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Talk overview

 Arrangements of lines
– Incremental construction
– Topological plane sweep

 Duality – next lesson
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Arrangements

 The next most important structure in CG after 
CH, VD, and DT

 Possible in any dimension
arrangement of (d-1)-dimensional hyperplanes

 We concentrate on arrangement of lines in plane
 Typical application:  problems of point sets in dual 

plane (collinear points, point on circles, …)

(3 / 60)



Some more applications (see CGAL)

 Finding the minimum-area triangle defined by a set of 
points,

 computation of the sorted angular sequences of points,
 finding the ham-sandwich cut, 
 planning the motion of a polygon translating among 

polygons in the plane, 
 computing the offset polygon, 
 constructing the farthest-point Voronoi diagram, 
 coordinating the motion of two discs moving among 

obstacles in the plane, 
 performing Boolean operations on curved polygons.
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Line arrangement

 A finite set of lines subdivides the plane into a 
cell complex, called arrangement 

 In plane, arrangement defines a planar graph
– Vertices – intersections of (2 or more) lines 
– Edges – intersection free segments (or rays or lines)
– Faces – convex regions containing no line 

(possibly unbounded)
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 Simple arrangement assumption
= no three lines intersect in a single point

– Can be solved by careful implementation or symbolic 
perturbation

Line arrangement
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Line arrangement

 Formal problem: graph must have bounded edges
– Topological fix: add vertex in infinity
– Geometrical fix: BBOX, often enough as abstract 

with corners −∞,−∞ , {∞,∞}

[Mount]
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Combinatorial complexity of line arrangement


ଶ

 Given lines in general position, max numbers are
– Vertices → each line intersect ݊	– 1	others

– Edges    n2 → ݊–1 intersections create ݊ edges
on each of ݊ lines

– Faces 
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Construction of line arrangement

(0.  Plane sweep method)– ܱ(݊ଶ	log	݊ )	time and ܱ(݊) storage
plus ܱ(݊ଶ) storage for the arrangement
(݊ଶ vertices, edges, faces. log ݊ଶ - heap & BVS access)  

A.  Incremental method – ܱ(݊ଶ) time and ܱ(݊ଶ) storage 
– Optimal method

B.  Topological plane sweep– ܱ(݊ଶ) time and ܱ(݊) storage only
– Does not store the result arrangement
– Useful for applications that may throw out the 

arrangement after processing

݊ଶ log ݊ଶ= 2݊ଶ log ݊= ܱ(݊ଶ log ݊)
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A. Incremental construction of arrangement

 2 time, 2 space
~size of arrangement => it is an optimal algorithm 

 Not randomized – depends on only, not on order
 Add line ௜ one by one ( )

– Find the leftmost intersection with the BBOX    
among 2(݅ − 1) + 4	edges already on the BBOX …ܱ(݅)

– Trace the line through the arrangement ܣ(ܮ௜ିଵ) and split 
the intersected faces …ܱ(݅) – why? See later

– Update the subdivision (cell split) …ܱ(1)
 Altogether 2
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A. Tracing the line through the arrangement

 Walk around edges of current face (face walking)
 Determine if the line ݅ intersects current edge 
 When intersection found, jump to the face on the 

other side of edge 

[Berg]

n=8 lines, 7 faces in the zone, 16 edges tested of max 48
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Input:
Output:

A. Incremental construction of arrangement
Arrangement( L )

Set of lines L in general position (no 3 intersect in 1 common point)
Line arrangement A(L) (resp. part of the arrangement stored in
BBOX B(L) containing all the vertices of A(L) )

1. Compute the BBOX B(L) containing all the vertices of A(L)    …ܱ(݊ଶ)
2. Construct DCEL for the subdivision induced by BBOX B(L) …ܱ(1)
3. for i = 1 to n do      // insert line ࢏࢒
4. find edge e, where line ݈݅ intersects the BBOX of 2(i-1)+4 edges …ܱ(݅)
5. f = bounded face incident to the edge e
6. while f is in B(L)   (bounded face f  = f is in the BBOX) …ܱ(݅)
7. split f and set f to be the next intersected face

across the intersected edge
8. update the DCEL (split the cell) …ܱ(1)

See later…



The Zone of edge ݅

݈ଽ: ݅ − 1 = 8 lines, 7 of max 9 faces in the zone

Zone ஺ܼ ݈௜ = set of ݅ faces of (ܮ)ܣ intersected by ݈݈݅௜ crosses max ݅ − 1 lines ⇒ ݅ faces 

݈݅
The zone of ݈݅ for ݅ = 9
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Edges in the cells of the zone
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Total number of edges in all zone faces

Naïve upper bound
edge ݈݅ passes max ݅ faces … ܱ(݅)
each face bounded by at most ݅ lines 

Tight upper bound 6݅ = 	ܱ(݅) ܱ(݅ଶ) ????

n=8 lines, 16 edges tested of max 48
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Tracing the line through the arrangement

 Number of traversed edges determines the 
insertion complexity

 Naïve estimation would be 2 traversed edges
( faces,  lines per face, 2 edges)

 According to the Zone theorem, it is edges 
only!

Zone theorem
=  given an arrangement of lines in the plane 

and given any line in the plane, the total number 
of edges in all the cells of the zone ܣ is at 
most .

