c2

c3
c4

c5

c1 −∞ 2
c2 −∞ 1
c3 −∞ 5
c4 −∞ 5
c5 −∞ 4

1 −∞ 6
2 −∞ 1
3 −∞ 1
4 −∞ 3
5 −∞ 4
6 +∞ –¶

1 −∞ 2
2 −∞ 5
3 −∞ 5
4 −∞ 5
5 −∞ 6
6 −∞ +¶

UHT array
Delimiting

lines indices

LHT array
Delimiting

lines indices

CUT edges N
Pairs of line indices
delimiting the edge

CUT Lines C
Indexes of sup-

porting lines

Stack S
Ready vertex
first edge idx

Array of line
equations E

y = aix + b

6 6

(45 / 60)

Compute intersections of neighbors – push into stack

3b) Ready vertices = inters. of neighbors – S

1 a1 b1

2 a2 b2

3 a3 b3

4 a4 b4

5 a5 b5

Topological line

1
2

3
4
5Topological line

1
2

3
4
5

UHT LHT

c1 1
c2 2
c3 3
c4 4
c5 5

Topological line

1
2

3
4
5

CUTc1

c2

c3
c4

c5

c1 −∞ 2
c2 −∞ 1
c3 −∞ 5
c4 −∞ 5
c5 −∞ 4

1 −∞ 6
2 −∞ 1
3 −∞ 1
4 −∞ 3
5 −∞ 4
6 +∞ –¶

1 −∞ 2
2 −∞ 5
3 −∞ 5
4 −∞ 5
5 −∞ 6
6 −∞ +¶

UHT array
Delimiting

lines indices

LHT array
Delimiting

lines indices

CUT edges N
Pairs of line indices
delimiting the edge

CUT Lines C
Indexes of sup-

porting lines

Stack S
Ready vertex
first edge idx

Array of line
equations E

y = aix + b

6 6

(46 / 60)

Compute intersections of neighbors – push into stack

3b) Ready vertices = inters. of neighbors – S

1 a1 b1

2 a2 b2

3 a3 b3

4 a4 b4

5 a5 b5

Topological line

1
2

3
4
5Topological line

1
2

3
4
5

UHT LHT

c1 1
c2 2
c3 3
c4 4
c5 5

Topological line

1
2

3
4
5

CUTc1

c2

c3
c4

c5

c1 −∞ 2
c2 −∞ 1
c3 −∞ 5
c4 −∞ 5
c5 −∞ 4

1 −∞ 6
2 −∞ 1
3 −∞ 1
4 −∞ 3
5 −∞ 4
6 +∞ –¶

1 −∞ 2
2 −∞ 5
3 −∞ 5
4 −∞ 5
5 −∞ 6
6 −∞ +¶

UHT array
Delimiting

lines indices

LHT array
Delimiting

lines indices

CUT edges N
Pairs of line indices
delimiting the edge

CUT Lines C
Indexes of sup-

porting lines

Stack S
Ready vertex
first edge idx

Array of line
equations E

y = aix + b

6 6

c1

(46 / 60)

Compute intersections of neighbors – push into stack

3b) Ready vertices = inters. of neighbors – S

1 a1 b1

2 a2 b2

3 a3 b3

4 a4 b4

5 a5 b5

Topological line

1
2

3
4
5Topological line

1
2

3
4
5

UHT LHT

c1 1
c2 2
c3 3
c4 4
c5 5

Topological line

1
2

3
4
5

CUTc1

c2

c3
c4

c5

c1 −∞ 2
c2 −∞ 1
c3 −∞ 5
c4 −∞ 5
c5 −∞ 4

1 −∞ 6
2 −∞ 1
3 −∞ 1
4 −∞ 3
5 −∞ 4
6 +∞ –¶

1 −∞ 2
2 −∞ 5
3 −∞ 5
4 −∞ 5
5 −∞ 6
6 −∞ +¶

UHT array
Delimiting

lines indices

LHT array
Delimiting

lines indices

CUT edges N
Pairs of line indices
delimiting the edge

CUT Lines C
Indexes of sup-

porting lines

Stack S
Ready vertex
first edge idx

Array of line
equations E

y = aix + b

6 6

c1

(46 / 60)

