
WINDOWING

PETR FELKEL
FEL CTU PRAGUE

felkel@fel.cvut.cz

https://cw.felk.cvut.cz/doku.php/courses/a4m39vg/start

Based on [Berg], [Mount]

Version from 30.11.2022

https://cw.felk.cvut.cz/doku.php/courses/a4m39vg/start

Windowing queries - examples

◼ Interaction in GIS

– Select subset by outlining

– Zoom in and re-center

◼ Circuit board inspection,…

[Vakken]

[Berg]

[Berg]

(2 / 70)

Windowing versus range queries

◼ Range queries (see range trees in Lecture 03)

– Points

– Often in higher dimensions

◼ Windowing queries

– Line segments, curves, …

– Usually in low dimension (2D, 3D)

◼ The goal for both:

Preprocess the data into a data structure

– so that the objects intersected by the query rectangle

can be reported efficiently

(3 / 70)

Windowing queries on line segments

1. Axis parallel line segments 2. Arbitrary line segments

(non-crossing)
[Vakken]

(4 / 70)

Windowing queries on line segments

1. Axis parallel line segments 2. Arbitrary line segments

(non-crossing)
[Vakken]

(4 / 70)

Windowing queries on line segments

1. Axis parallel line segments 2. Arbitrary line segments

(non-crossing)
[Vakken]

(4 / 70)

1. Windowing of axis parallel line segments

[Vakken]

(5 / 70)

1. Windowing of axis parallel line segments

Window query

◼ Given

– a set of orthogonal line segments S (preprocessed),

– and orthogonal query rectangle 𝑊 = 𝑥 ∶ 𝑥′ × 𝑦 ∶ 𝑦′

◼ Count or report all the line segments of S that

intersect W

◼ Such segments have

a) one endpoint in

b) two end points in – included

c) no end point in – cross over

[Mount]

a)

a)

b)

c)

c)

b)

𝑥 𝑥′
𝑦

𝑦′

(6 / 70)

Line segments with 1 or 2 points inside

a) one point inside

– Use a 2D range tree (lesson 3)

– 𝑂(𝑛 log 𝑛) storage

– 𝑂(log2𝑛 + 𝑘) query time or

– 𝑂(log 𝑛 + 𝑘) with fractional

cascading

a)

a)

b)

c)

c)

[Mount]

b)

(7 / 70)

Line segments with 1 or 2 points inside

a) one point inside

– Use a 2D range tree (lesson 3)

– 𝑂(𝑛 log 𝑛) storage

– 𝑂(log2𝑛 + 𝑘) query time or

– 𝑂(log 𝑛 + 𝑘) with fractional

cascading

a)

a)

b)

c)

c)

[Mount]

b)

(7 / 70)

Line segments with 1 or 2 points inside

a) one point inside

– Use a 2D range tree (lesson 3)

– 𝑂(𝑛 log 𝑛) storage

– 𝑂(log2𝑛 + 𝑘) query time or

– 𝑂(log 𝑛 + 𝑘) with fractional

cascading

b) two points inside – as a) one point inside

– Avoid reporting twice:

Mark segment when reported (clear after the query)

and skip marked segments or

when end point found, check the other end-point and

report only one of them (the leftmost or the bottom)

a)

a)

b)

c)

c)

[Mount]

b)

(7 / 70)

Line segments with 1 or 2 points inside

a) one point inside

– Use a 2D range tree (lesson 3)

– 𝑂(𝑛 log 𝑛) storage

– 𝑂(log2𝑛 + 𝑘) query time or

– 𝑂(log 𝑛 + 𝑘) with fractional

cascading

b) two points inside – as a) one point inside

– Avoid reporting twice:

Mark segment when reported (clear after the query)

and skip marked segments or

when end point found, check the other end-point and

report only one of them (the leftmost or the bottom)

a)

a)

b)

c)

c)

[Mount]

b)

(7 / 70)

Line segments with 1 or 2 points inside

a) one point inside

– Use a 2D range tree (lesson 3)

– 𝑂(𝑛 log 𝑛) storage

– 𝑂(log2𝑛 + 𝑘) query time or

– 𝑂(log 𝑛 + 𝑘) with fractional

cascading

b) two points inside – as a) one point inside

– Avoid reporting twice:

Mark segment when reported (clear after the query)

and skip marked segments or

when end point found, check the other end-point and

report only one of them (the leftmost or the bottom)

a)

a)

b)

c)

c)

[Mount]

b)

(7 / 70)

2D range tree (without fractional cascading-more in Lecture 3)

[Mount]

Segment end-points

Search space: points

Query: Orthogonal intervals 𝑥 ∶ 𝑥′ × 𝑦 ∶ 𝑦′

𝑥 𝑥′

𝑦′

𝑦

𝑦′

𝑦

a), b)

slab

x-slabs

(8 / 70)

Line segments that cross over the window

c) No points inside

– Such segments not detected
using end-point range tree

– Cross the boundary twice

(9 / 70)

Line segments that cross over the window

c) No points inside

– Such segments not detected
using end-point range tree

– Cross the boundary twice

(9 / 70)