(15 / 60)



Key idea of a proof

 Find a way to add up edges so that 
each line will induce a constant number of edges

 Split edges of the zone into – 3݊ left bounding edges – 3݊ right bounding edges – 6݊ bounding edges total 

[Mount 2014, page 75]
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The proof (left bounding edges)

True for lines 
holds for lines݈ଵ= rightmost line intersecting ݈

Without ݈ଵ3 ݊ − 1 left bounding edges
Insert ݈ଵ+1 left bounding edge ݈ଵ+2 split ݁௔ and ݁௕3 ݊ − 1 + 3 = 3݊ ⇒ hold
or less if right bounding edges

, one left bounding edge, 

[Mount 2014, page 75]
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Cell split in O(1)

 1 new vertex 
 2 new face records, 1 face record ( f ) destroyed
 3x2 new  half-edges, 2 half-edges destroyed  
 update pointers    … O(1)

[Berg]

ଵ݂
ଶ݂
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Complexity of incremental algorithm

 insertions
 time for one line insertion

instead of ଶ
(Zone theorem)

=> Complexity: 2 2
bbox edges walked
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B. Topological plane sweep algorithm

 Complete arrangement needs 2 storage
 Often we need just to process each arrangement 

element just once – and we can throw it out then
 Classical Sweep line algorithm (for arrangement of lines)

– needs ܱ(݊) storage
– needs log	݊ for heap manipulation in ܱ(݊2) event points
=> ܱ(݊2	log	݊ )	algorithm

 Topological sweep line - TSL
– no ܱ(log	݊ ) factor in time complexity in ܱ(݊2) event points

– array of ݊ neighbors and a stack of ready vertices 	ܱ(1)
=> ܱ(݊2) algorithm
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Illustration from Edelsbrunner & Guibas
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Topological line (curve)
(an intuitive notion)

 Monotonic curve in ݕ-dir
 intersects each line 

exactly once 
(as a sweep line)

Cut in an arrangement ܣ
 is an ordered sequence of edges ܿଵ, ܿଶ, … , ܿ௡	in ܣ

(one taken from each line), such that for 1 ≤ ݅ ≤ ݊ − 1, ܿ௜ and ܿ௜ାଵ are incident to the same face of ܣ and ܿ௜ is above and ܿ௜ାଵ below the face
 Edges in the cut are not necessarily connected (as ܿଶ and ܿଷ)

Topological line and cut
1

2

3

4
5 Topological line
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Topological plane sweep algorithm
 Starts at the leftmost cut

– Consist of left-unbounded edges of ܣ (ending at −¶)
– Computed in ܱ(݊	log	݊ )	time – order of slopes

 The sweep line is 
– pushed from the leftmost cut to the rightmost cut
– Advances in elementary steps 

 Elementary step
= Processing of any ready vertex

(intersection of consecutive edges at their right-point)
– Swaps the order of lines along the sweep line
– Is always possible (e.g., the point with smallest ݔ)
– Searching of smallest ݔ would need ܱ(log ݊) time …

ready 
vertex

topological 
sweep line
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Step 0 – the leftmost cut

Topological line

1

2

3

4
5

c1

c2

c3

c4

c5

ci = ordered sequence of edges along the topological sweep line

Slope

ready
vertex

ready
vertex
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Step 1 – after processing of c4 x c5

Topological line

1

2

3

4
5

c1

c2

c3
c4 c5

Slope

ready
vertex

ready
vertex
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Step 2 – after processing of c3 x c4
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Topological line
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c4

Slope
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How to determine the next right point?

 Elementary step (intersection at edges right-point)
– Is always possible (e.g., the point with smallest ݔ)
– But searching the smallest ݔ would need ܱ(log	݊ ) time
– We need ܱ(1) time

 Right endpoint of the edge in the cut results from
– a line of smaller slope intersecting it from above (traced 

from L to R) or
– line of larger slope intersecting it from below.

 Use Upper and Lower Horizon Trees (UHT, LHT)
– Common segments of UHT and LHT belong to the cut
– Intersect the trees, find pairs of consecutive edges
– use the right points as legal steps (push to stack)

Slope

UHT

LHT
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Upper and lower horizon tree

 Upper horizon tree (UHT)
– Insert lines in order of decreasing slope (cw)
– When two edges meet, keep the edge with higher slope

and trim the inserted edge (with lower slope)
– To get one tree and not the forest of trees (if not 

connected) add a vertical line in +¶ (slope +90°)
– Left endpoints of the edges in the cut 

do not belong to the tree

 Lower horizon tree (LHT) construction is symmetrical
 UHT and LHT serve for right endpts determination

(28 / 60)



Upper horizon tree (UHT) – initial tree 

Insert lines in order of decreasing slope (“cw”)

Topological line

1

2

3

4
5

Slope

Insertion order: 6, 5, 4, 3, 2, 1

6
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Lower horizon tree (LHT) – initial tree 

Insert lines in order of increasing slope (“ccw”)
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Overlap UHT and LHT – detect ready vertices

Topological line

1
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3

4
5

Topological line
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UHT LHT

6 6

6
Topological line

1
2

3

4
5

Overlapready
vertex

ready
vertex
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Upper horizon tree (UHT) – init. construction

 Insert lines in order of decreasing slope (cw)
 Each new line starts above all the current lines
 The uppermost face = convex polygonal chain
 Walk left to right along the chain

to determine the intersection
 Never walk twice over a segment

– Such segment is no longer part of 
the upper chain– ܱ(݊) segments in UHT 

=> ܱ(݊) initial construction
(after ݊	log	݊ 	sorting of the lines ~slope)
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Upper horizon tree (UHT) – update 

l

Ready vertex After the elementary step
 Two edges swap position along 

the sweep line
 Lower edge l (lower slope, comes from above)

– Reenter to UHT
– Terminate at nearest edge of UHT
– Start in edge below in the current cut
– Traverse the face in CCW order
– Intersection must exist, as l has lower

slope than the other edge from v
and both belong to the same face
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Data structures for topological sweep alg.