Compute intersections of neighbors – push into stack

3b) Ready vertices = inters. of neighbors – S

1 a1 b1

2 a2 b2

3 a3 b3

4 a4 b4

5 a5 b5

Topological line

1
2

3
4
5Topological line

1
2

3
4
5

UHT LHT

c1 1
c2 2
c3 3
c4 4
c5 5

Topological line

1
2

3
4
5

CUTc1

c2

c3
c4

c5

c1 −∞ 2
c2 −∞ 1
c3 −∞ 5
c4 −∞ 5
c5 −∞ 4

1 −∞ 6
2 −∞ 1
3 −∞ 1
4 −∞ 3
5 −∞ 4
6 +∞ –¶

1 −∞ 2
2 −∞ 5
3 −∞ 5
4 −∞ 5
5 −∞ 6
6 −∞ +¶

UHT array
Delimiting

lines indices

LHT array
Delimiting

lines indices

CUT edges N
Pairs of line indices
delimiting the edge

CUT Lines C
Indexes of sup-

porting lines

Stack S
Ready vertex
first edge idx

Array of line
equations E

y = aix + b

6 6

c4
c1

(46 / 60)

4a) Pop ready vertex from S – process c4

1 a1 b1

2 a2 b2

3 a3 b3

4 a4 b4

5 a5 b5

Topological line

1
2

3
4
5Topological line

1
2

3
4
5

UHT LHT

Topological line

1
2

3
4
5

CUT

c1 1
c2 2
c3 3
c4 4
c5 5

c1

c2

c3
c4

c5

c1 −∞ 2
c2 −∞ 1
c3 −∞ 5
c4 −∞ 5
c5 −∞ 4

1 −∞ 6
2 −∞ 1
3 −∞ 1
4 −∞ 3
5 −∞ 4
6 +∞ –¶

1 −∞ 2
2 −∞ 5
3 −∞ 5
4 −∞ 5
5 −∞ 6
6 −∞ +¶

UHT array
Delimiting

lines indices

LHT array
Delimiting

lines indices

CUT edges N
Pairs of line indices
delimiting the edge

CUT Lines C
Indexes of sup-

porting lines

Stack S
Ready vertex
first edge idx

Array of line
equations E

y = aix + b

6 6

c4
c1

(47 / 60)

4b) Swap lines c4 and c5 – swap 4 and 5

1 a1 b1

2 a2 b2

3 a3 b3

4 a4 b4

5 a5 b5

Topological line

1
2

3
4
5Topological line

1
2

3
4
5

UHT LHT

c1 1
c2 2
c3 3
c4 5
c5 4

Topological line

1
2

3
4
5

CUTc1

c2

c3
c4

c5

c1 −∞ 2
c2 −∞ 1
c3 −∞ 5
c4 −∞ 4
c5 −∞ 5

1 −∞ 6
2 −∞ 1
3 −∞ 1
4 −∞ 3
5 −∞ 4
6 +∞ –¶

1 −∞ 2
2 −∞ 5
3 −∞ 5
4 −∞ 5
5 −∞ 6
6 −∞ +¶

UHT array
Delimiting

lines indices

LHT array
Delimiting

lines indices

CUT edges N
Pairs of line indices
delimiting the edge

CUT Lines C
Indexes of sup-

porting lines

Stack S
Ready vertex
first edge idx

Array of line
equations E

y = aix + b

6 6

c1

(48 / 60)