Line segments that cross over the window

c) No points inside

– Such segments not detected
using end-point range tree

– Cross the boundary twice

(9 / 70)

Line segments that cross over the window

c) No points inside

– Such segments not detected
using end-point range tree

– Cross the boundary twice

(9 / 70)

Line segments that cross over the window

c) No points inside

– Such segments not detected
using end-point range tree

– Cross the boundary twice

(9 / 70)

Line segments that cross over the window

c) No points inside

– Such segments not detected
using end-point range tree

– Cross the boundary twice

(9 / 70)

Line segments that cross over the window

c) No points inside

– Such segments not detected
using end-point range tree

– Cross the boundary twice

For axis parallel segments

Check left and bottom boundary

(9 / 70)

Line segments that cross over the window

[Mount]

c) No points inside

– Such segments not detected
using end-point range tree

– Cross the boundary twice

For axis parallel segments

For non-parallel segments

Check all 4 boundariesCheck left and bottom boundary

(9 / 70)

Windowing problem summary

Cases a) and b)

– Segment end-point in the query rectangle (window)

– Solved by 2D range trees (see lecture 3, 𝑂 𝑛 log 𝑛 time & memory)

◼ We will discuss only case c)

– Segment crosses the window

later – a segment treefirst – an interval tree

(three variants)

lecture 9

(10 / 70)

case c) principle

(11 / 70)

Segments cross the window

Line crosses the segments
(horizontal + vertical)

Talk Outline

1D 2D

Line x line segments

interval tree

For heat-up

Line segment x line segments

2 variants of interval tree

1 variant of segment tree

(12 / 70)

Data structures for case c)

Interval tree (1D IT)

stores 1D intervals (end-points in sorted lists)

computes intersections with query interval
see intersection of axis angle rectangles – there is y-overlap used, here is x-overlap

We must extend Interval tree to 2D

variants differ in storage of interval end-points 𝑀𝐿 , 𝑀𝑅

2D range trees

priority search trees

Segment tree

splits the plane to slabs in x in elementary intervals

(13 / 70)

Talk overview

1. Windowing of axis parallel line segments in 2D

– 3 variants of interval tree – IT in x-direction

– Differ in storage of segment end points ML and MR

i. Line stabbing (standard IT with sorted lists) lecture 9 - intersections

ii. Line segment stabbing (IT with range trees)

iii. Line segment stabbing (IT with priority search trees)

2. Windowing of line segments in general position

– segment tree + BST

1D

2D

2D

(14 / 70)

i. Segment intersected by vertical line

◼ Query line l ∶= (𝑥 = 𝑞𝑥)

Report the segments

stabbed by a vertical line

= 1 dimensional problem

(ignore y coordinate)

 Report the interval 𝑥 ∶ 𝑥′
containing query point 𝑞𝑥

DS: Interval tree with sorted lists

[Mount]

2D

1D

(15 / 70)

Interval tree principle (see lecture 9 - intersections)

(16 / 70)

Interval tree principle (see lecture 9 - intersections)

L(v)

R(v)

[Vigneron]

L
R

M

𝑥𝑀𝑖𝑑

(17 / 70)

Interval tree principle (see lecture 9 - intersections)

L(v)

R(v)

[Vigneron]

L
R

M

𝑥𝑀𝑖𝑑

𝑞𝑥

l

(17 / 70)

Interval tree principle (see lecture 9 - intersections)

L(v)

R(v)

[Vigneron]

L
R

M

𝑥𝑀𝑖𝑑

(17 / 70)

Interval tree principle (see lecture 9 - intersections)

L(v)

R(v)

[Vigneron]

L
R

M

𝑥𝑀𝑖𝑑

𝑞𝑥

l

(17 / 70)

Interval tree principle (see lecture 9 - intersections)

L(v)

R(v)

[Vigneron]

L
R

M

𝑥𝑀𝑖𝑑

(17 / 70)

Interval tree principle (see lecture 9 - intersections)

L(v)

R(v)

[Vigneron]

L
R

M

𝑥𝑀𝑖𝑑

𝑞𝑥

l

(17 / 70)

i. Segment intersected by vertical line

Principle

◼ Store input segments in static interval tree

◼ In each interval tree node

– Check the segments in the set 𝑀

– These segments contain node’s 𝑥𝑀𝑖𝑑 value
• 𝑀𝐿 are left end-points

• 𝑀𝑅 are right end-points

– 𝑞𝑥 is the query value

– If (𝑞𝑥< 𝑥𝑀𝑖𝑑) Sweep 𝑀𝐿 from left
p ∈ 𝑀𝐿: if 𝑝𝑥 ≤ 𝑞𝑥 ⇒ intersection

– If (𝑞𝑥> 𝑥𝑀𝑖𝑑) Sweep 𝑀𝑅 from right
p ∈ 𝑀𝑅: if 𝑝𝑥 ≥ 𝑞𝑥 ⇒ intersection

Inspired by [Berg]

𝑥𝑀𝑖𝑑𝑞𝑥

l

𝑀𝐿 𝑀𝑅

(18 / 70)

Segment intersection (left from 𝑥𝑀𝑖𝑑)