Topological sweep line algorithm uses 5 arrays:

1) Line equation coefficients – E [1:n]
2) Upper horizon tree – UHT [1:n]
3) Lower horizon tree – LHT [1:n] 
4) Order of lines cut by the sweep line – C [1:n] 
5) Edges along the sweep line – N [1:n] 
6) Stack for ready vertices (events) – S

(n number of lines)



1) Line equation coefficients E [1:n]

 Array of line equation coefs. E
– Contains coefficients ai and bi

of line equations  ݕ = ܽ௜ݔ + ܾ௜
– E is indexed by the line index
– Lines are ordered according to 

their slope (angle from -90° to 
90°)

1 a1 b1

2 a2 b2

3 a3 b3

4 a4 b4

5 a5 b5

Array of line
equations Eݕ = ܽ௜ݔ + ܾ௜

1
2

3
4
5

(6)

In
di

ce
s 

of
 li

ne
s

Slope
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2) and 3) – Horizon trees UHT and LHT

 Store pairs of line indices in E 
that delimit segment li to the left 
and to the right  

 Segments are half open
 Unlimited line has “indices”

(–¶, +¶] (+¶, –¶]
 One additional vertical line

– prevents the tree from splitting into 
forest of trees

– is inserted first and never trimmed
– is (–¶, +¶] for UHT
– is (+¶, –¶] for LHT

Topological line

1
2

3
4
5Topological line

1
2

3
4
5

UHT LHT

1 −∞ 6
2 −∞ 1
3 −∞ 1
4 −∞ 3
5 −∞ 4
6 +∞ −∞

1 −∞ 2
2 −∞ 5
3 −∞ 5
4 −∞ 5
5 −∞ 6
6 −∞ +∞

UHT array 
Delimiting 

lines indices

LHT array 
Delimiting 

lines indices

6 6

Their intersection is
used for searching
of legal steps
(right points)
- the shorter edge wins
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4) Order of lines cut by sweep line – C [1:n] 

 The topological sweep line cuts each line once
 Order of the cuts (along the topological sweep 

line) is stored in array C as a sequence of line 
indices

 Array C “points” to the array E 
of line equations

 For the initial leftmost cut, 
the order is the same as in E

 Index ci addresses i-th line from top
along the sweep line

c1 1
c2 2
c3 3
c4 4
c5 5

CUT Lines C
Indexes of sup-

porting lines
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5) Edges along the sweep line – N [1:n] 

 Edges intersected by the topological sweep line are 
stored here (edges along the sweep line)

 Instead of endpoints themselves, we store the
indices of lines whose intersections delimit the edge

 Order of these edges is 
the same as in C
(both use the index ci)

 Index ci stores the index 
of i-th edge from top along 
the sweep line

c1 −∞ 2
c2 −∞ 1
c3 −∞ 5
c4 −∞ 5
c5 −∞ 4

CUT edges N
Pairs of line indices
delimiting the edge The first edge 

along the sweep line: 
- lies on line C[c1] 
- Comes from infinity 
- is delimited by edge E[2]
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6) Stack S

 The exact order of events is not important
(event = intersection in ready vertex)

 Alg. can process any “ready vertex”
 Event queue is therefore replaced by a stack

(faster: instead of for queue)
 The stack stores just the upper edge ci

from the pair intersecting in ready vertex
 Intersection in the ready vertex

is computed between stored ci and ci+1
c4

c1

Stack S
Ready vertex 
first edge idx

c4 x c5
c1 x c2
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Topological sweep line demo

Input 
 set of lines L in the plane
 ordered in increasing slope 

( -90° to 90°), simple, 
not vertical 

 line parameters in array E

1
2

3
4
5

1 a1 b1

2 a2 b2

3 a3 b3

4 a4 b4

5 a5 b5

Array of line
equations E

y = aix + b

Slope

In
di

ce
s 

of
 li

ne
s

In
di

ce
s 

of
 li

ne
s
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1) Initial leftmost cut - C

 Store the indices of lines in E 
into the Cut lines array C
in increasing slope order

Topological line

1
2

3
4
5

CUTc1

c2

c3
c4

c5

1 a1 b1

2 a2 b2

3 a3 b3

4 a4 b4

5 a5 b5

Array of line
equations E

y = aix + b

c1 1
c2 2
c3 3
c4 4
c5 5

CUT Lines C
Indexes of sup-

porting lines

Li
ne

 in
di

ce
s 

al
on

g 
th

e 
cu

t

In
di

ce
s 

of
 li

ne
s
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1) Initial leftmost cut - N

 Prepare array N for endpoints of 
the cut edges (resp. for line 
indices delimiting these edges)

 Init it by line “ends” −∞,+∞
1 a1 b1

2 a2 b2

3 a3 b3

4 a4 b4

5 a5 b5

Array of line
equations E

y = aix + b

c1 1
c2 2
c3 3
c4 4
c5 5

c1 −∞ ¶

c2 −∞ ¶

c3 −∞ ¶

c4 −∞ ¶

c5 −∞ ¶

CUT edges N
Pairs of line indices
delimiting the edge 

CUT Lines C
Indexes of sup-

porting lines

indices of lines

Topological line

1
2

3
4
5

CUTc1

c2

c3
c4

c5
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1) Initial leftmost cut - N

 Prepare array N for endpoints of 
the cut edges (resp. for line 
indices delimiting these edges)

 Init it by line “ends” −∞,+∞
1 a1 b1

2 a2 b2

3 a3 b3

4 a4 b4

5 a5 b5

Array of line
equations E

y = aix + b

c1 1
c2 2
c3 3
c4 4
c5 5

c1 −∞ ¶

c2 −∞ ¶

c3 −∞ ¶

c4 −∞ ¶

c5 −∞ ¶

CUT edges N
Pairs of line indices
delimiting the edge 

CUT Lines C
Indexes of sup-

porting lines

indices of lines

Topological line

1
2

3
4
5

CUTc1

c2

c3
c4

c5

Index of delimiter edge in	−∞
(42 / 60)