4c) Update the horizon trees – UHT and LHT

1 a1 b1

2 a2 b2

3 a3 b3

4 a4 b4

5 a5 b5

Topological line

1
2

3
4
5Topological line

1
2

3
4
5

UHT LHT

c1 1
c2 2
c3 3
c4 5
c5 4

c1 −∞ 2
c2 −∞ 1
c3 −∞ 5
c4 −∞ 4
c5 −∞ 5

1 –¶ 6
2 –¶ 1
3 –¶ 1
4 5 3
5 4 3
6 +¶ –¶

1 –¶ 2
2 –¶ 5
3 –¶ 5
4 5 6
5 4 6
6 –¶ +¶

UHT array
Delimiting

lines indices

LHT array
Delimiting

lines indices

CUT edges N
Pairs of line indices
delimiting the edge

CUT Lines C
Indexes of sup-

porting lines

Stack S
Ready vertex
upper edge idx

Array of line
equations E

y = aix + b

6 6

Reentered
partTopological line

1
2

3
4
5

CUTc1

c2

c3
c4

c5

Note: Edges are half open to prevent the tree after reinsertion

c1

(49 / 60)

Intersct the trees

4d) Determine new cut edges endpoints – N

1 a1 b1

2 a2 b2

3 a3 b3

4 a4 b4

5 a5 b5

Topological line

1
2

3
4
5Topological line

1
2

3
4
5

UHT LHT

Topological line

1
2

3
4
5

CUT

c1 1
c2 2
c3 3
c4 5
c5 4

c1

c2

c3
c4 c5

c1 –¶ 2
c2 –¶ 1
c3 –¶ 5
c4 4 3
c5 5 3

1 –¶ 6
2 –¶ 1
3 –¶ 1
4 5 3
5 4 3
6 +¶ –¶

1 –¶ 2
2 –¶ 5
3 –¶ 5
4 5 6
5 4 6
6 –¶ +¶

UHT array
Delimiting

lines indices

LHT array
Delimiting

lines indices

CUT edges N
Pairs of line indices
delimiting the edge

CUT Lines C
Indexes of sup-

porting lines

Stack S
Ready vertex
upper edge idx

Array of line
equations E

y = aix + b

6 6

Reentered
part

Intersect the trees – take the shorter edge

c1

(50 / 60)

4e) Intersect with neighbors – push into S

1 a1 b1

2 a2 b2

3 a3 b3

4 a4 b4

5 a5 b5

Topological line

1
2

3
4
5Topological line

1
2

3
4
5

UHT LHT

Topological line

1
2

3
4
5

CUT

c1 1
c2 2
c3 3
c4 5
c5 4

c1

c2

c3
c4 c5

c1 –¶ 2
c2 –¶ 1
c3 –¶ 5
c4 4 3
c5 5 3

1 –¶ 6
2 –¶ 1
3 –¶ 1
4 5 3
5 4 3
6 +¶ –¶

1 –¶ 2
2 –¶ 5
3 –¶ 5
4 5 6
5 4 6
6 –¶ +¶

UHT array
Delimiting

lines indices

LHT array
Delimiting

lines indices

CUT edges N
Pairs of line indices
delimiting the edge

CUT Lines C
Indexes of sup-

porting lines

Stack S
Ready vertex
upper edge idx

Array of line
equations E

y = aix + b

6 6

Reentered
part

Intersections of neighbors - into stack

c1

(51 / 60)

4e) Intersect with neighbors – push into S

1 a1 b1

2 a2 b2

3 a3 b3

4 a4 b4

5 a5 b5

Topological line

1
2

3
4
5Topological line

1
2

3
4
5

UHT LHT

Topological line

1
2

3
4
5

CUT

c1 1
c2 2
c3 3
c4 5
c5 4

c1

c2

c3
c4 c5

c1 –¶ 2
c2 –¶ 1
c3 –¶ 5
c4 4 3
c5 5 3

1 –¶ 6
2 –¶ 1
3 –¶ 1
4 5 3
5 4 3
6 +¶ –¶

1 –¶ 2
2 –¶ 5
3 –¶ 5
4 5 6
5 4 6
6 –¶ +¶

UHT array
Delimiting

lines indices

LHT array
Delimiting

lines indices

CUT edges N
Pairs of line indices
delimiting the edge

CUT Lines C
Indexes of sup-

porting lines

Stack S
Ready vertex
upper edge idx

Array of line
equations E

y = aix + b

6 6

Reentered
part

Intersections of neighbors - into stack

c1

(51 / 60)