2a) Compute Upper Horizon Tree - UHT

1 a1 b1

2 a2 b2

3 a3 b3

4 a4 b4

5 a5 b5

c1 1
c2 2
c3 3
c4 4
c5 5

c1 −∞ ¶

c2 −∞ ¶

c3 −∞ ¶

c4 −∞ ¶

c5 −∞ ¶

1 −∞ 2
2 −∞ 5
3 −∞ 5
4 −∞ 5
5 −∞ 6
6 −∞ +¶

UHT array 
Delimiting 

lines indices

CUT edges N
Pairs of line indices
delimiting the edge 

CUT Lines C
Indexes of sup-

porting lines

Array of line
equations E

y = aix + b

Topological line

1
2

3
4
5

CUTc1

c2

c3
c4

c5
Topological line

1
2

3
4
5

6

UHT

Additional “help edge“
Unlimited, bottom-up
Inserted first, never changed

Order of 
insertion 
into UHT
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2b) Compute Lower Horizon Tree - LHT

1 a1 b1

2 a2 b2

3 a3 b3

4 a4 b4

5 a5 b5

Topological line

1
2

3
4
5Topological line

1
2

3
4
5

UHT LHT

c1 1
c2 2
c3 3
c4 4
c5 5

Topological line

1
2

3
4
5

CUTc1

c2

c3
c4

c5

c1 −∞ ¶

c2 −∞ ¶

c3 −∞ ¶

c4 −∞ ¶

c5 −∞ ¶

1 −∞ 6
2 −∞ 1
3 −∞ 1
4 −∞ 3
5 −∞ 4
6 +∞ –¶

1 −∞ 2
2 −∞ 5
3 −∞ 5
4 −∞ 5
5 −∞ 6
6 −∞ +¶

UHT array 
Delimiting 

lines indices

LHT array 
Delimiting 

lines indices

CUT edges N
Pairs of line indices
delimiting the edge 

CUT Lines C
Indexes of sup-

porting lines

Stack S
Ready vertex 
first edge idx

Array of line
equations E

y = aix + b

6 6

Inserted first, never changed
top to bottomOrder of 

insertion 
into LHT (44 / 60)



Intersect the trees – take the shorter edge

3a) Determine right delimiters of edges - N

1 a1 b1

2 a2 b2

3 a3 b3

4 a4 b4

5 a5 b5

Topological line

1
2

3
4
5Topological line

1
2

3
4
5

UHT LHT

c1 1
c2 2
c3 3
c4 4
c5 5

Topological line

1
2

3
4
5

CUTc1

c2

c3
c4

c5

c1 −∞ 2
c2 −∞ 1
c3 −∞ 5
c4 −∞ 5
c5 −∞ 4

1 −∞ 6
2 −∞ 1
3 −∞ 1
4 −∞ 3
5 −∞ 4
6 +∞ –¶

1 −∞ 2
2 −∞ 5
3 −∞ 5
4 −∞ 5
5 −∞ 6
6 −∞ +¶

UHT array 
Delimiting 

lines indices

LHT array 
Delimiting 

lines indices

CUT edges N
Pairs of line indices
delimiting the edge 

CUT Lines C
Indexes of sup-

porting lines

Stack S
Ready vertex 
first edge idx

Array of line
equations E

y = aix + b

6 6
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Compute intersections of neighbors – push into stack

3b) Ready vertices = inters. of neighbors – S 

1 a1 b1

2 a2 b2

3 a3 b3

4 a4 b4

5 a5 b5

Topological line

1
2

3
4
5Topological line

1
2

3
4
5

UHT LHT

c1 1
c2 2
c3 3
c4 4
c5 5

Topological line

1
2

3
4
5

CUTc1

c2

c3
c4

c5

c1 −∞ 2
c2 −∞ 1
c3 −∞ 5
c4 −∞ 5
c5 −∞ 4

1 −∞ 6
2 −∞ 1
3 −∞ 1
4 −∞ 3
5 −∞ 4
6 +∞ –¶

1 −∞ 2
2 −∞ 5
3 −∞ 5
4 −∞ 5
5 −∞ 6
6 −∞ +¶

UHT array 
Delimiting 

lines indices

LHT array 
Delimiting 

lines indices

CUT edges N
Pairs of line indices
delimiting the edge 

CUT Lines C
Indexes of sup-

porting lines

Stack S
Ready vertex 
first edge idx

Array of line
equations E

y = aix + b

6 6
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Compute intersections of neighbors – push into stack

3b) Ready vertices = inters. of neighbors – S 

1 a1 b1

2 a2 b2

3 a3 b3

4 a4 b4

5 a5 b5

Topological line

1
2

3
4
5Topological line

1
2

3
4
5

UHT LHT

c1 1
c2 2
c3 3
c4 4
c5 5

Topological line

1
2

3
4
5

CUTc1

c2

c3
c4

c5

c1 −∞ 2
c2 −∞ 1
c3 −∞ 5
c4 −∞ 5
c5 −∞ 4

1 −∞ 6
2 −∞ 1
3 −∞ 1
4 −∞ 3
5 −∞ 4
6 +∞ –¶

1 −∞ 2
2 −∞ 5
3 −∞ 5
4 −∞ 5
5 −∞ 6
6 −∞ +¶

UHT array 
Delimiting 

lines indices

LHT array 
Delimiting 

lines indices

CUT edges N
Pairs of line indices
delimiting the edge 

CUT Lines C
Indexes of sup-

porting lines

Stack S
Ready vertex 
first edge idx

Array of line
equations E

y = aix + b

6 6

c1
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Compute intersections of neighbors – push into stack