4e) Intersect with neighbors – push into S

1 a1 b1

2 a2 b2

3 a3 b3

4 a4 b4

5 a5 b5

Topological line

1
2

3
4
5Topological line

1
2

3
4
5

UHT LHT

Topological line

1
2

3
4
5

CUT

c1 1
c2 2
c3 3
c4 5
c5 4

c1

c2

c3
c4 c5

c1 –¶ 2
c2 –¶ 1
c3 –¶ 5
c4 4 3
c5 5 3

1 –¶ 6
2 –¶ 1
3 –¶ 1
4 5 3
5 4 3
6 +¶ –¶

1 –¶ 2
2 –¶ 5
3 –¶ 5
4 5 6
5 4 6
6 –¶ +¶

UHT array
Delimiting

lines indices

LHT array
Delimiting

lines indices

CUT edges N
Pairs of line indices
delimiting the edge

CUT Lines C
Indexes of sup-

porting lines

Stack S
Ready vertex
upper edge idx

Array of line
equations E

y = aix + b

6 6

Reentered
part

Intersections of neighbors - into stack

c1

(51 / 60)

4e) Intersect with neighbors – push into S

1 a1 b1

2 a2 b2

3 a3 b3

4 a4 b4

5 a5 b5

Topological line

1
2

3
4
5Topological line

1
2

3
4
5

UHT LHT

Topological line

1
2

3
4
5

CUT

c1 1
c2 2
c3 3
c4 5
c5 4

c1

c2

c3
c4 c5

c1 –¶ 2
c2 –¶ 1
c3 –¶ 5
c4 4 3
c5 5 3

1 –¶ 6
2 –¶ 1
3 –¶ 1
4 5 3
5 4 3
6 +¶ –¶

1 –¶ 2
2 –¶ 5
3 –¶ 5
4 5 6
5 4 6
6 –¶ +¶

UHT array
Delimiting

lines indices

LHT array
Delimiting

lines indices

CUT edges N
Pairs of line indices
delimiting the edge

CUT Lines C
Indexes of sup-

porting lines

Stack S
Ready vertex
upper edge idx

Array of line
equations E

y = aix + b

6 6

Reentered
part

Intersections of neighbors - into stack

c1

(51 / 60)

4e) Intersect with neighbors – push into S

1 a1 b1

2 a2 b2

3 a3 b3

4 a4 b4

5 a5 b5

Topological line

1
2

3
4
5Topological line

1
2

3
4
5

UHT LHT

Topological line

1
2

3
4
5

CUT

c1 1
c2 2
c3 3
c4 5
c5 4

c1

c2

c3
c4 c5

c1 –¶ 2
c2 –¶ 1
c3 –¶ 5
c4 4 3
c5 5 3

1 –¶ 6
2 –¶ 1
3 –¶ 1
4 5 3
5 4 3
6 +¶ –¶

1 –¶ 2
2 –¶ 5
3 –¶ 5
4 5 6
5 4 6
6 –¶ +¶

UHT array
Delimiting

lines indices

LHT array
Delimiting

lines indices

CUT edges N
Pairs of line indices
delimiting the edge

CUT Lines C
Indexes of sup-

porting lines

Stack S
Ready vertex
upper edge idx

Array of line
equations E

y = aix + b

6 6

Reentered
part

Intersections of neighbors - into stack

c3
c1

(51 / 60)

4a) Pop ready vertex from S – process c3

1 a1 b1

2 a2 b2

3 a3 b3

4 a4 b4

5 a5 b5

Topological line

1
2

3
4
5Topological line

1
2

3
4
5

UHT LHT

c1 1
c2 2
c3 3
c4 5
c5 4

c1 –¶ 2
c2 –¶ 1
c3 –¶ 5
c4 4 3
c5 5 3

1 –¶ 6
2 –¶ 1
3 –¶ 1
4 5 3
5 4 3
6 +¶ –¶

1 –¶ 2
2 –¶ 5
3 –¶ 5
4 5 6
5 4 6
6 –¶ +¶

UHT array
Delimiting

lines indices

LHT array
Delimiting

lines indices

CUT edges N
Pairs of line indices
delimiting the edge

CUT Lines C
Indexes of sup-

porting lines

Stack S
Ready vertex
first edge idx

Array of line
equations E

y = aix + b

Topological line

1
2

3
4
5

CUTc1

c2

c3

c5
c4

6 6

c3
c1

(52 / 60)