3b) Ready vertices = inters. of neighbors – S 

1 a1 b1

2 a2 b2

3 a3 b3

4 a4 b4

5 a5 b5

Topological line

1
2

3
4
5Topological line

1
2

3
4
5

UHT LHT

c1 1
c2 2
c3 3
c4 4
c5 5

Topological line

1
2

3
4
5

CUTc1

c2

c3
c4

c5

c1 −∞ 2
c2 −∞ 1
c3 −∞ 5
c4 −∞ 5
c5 −∞ 4

1 −∞ 6
2 −∞ 1
3 −∞ 1
4 −∞ 3
5 −∞ 4
6 +∞ –¶

1 −∞ 2
2 −∞ 5
3 −∞ 5
4 −∞ 5
5 −∞ 6
6 −∞ +¶

UHT array 
Delimiting 

lines indices

LHT array 
Delimiting 

lines indices

CUT edges N
Pairs of line indices
delimiting the edge 

CUT Lines C
Indexes of sup-

porting lines

Stack S
Ready vertex 
first edge idx

Array of line
equations E

y = aix + b

6 6

c1
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Compute intersections of neighbors – push into stack

3b) Ready vertices = inters. of neighbors – S 

1 a1 b1

2 a2 b2

3 a3 b3

4 a4 b4

5 a5 b5

Topological line

1
2

3
4
5Topological line

1
2

3
4
5

UHT LHT

c1 1
c2 2
c3 3
c4 4
c5 5

Topological line

1
2

3
4
5

CUTc1

c2

c3
c4

c5

c1 −∞ 2
c2 −∞ 1
c3 −∞ 5
c4 −∞ 5
c5 −∞ 4

1 −∞ 6
2 −∞ 1
3 −∞ 1
4 −∞ 3
5 −∞ 4
6 +∞ –¶

1 −∞ 2
2 −∞ 5
3 −∞ 5
4 −∞ 5
5 −∞ 6
6 −∞ +¶

UHT array 
Delimiting 

lines indices

LHT array 
Delimiting 

lines indices

CUT edges N
Pairs of line indices
delimiting the edge 

CUT Lines C
Indexes of sup-

porting lines

Stack S
Ready vertex 
first edge idx

Array of line
equations E

y = aix + b

6 6

c4
c1
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4a) Pop ready vertex from S – process c4 

1 a1 b1

2 a2 b2

3 a3 b3

4 a4 b4

5 a5 b5

Topological line

1
2

3
4
5Topological line

1
2

3
4
5

UHT LHT

Topological line

1
2

3
4
5

CUT

c1 1
c2 2
c3 3
c4 4
c5 5

c1

c2

c3
c4

c5

c1 −∞ 2
c2 −∞ 1
c3 −∞ 5
c4 −∞ 5
c5 −∞ 4

1 −∞ 6
2 −∞ 1
3 −∞ 1
4 −∞ 3
5 −∞ 4
6 +∞ –¶

1 −∞ 2
2 −∞ 5
3 −∞ 5
4 −∞ 5
5 −∞ 6
6 −∞ +¶

UHT array 
Delimiting 

lines indices

LHT array 
Delimiting 

lines indices

CUT edges N
Pairs of line indices
delimiting the edge 

CUT Lines C
Indexes of sup-

porting lines

Stack S
Ready vertex 
first edge idx

Array of line
equations E

y = aix + b

6 6

c4
c1
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4b) Swap lines c4 and c5 – swap 4 and 5

1 a1 b1

2 a2 b2

3 a3 b3

4 a4 b4

5 a5 b5

Topological line

1
2

3
4
5Topological line

1
2

3
4
5

UHT LHT

c1 1
c2 2
c3 3
c4 5
c5 4

Topological line

1
2

3
4
5

CUTc1

c2

c3
c4

c5

c1 −∞ 2
c2 −∞ 1
c3 −∞ 5
c4 −∞ 4
c5 −∞ 5

1 −∞ 6
2 −∞ 1
3 −∞ 1
4 −∞ 3
5 −∞ 4
6 +∞ –¶

1 −∞ 2
2 −∞ 5
3 −∞ 5
4 −∞ 5
5 −∞ 6
6 −∞ +¶

UHT array 
Delimiting 

lines indices

LHT array 
Delimiting 

lines indices

CUT edges N
Pairs of line indices
delimiting the edge 

CUT Lines C
Indexes of sup-

porting lines

Stack S
Ready vertex 
first edge idx

Array of line
equations E

y = aix + b

6 6

c1
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4c) Update the horizon trees – UHT and LHT

1 a1 b1

2 a2 b2

3 a3 b3

4 a4 b4

5 a5 b5

Topological line

1
2

3
4
5Topological line

1
2

3
4
5

UHT LHT

c1 1
c2 2
c3 3
c4 5
c5 4

c1 −∞ 2
c2 −∞ 1
c3 −∞ 5
c4 −∞ 4
c5 −∞ 5

1 –¶ 6
2 –¶ 1
3 –¶ 1
4 5 3
5 4 3
6 +¶ –¶

1 –¶ 2
2 –¶ 5
3 –¶ 5
4 5 6
5 4 6
6 –¶ +¶

UHT array 
Delimiting 

lines indices

LHT array 
Delimiting 

lines indices

CUT edges N
Pairs of line indices
delimiting the edge 

CUT Lines C
Indexes of sup-

porting lines

Stack S
Ready vertex 
upper edge idx

Array of line
equations E

y = aix + b

6 6

Reentered
partTopological line

1
2

3
4
5

CUTc1

c2

c3
c4

c5

Note:            Edges are half open to prevent the tree after reinsertion

c1
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Intersct the trees

4d) Determine new cut edges endpoints – N 

1 a1 b1

2 a2 b2

3 a3 b3

4 a4 b4

5 a5 b5

Topological line

1
2

3
4
5Topological line

1
2

3
4
5

UHT LHT

Topological line

1
2

3
4
5

CUT

c1 1
c2 2
c3 3
c4 5
c5 4

c1

c2

c3
c4 c5

c1 –¶ 2
c2 –¶ 1
c3 –¶ 5
c4 4 3
c5 5 3

1 –¶ 6
2 –¶ 1
3 –¶ 1
4 5 3
5 4 3
6 +¶ –¶

1 –¶ 2
2 –¶ 5
3 –¶ 5
4 5 6
5 4 6
6 –¶ +¶

UHT array 
Delimiting 

lines indices

LHT array 
Delimiting 

lines indices

CUT edges N
Pairs of line indices
delimiting the edge 

CUT Lines C
Indexes of sup-

porting lines

Stack S
Ready vertex 
upper edge idx

Array of line
equations E

y = aix + b

6 6

Reentered
part

Intersect the trees – take the shorter edge

c1

(50 / 60)



4e) Intersect with neighbors – push into S

1 a1 b1

2 a2 b2

3 a3 b3

4 a4 b4

5 a5 b5

Topological line

1
2

3
4
5Topological line

1
2

3
4
5

UHT LHT

Topological line

1
2

3
4
5

CUT

c1 1
c2 2
c3 3
c4 5
c5 4

c1

c2

c3
c4 c5

c1 –¶ 2
c2 –¶ 1
c3 –¶ 5
c4 4 3
c5 5 3

1 –¶ 6
2 –¶ 1
3 –¶ 1
4 5 3
5 4 3
6 +¶ –¶

1 –¶ 2
2 –¶ 5
3 –¶ 5
4 5 6
5 4 6
6 –¶ +¶

UHT array 
Delimiting 

lines indices

LHT array 
Delimiting 

lines indices

CUT edges N
Pairs of line indices
delimiting the edge 

CUT Lines C
Indexes of sup-

porting lines

Stack S
Ready vertex 
upper edge idx

Array of line
equations E

y = aix + b

6 6

Reentered
part

Intersections of neighbors - into stack

c1

(51 / 60)



4e) Intersect with neighbors – push into S

1 a1 b1

2 a2 b2

3 a3 b3

4 a4 b4

5 a5 b5

Topological line

1
2

3
4
5Topological line

1
2

3
4
5

UHT LHT

Topological line

1
2

3
4
5

CUT

c1 1
c2 2
c3 3
c4 5
c5 4

c1

c2

c3
c4 c5

c1 –¶ 2
c2 –¶ 1
c3 –¶ 5
c4 4 3
c5 5 3

1 –¶ 6
2 –¶ 1
3 –¶ 1
4 5 3
5 4 3
6 +¶ –¶

1 –¶ 2
2 –¶ 5
3 –¶ 5
4 5 6
5 4 6
6 –¶ +¶

UHT array 
Delimiting 

lines indices

LHT array 
Delimiting 

lines indices

CUT edges N
Pairs of line indices
delimiting the edge 

CUT Lines C
Indexes of sup-

porting lines

Stack S
Ready vertex 
upper edge idx

Array of line
equations E

y = aix + b

6 6

Reentered
part

Intersections of neighbors - into stack

c1
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4e) Intersect with neighbors – push into S

1 a1 b1

2 a2 b2

3 a3 b3

4 a4 b4

5 a5 b5

Topological line

1
2

3
4
5Topological line

1
2

3
4
5

UHT LHT

Topological line

1
2

3
4
5

CUT

c1 1
c2 2
c3 3
c4 5
c5 4

c1

c2

c3
c4 c5

c1 –¶ 2
c2 –¶ 1
c3 –¶ 5
c4 4 3
c5 5 3

1 –¶ 6
2 –¶ 1
3 –¶ 1
4 5 3
5 4 3
6 +¶ –¶

1 –¶ 2
2 –¶ 5
3 –¶ 5
4 5 6
5 4 6
6 –¶ +¶

UHT array 
Delimiting 

lines indices

LHT array 
Delimiting 

lines indices

CUT edges N
Pairs of line indices
delimiting the edge 

CUT Lines C
Indexes of sup-

porting lines

Stack S
Ready vertex 
upper edge idx

Array of line
equations E

y = aix + b

6 6

Reentered
part

Intersections of neighbors - into stack

c1
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4e) Intersect with neighbors – push into S

1 a1 b1

2 a2 b2

3 a3 b3

4 a4 b4

5 a5 b5

Topological line

1
2

3
4
5Topological line

1
2

3
4
5

UHT LHT

Topological line

1
2

3
4
5

CUT

c1 1
c2 2
c3 3
c4 5
c5 4

c1

c2

c3
c4 c5

c1 –¶ 2
c2 –¶ 1
c3 –¶ 5
c4 4 3
c5 5 3

1 –¶ 6
2 –¶ 1
3 –¶ 1
4 5 3
5 4 3
6 +¶ –¶

1 –¶ 2
2 –¶ 5
3 –¶ 5
4 5 6
5 4 6
6 –¶ +¶

UHT array 
Delimiting 

lines indices

LHT array 
Delimiting 

lines indices

CUT edges N
Pairs of line indices
delimiting the edge 

CUT Lines C
Indexes of sup-

porting lines

Stack S
Ready vertex 
upper edge idx

Array of line
equations E

y = aix + b

6 6

Reentered
part

Intersections of neighbors - into stack

c1
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4e) Intersect with neighbors – push into S

1 a1 b1

2 a2 b2

3 a3 b3

4 a4 b4

5 a5 b5

Topological line

1
2

3
4
5Topological line

1
2

3
4
5

UHT LHT

Topological line

1
2

3
4
5

CUT

c1 1
c2 2
c3 3
c4 5
c5 4

c1

c2

c3
c4 c5

c1 –¶ 2
c2 –¶ 1
c3 –¶ 5
c4 4 3
c5 5 3

1 –¶ 6
2 –¶ 1
3 –¶ 1
4 5 3
5 4 3
6 +¶ –¶

1 –¶ 2
2 –¶ 5
3 –¶ 5
4 5 6
5 4 6
6 –¶ +¶

UHT array 
Delimiting 

lines indices

LHT array 
Delimiting 

lines indices

CUT edges N
Pairs of line indices
delimiting the edge 

CUT Lines C
Indexes of sup-

porting lines

Stack S
Ready vertex 
upper edge idx

Array of line
equations E

y = aix + b

6 6

Reentered
part

Intersections of neighbors - into stack

c3
c1
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4a) Pop ready vertex from S – process c3