4a) Pop ready vertex from S – process c3

1 a1 b1

2 a2 b2

3 a3 b3

4 a4 b4

5 a5 b5

Topological line

1
2

3
4
5Topological line

1
2

3
4
5

UHT LHT

c1 1
c2 2
c3 3
c4 5
c5 4

c1 –¶ 2
c2 –¶ 1
c3 –¶ 5
c4 4 3
c5 5 3

1 –¶ 6
2 –¶ 1
3 –¶ 1
4 5 3
5 4 3
6 +¶ –¶

1 –¶ 2
2 –¶ 5
3 –¶ 5
4 5 6
5 4 6
6 –¶ +¶

UHT array
Delimiting

lines indices

LHT array
Delimiting

lines indices

CUT edges N
Pairs of line indices
delimiting the edge

CUT Lines C
Indexes of sup-

porting lines

Stack S
Ready vertex
first edge idx

Array of line
equations E

y = aix + b

Topological line

1
2

3
4
5

CUTc1

c2

c3

c5
c4

6 6

c3
c1

(52 / 60)

4a) Pop ready vertex from S – process c3

1 a1 b1

2 a2 b2

3 a3 b3

4 a4 b4

5 a5 b5

Topological line

1
2

3
4
5Topological line

1
2

3
4
5

UHT LHT

c1 1
c2 2
c3 3
c4 5
c5 4

c1 –¶ 2
c2 –¶ 1
c3 –¶ 5
c4 4 3
c5 5 3

1 –¶ 6
2 –¶ 1
3 –¶ 1
4 5 3
5 4 3
6 +¶ –¶

1 –¶ 2
2 –¶ 5
3 –¶ 5
4 5 6
5 4 6
6 –¶ +¶

UHT array
Delimiting

lines indices

LHT array
Delimiting

lines indices

CUT edges N
Pairs of line indices
delimiting the edge

CUT Lines C
Indexes of sup-

porting lines

Stack S
Ready vertex
first edge idx

Array of line
equations E

y = aix + b

Topological line

1
2

3
4
5

CUTc1

c2

c3

c5
c4

6 6

c1

(52 / 60)

c1

4b) Swap lines c4 and c5 – swap 4 and 5

1 a1 b1

2 a2 b2

3 a3 b3

4 a4 b4

5 a5 b5

Topological line

1
2

3
4
5Topological line

1
2

3
4
5

UHT LHT

Topological line

1
2

3
4
5

CUT

c1 1
c2 2
c3 5
c4 3
c5 4

c1

c2

c3

c5

c1 –¶ 2
c2 –¶ 1
c3 4 3
c4 –¶ 5
c5 5 3

1 –¶ 6
2 –¶ 1
3 –¶ 1
4 5 3
5 4 3
6 +¶ –¶

1 –¶ 2
2 –¶ 5
3 –¶ 5
4 5 6
5 4 6
6 –¶ +¶

UHT array
Delimiting

lines indices

LHT array
Delimiting

lines indices

CUT edges N
Pairs of line indices
delimiting the edge

CUT Lines C
Indexes of sup-

porting lines

Stack S
Ready vertex
first edge idx

Array of line
equations E

y = aix + b

c4

6 6

SwappedSwapped invalidated

(53 / 60)

4c) Update the horizon trees – UHT and LHT

1 a1 b1

2 a2 b2

3 a3 b3

4 a4 b4

5 a5 b5

c1 1
c2 2
c3 5
c4 3
c5 4

c1 –¶ 2
c2 –¶ 1
c3 4 3
c4 –¶ 5
c5 5 3

1 –¶ 6
2 –¶ 1
3 5 1
4 5 3
5 3 1
6 +¶ –¶

1 –¶ 2
2 –¶ 5
3 5 4
4 5 6
5 3 6
6 –¶ +¶

UHT array
Delimiting

lines indices

LHT array
Delimiting

lines indices

CUT edges N
Pairs of line indices
delimiting the edge

CUT Lines C
Indexes of sup-

porting lines

Stack S
Ready vertex
first edge idx

Array of line
equations E

y = aix + b

Topological line

UHT

6

1
2

3
4
5 Topological line

1
2

3
4
5

LHT

6Topological line

1
2

3
4
5

CUTc1

c2

c3

c5
c4

c1

(54 / 60)

4d) Determine new cut edges endpoints

1 a1 b1

2 a2 b2

3 a3 b3

4 a4 b4

5 a5 b5

c1 1
c2 2
c3 5
c4 3
c5 4

c1 –¶ 2
c2 –¶ 1
c3 3 1
c4 5 4
c5 5 3

1 –¶ 6
2 –¶ 1
3 5 1
4 5 3
5 3 1
6 +¶ –¶

1 –¶ 2
2 –¶ 5
3 5 4
4 5 6
5 3 6
6 –¶ +¶

UHT array
Delimiting

lines indices

LHT array
Delimiting

lines indices

CUT edges N
Pairs of line indices
delimiting the edge

CUT Lines C
Indexes of sup-

porting lines

Stack S
Ready vertex
first edge idx

Array of line
equations E

y = aix + b

Topological line

UHT

6

1
2

3
4
5 Topological line

1
2

3
4
5

LHT

6

Intersect the trees – take the shorter edge

1
2

3
4
5Topological line

1
2

3
4
5

CUTc1

c2
c3

c5

c4

c1

(55 / 60)

c1

4e) Intersect with neighbors – push into S

1 a1 b1

2 a2 b2

3 a3 b3

4 a4 b4

5 a5 b5

c1 1
c2 2
c3 5
c4 3
c5 4

c1 –¶ 2
c2 –¶ 1
c3 3 1
c4 5 4
c5 5 3

1 –¶ 6
2 –¶ 1
3 5 1
4 5 3
5 3 1
6 +¶ –¶

1 –¶ 2
2 –¶ 5
3 5 4
4 5 6
5 3 6
6 –¶ +¶

UHT array
Delimiting

lines indices

LHT array
Delimiting

lines indices

CUT edges N
Pairs of line indices
delimiting the edge

CUT Lines C
Indexes of sup-

porting lines

Stack S
Ready vertex
first edge idx

Array of line
equations E

y = aix + b

Topological line

UHT

6

1
2

3
4
5 Topological line

1
2

3
4
5

LHT

6

1
2

3
4
5Topological line

1
2

3
4
5

CUTc1

c2
c3

c5

c4

(56 / 60)

c1

4e) Intersect with neighbors – push into S

1 a1 b1

2 a2 b2

3 a3 b3

4 a4 b4

5 a5 b5

c1 1
c2 2
c3 5
c4 3
c5 4

c1 –¶ 2
c2 –¶ 1
c3 3 1
c4 5 4
c5 5 3

1 –¶ 6
2 –¶ 1
3 5 1
4 5 3
5 3 1
6 +¶ –¶

1 –¶ 2
2 –¶ 5
3 5 4
4 5 6
5 3 6
6 –¶ +¶

UHT array
Delimiting

lines indices

LHT array
Delimiting

lines indices

CUT edges N
Pairs of line indices
delimiting the edge

CUT Lines C
Indexes of sup-

porting lines

Stack S
Ready vertex
first edge idx

Array of line
equations E

y = aix + b

Topological line

UHT

6

1
2

3
4
5 Topological line

1
2

3
4
5

LHT

6

1
2

3
4
5Topological line

1
2

3
4
5

CUTc1

c2
c3

c5

c4

(56 / 60)