1 a1 b1

2 a2 b2

3 a3 b3

4 a4 b4

5 a5 b5

Topological line

1
2

3
4
5Topological line

1
2

3
4
5

UHT LHT

c1 1
c2 2
c3 3
c4 5
c5 4

c1 –¶ 2
c2 –¶ 1
c3 –¶ 5
c4 4 3
c5 5 3

1 –¶ 6
2 –¶ 1
3 –¶ 1
4 5 3
5 4 3
6 +¶ –¶

1 –¶ 2
2 –¶ 5
3 –¶ 5
4 5 6
5 4 6
6 –¶ +¶

UHT array 
Delimiting 

lines indices

LHT array 
Delimiting 

lines indices

CUT edges N
Pairs of line indices
delimiting the edge 

CUT Lines C
Indexes of sup-

porting lines

Stack S
Ready vertex 
first edge idx

Array of line
equations E

y = aix + b

Topological line

1
2

3
4
5

CUTc1

c2

c3

c5
c4

6 6

c3
c1
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4a) Pop ready vertex from S – process c3

1 a1 b1

2 a2 b2

3 a3 b3

4 a4 b4

5 a5 b5

Topological line

1
2

3
4
5Topological line

1
2

3
4
5

UHT LHT

c1 1
c2 2
c3 3
c4 5
c5 4

c1 –¶ 2
c2 –¶ 1
c3 –¶ 5
c4 4 3
c5 5 3

1 –¶ 6
2 –¶ 1
3 –¶ 1
4 5 3
5 4 3
6 +¶ –¶

1 –¶ 2
2 –¶ 5
3 –¶ 5
4 5 6
5 4 6
6 –¶ +¶

UHT array 
Delimiting 

lines indices

LHT array 
Delimiting 

lines indices

CUT edges N
Pairs of line indices
delimiting the edge 

CUT Lines C
Indexes of sup-

porting lines

Stack S
Ready vertex 
first edge idx

Array of line
equations E

y = aix + b

Topological line

1
2

3
4
5

CUTc1

c2

c3

c5
c4

6 6

c3
c1
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4a) Pop ready vertex from S – process c3

1 a1 b1

2 a2 b2

3 a3 b3

4 a4 b4

5 a5 b5

Topological line

1
2

3
4
5Topological line

1
2

3
4
5

UHT LHT

c1 1
c2 2
c3 3
c4 5
c5 4

c1 –¶ 2
c2 –¶ 1
c3 –¶ 5
c4 4 3
c5 5 3

1 –¶ 6
2 –¶ 1
3 –¶ 1
4 5 3
5 4 3
6 +¶ –¶

1 –¶ 2
2 –¶ 5
3 –¶ 5
4 5 6
5 4 6
6 –¶ +¶

UHT array 
Delimiting 

lines indices

LHT array 
Delimiting 

lines indices

CUT edges N
Pairs of line indices
delimiting the edge 

CUT Lines C
Indexes of sup-

porting lines

Stack S
Ready vertex 
first edge idx

Array of line
equations E

y = aix + b

Topological line

1
2

3
4
5

CUTc1

c2

c3

c5
c4

6 6

c1
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c1

4b) Swap lines c4 and c5 – swap 4 and 5

1 a1 b1

2 a2 b2

3 a3 b3

4 a4 b4

5 a5 b5

Topological line

1
2

3
4
5Topological line

1
2

3
4
5

UHT LHT

Topological line

1
2

3
4
5

CUT

c1 1
c2 2
c3 5
c4 3
c5 4

c1

c2

c3

c5

c1 –¶ 2
c2 –¶ 1
c3 4 3
c4 –¶ 5
c5 5 3

1 –¶ 6
2 –¶ 1
3 –¶ 1
4 5 3
5 4 3
6 +¶ –¶

1 –¶ 2
2 –¶ 5
3 –¶ 5
4 5 6
5 4 6
6 –¶ +¶

UHT array 
Delimiting 

lines indices

LHT array 
Delimiting 

lines indices

CUT edges N
Pairs of line indices
delimiting the edge 

CUT Lines C
Indexes of sup-

porting lines

Stack S
Ready vertex 
first edge idx

Array of line
equations E

y = aix + b

c4

6 6

SwappedSwapped invalidated
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4c) Update the horizon trees – UHT and LHT

1 a1 b1

2 a2 b2

3 a3 b3

4 a4 b4

5 a5 b5

c1 1
c2 2
c3 5
c4 3
c5 4

c1 –¶ 2
c2 –¶ 1
c3 4 3
c4 –¶ 5
c5 5 3

1 –¶ 6
2 –¶ 1
3 5 1
4 5 3
5 3 1
6 +¶ –¶

1 –¶ 2
2 –¶ 5
3 5 4
4 5 6
5 3 6
6 –¶ +¶

UHT array 
Delimiting 

lines indices

LHT array 
Delimiting 

lines indices

CUT edges N
Pairs of line indices
delimiting the edge 

CUT Lines C
Indexes of sup-

porting lines

Stack S
Ready vertex 
first edge idx

Array of line
equations E

y = aix + b

Topological line

UHT

6

1
2

3
4
5 Topological line

1
2

3
4
5

LHT

6Topological line

1
2

3
4
5

CUTc1

c2

c3

c5
c4

c1
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4d) Determine new cut edges endpoints

1 a1 b1

2 a2 b2

3 a3 b3

4 a4 b4

5 a5 b5

c1 1
c2 2
c3 5
c4 3
c5 4

c1 –¶ 2
c2 –¶ 1
c3 3 1
c4 5 4
c5 5 3

1 –¶ 6
2 –¶ 1
3 5 1
4 5 3
5 3 1
6 +¶ –¶

1 –¶ 2
2 –¶ 5
3 5 4
4 5 6
5 3 6
6 –¶ +¶

UHT array 
Delimiting 

lines indices

LHT array 
Delimiting 

lines indices

CUT edges N
Pairs of line indices
delimiting the edge 

CUT Lines C
Indexes of sup-

porting lines

Stack S
Ready vertex 
first edge idx

Array of line
equations E

y = aix + b

Topological line

UHT

6

1
2

3
4
5 Topological line

1
2

3
4
5

LHT

6

Intersect the trees – take the shorter edge

1
2

3
4
5Topological line

1
2

3
4
5

CUTc1

c2
c3

c5

c4

c1
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c1

4e) Intersect with neighbors – push into S

1 a1 b1

2 a2 b2

3 a3 b3

4 a4 b4

5 a5 b5

c1 1
c2 2
c3 5
c4 3
c5 4

c1 –¶ 2
c2 –¶ 1
c3 3 1
c4 5 4
c5 5 3

1 –¶ 6
2 –¶ 1
3 5 1
4 5 3
5 3 1
6 +¶ –¶

1 –¶ 2
2 –¶ 5
3 5 4
4 5 6
5 3 6
6 –¶ +¶

UHT array 
Delimiting 

lines indices

LHT array 
Delimiting 

lines indices

CUT edges N
Pairs of line indices
delimiting the edge 

CUT Lines C
Indexes of sup-

porting lines

Stack S
Ready vertex 
first edge idx

Array of line
equations E

y = aix + b

Topological line

UHT

6

1
2

3
4
5 Topological line

1
2

3
4
5

LHT

6

1
2

3
4
5Topological line

1
2

3
4
5

CUTc1

c2
c3

c5

c4
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c1

4e) Intersect with neighbors – push into S

1 a1 b1

2 a2 b2

3 a3 b3

4 a4 b4

5 a5 b5

c1 1
c2 2
c3 5
c4 3
c5 4

c1 –¶ 2
c2 –¶ 1
c3 3 1
c4 5 4
c5 5 3

1 –¶ 6
2 –¶ 1
3 5 1
4 5 3
5 3 1
6 +¶ –¶

1 –¶ 2
2 –¶ 5
3 5 4
4 5 6
5 3 6
6 –¶ +¶

UHT array 
Delimiting 

lines indices

LHT array 
Delimiting 

lines indices

CUT edges N
Pairs of line indices
delimiting the edge 

CUT Lines C
Indexes of sup-

porting lines

Stack S
Ready vertex 
first edge idx

Array of line
equations E

y = aix + b

Topological line

UHT

6

1
2

3
4
5 Topological line

1
2

3
4
5

LHT

6

1
2

3
4
5Topological line

1
2

3
4
5

CUTc1

c2
c3

c5

c4
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c4
c1

4e) Intersect with neighbors – push into S

1 a1 b1

2 a2 b2

3 a3 b3

4 a4 b4

5 a5 b5

c1 1
c2 2
c3 5
c4 3
c5 4

c1 –¶ 2
c2 –¶ 1
c3 3 1
c4 5 4
c5 5 3

1 –¶ 6
2 –¶ 1
3 5 1
4 5 3
5 3 1
6 +¶ –¶

1 –¶ 2
2 –¶ 5
3 5 4
4 5 6
5 3 6
6 –¶ +¶

UHT array 
Delimiting 

lines indices

LHT array 
Delimiting 

lines indices

CUT edges N
Pairs of line indices
delimiting the edge 

CUT Lines C
Indexes of sup-

porting lines

Stack S
Ready vertex 
first edge idx

Array of line
equations E

y = aix + b

Topological line

UHT

6

1
2

3
4
5 Topological line

1
2

3
4
5

LHT

6

1
2

3
4
5Topological line

1
2

3
4
5

CUTc1

c2
c3

c5

c4
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Input:
Output:

Topological sweep algorithm
TopoSweep(L)

Set of lines L sorted by slope (-90° to 90°), simple, not vertical
All parts of an Arrangement A(L) detected and then destroyed

1. Let C be the initial (leftmost) cut – lines in increasing order of slope
2. Create the initial UHT and LHT incrementally:

a) UHT by inserting lines in decreasing order of slope
b) LHT by inserting lines in increasing order of slope

3. By consulting UHT and LHT 
a) Determine the right endpoints N of all edges of the initial cut C
b) Store neighboring lines with common endpoint into stack S

(initial set of ready vertices)
4. Repeat until stack not empty

a) Pop next ready vertex from stack S (its upper edge ci ) 
b) Swap these lines within the cut C (ci <-> ci+1 )
c) Update the horizon trees UHT and LHT (reenter edge parts )
d) Consulting UHT and LHT determine new cut edges endpoints N
e) If new neighboring edges share an endpoint -> push them on S

Slope



4d) Determining cut edges from UHT and LHT

 for lines i = 1 to n
– Compare UHT and  LHT edges on line i
– Set the cut lying on edge i to the shorter edge of these 

 Order of the cuts along the sweep line
– Order changes only at the intersection v (neighbors)
– Order of remaining cuts not incident with intersection v

does not change

 After changes of the order, test the new neighbors 
for intersections

– Store intersections right from sweep line into the stack

(58 / 60)



Complexity

 O(n2) intersections  
=> O(n2) events (elementary steps)

 O(1) amortized time for one step – 4c) 

=> O(n2) time for the algorithm

Amortized time 
=  even though a single elementary step can take 

more than O(1) time, the total time needed to 
perform O(n2) elementary steps is O(n2), hence 
the average time for each step is O(1).
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