c4
c1

4e) Intersect with neighbors – push into S

1 a1 b1

2 a2 b2

3 a3 b3

4 a4 b4

5 a5 b5

c1 1
c2 2
c3 5
c4 3
c5 4

c1 –¶ 2
c2 –¶ 1
c3 3 1
c4 5 4
c5 5 3

1 –¶ 6
2 –¶ 1
3 5 1
4 5 3
5 3 1
6 +¶ –¶

1 –¶ 2
2 –¶ 5
3 5 4
4 5 6
5 3 6
6 –¶ +¶

UHT array
Delimiting

lines indices

LHT array
Delimiting

lines indices

CUT edges N
Pairs of line indices
delimiting the edge

CUT Lines C
Indexes of sup-

porting lines

Stack S
Ready vertex
first edge idx

Array of line
equations E

y = aix + b

Topological line

UHT

6

1
2

3
4
5 Topological line

1
2

3
4
5

LHT

6

1
2

3
4
5Topological line

1
2

3
4
5

CUTc1

c2
c3

c5

c4

(56 / 60)

Input:
Output:

Topological sweep algorithm
TopoSweep(L)

Set of lines L sorted by slope (-90° to 90°), simple, not vertical
All parts of an Arrangement A(L) detected and then destroyed

1. Let C be the initial (leftmost) cut – lines in increasing order of slope
2. Create the initial UHT and LHT incrementally:

a) UHT by inserting lines in decreasing order of slope
b) LHT by inserting lines in increasing order of slope

3. By consulting UHT and LHT
a) Determine the right endpoints N of all edges of the initial cut C
b) Store neighboring lines with common endpoint into stack S

(initial set of ready vertices)
4. Repeat until stack not empty

a) Pop next ready vertex from stack S (its upper edge ci)
b) Swap these lines within the cut C (ci <-> ci+1)
c) Update the horizon trees UHT and LHT (reenter edge parts)
d) Consulting UHT and LHT determine new cut edges endpoints N
e) If new neighboring edges share an endpoint -> push them on S

Slope

4d) Determining cut edges from UHT and LHT

 for lines i = 1 to n
– Compare UHT and LHT edges on line i
– Set the cut lying on edge i to the shorter edge of these

 Order of the cuts along the sweep line
– Order changes only at the intersection v (neighbors)
– Order of remaining cuts not incident with intersection v

does not change

 After changes of the order, test the new neighbors
for intersections

– Store intersections right from sweep line into the stack

(58 / 60)

Complexity

 O(n2) intersections
=> O(n2) events (elementary steps)

 O(1) amortized time for one step – 4c)

=> O(n2) time for the algorithm

Amortized time
= even though a single elementary step can take

more than O(1) time, the total time needed to
perform O(n2) elementary steps is O(n2), hence
the average time for each step is O(1).

(59 / 60)

References
[Berg] Mark de Berg, Otfried Cheong, Marc van Kreveld, Mark Overmars:

Computational Geometry: Algorithms and Applications, Springer-Verlag,
3rd rev. ed. 2008. 386 pages, 370 fig. ISBN: 978-3-540-77973-5,
Chapters 8., http://www.cs.uu.nl/geobook/

[Mount] Mount, D.: Computational Geometry Lecture Notes for Fall 2016,
University of Maryland, Lectures 14, 15, and 27.
http://www.cs.umd.edu/class/fall2016/cmsc754/Lects/cmsc754-fall16-lects.pdf

[Edelsbrunner] Edelsbrunner and Guibas. Topologically sweeping an arrangement.
TR 9, 1986, Digital www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-
9.pdf

[Rafalin] E. Rafalin, D. Souvaine, I. Streinu, "Topological Sweep in Degenerate
cases", in Proceedings of the 4th international workshop on Algorithm
Engineering and Experiments, ALENEX 02, in LNCS 2409, Springer-
Verlag, Berlin, Germany, pages 155-156.
http://www.cs.tufts.edu/research/geometry/other/sweep/paper.pdf

[Agarwal] Pankaj K. Agarwal and Mica Sharir. Arrangements and Their
Applications, 1998, http://www.math.tau.ac.il/~michas/arrsurv.pdf

(60 / 60)