All line segments from 𝑀 pass through 𝑥𝑀𝑖𝑑

⇒ 𝑞𝑥 must be between 𝑝𝑥,𝑖 and 𝑥𝑀𝑖𝑑 to intersect the line segment 𝑖

⇒ left endpoints 𝑝𝑥,𝑖 ≤ 𝑞𝑥 ⇒ intersection

𝑥𝑀𝑖𝑑𝑞𝑥

l

𝑝𝑥,𝑖

Inspired by [Berg]

Sweep

𝑀𝐿

(19 / 70)

Segment intersection (left from 𝑥𝑀𝑖𝑑)

All line segments from 𝑀 pass through 𝑥𝑀𝑖𝑑

⇒ 𝑞𝑥 must be between 𝑝𝑥,𝑖 and 𝑥𝑀𝑖𝑑 to intersect the line segment 𝑖

⇒ left endpoints 𝑝𝑥,𝑖 ≤ 𝑞𝑥 ⇒ intersection

𝑥𝑀𝑖𝑑𝑞𝑥

l

𝑝𝑥,𝑖

Inspired by [Berg]

Sweep

𝑀𝐿

(19 / 70)

Segment intersection (left from 𝑥𝑀𝑖𝑑)

All line segments from 𝑀 pass through 𝑥𝑀𝑖𝑑

⇒ 𝑞𝑥 must be between 𝑝𝑥,𝑖 and 𝑥𝑀𝑖𝑑 to intersect the line segment 𝑖

⇒ left endpoints 𝑝𝑥,𝑖 ≤ 𝑞𝑥 ⇒ intersection

𝑥𝑀𝑖𝑑𝑞𝑥

l

𝑝𝑥,𝑖

Inspired by [Berg]

Sweep

𝑀𝐿

(19 / 70)

Segment intersection (left from 𝑥𝑀𝑖𝑑)

All line segments from 𝑀 pass through 𝑥𝑀𝑖𝑑

⇒ 𝑞𝑥 must be between 𝑝𝑥,𝑖 and 𝑥𝑀𝑖𝑑 to intersect the line segment 𝑖

⇒ left endpoints 𝑝𝑥,𝑖 ≤ 𝑞𝑥 ⇒ intersection

𝑥𝑀𝑖𝑑𝑞𝑥

l

𝑝𝑥,𝑖

Inspired by [Berg]

Sweep

𝑀𝐿

(19 / 70)

Segment intersection (left from 𝑥𝑀𝑖𝑑)

All line segments from 𝑀 pass through 𝑥𝑀𝑖𝑑

⇒ 𝑞𝑥 must be between 𝑝𝑥,𝑖 and 𝑥𝑀𝑖𝑑 to intersect the line segment 𝑖

⇒ left endpoints 𝑝𝑥,𝑖 ≤ 𝑞𝑥 ⇒ intersection

𝑥𝑀𝑖𝑑𝑞𝑥

l

𝑝𝑥,𝑖

Inspired by [Berg]

Sweep

𝑀𝐿

(19 / 70)

Stop

Segment intersection (left from 𝑥𝑀𝑖𝑑)

All line segments from 𝑀 pass through 𝑥𝑀𝑖𝑑

⇒ 𝑞𝑥 must be between 𝑝𝑥,𝑖 and 𝑥𝑀𝑖𝑑 to intersect the line segment 𝑖

⇒ left endpoints 𝑝𝑥,𝑖 ≤ 𝑞𝑥 ⇒ intersection

𝑥𝑀𝑖𝑑𝑞𝑥

l

𝑝𝑥,𝑖

Inspired by [Berg]

Intersection with line l
l≔ 𝑞𝑥 × [−∞ ∶ ∞]

Sweep

𝑀𝐿

(19 / 70)

Stop

Segment intersection (left from 𝑥𝑀𝑖𝑑)

All line segments from 𝑀 pass through 𝑥𝑀𝑖𝑑

⇒ 𝑞𝑥 must be between 𝑝𝑥,𝑖 and 𝑥𝑀𝑖𝑑 to intersect the line segment 𝑖

⇒ left endpoints 𝑝𝑥,𝑖 ≤ 𝑞𝑥 ⇒ intersection

𝑥𝑀𝑖𝑑𝑞𝑥

l

𝑝𝑥,𝑖

Inspired by [Berg]

Intersection with line l means
l≔ 𝑞𝑥 × [−∞ ∶ ∞]

Sweep

𝑀𝐿

(19 / 70)

Stop

Segment intersection (left from 𝑥𝑀𝑖𝑑)

All line segments from 𝑀 pass through 𝑥𝑀𝑖𝑑

⇒ 𝑞𝑥 must be between 𝑝𝑥,𝑖 and 𝑥𝑀𝑖𝑑 to intersect the line segment 𝑖

⇒ left endpoints 𝑝𝑥,𝑖 ≤ 𝑞𝑥 ⇒ intersection

𝑥𝑀𝑖𝑑𝑞𝑥

l

𝑝𝑥,𝑖

Inspired by [Berg]

Intersection with line l Intersection with half space 𝑞

𝑥𝑀𝑖𝑑𝑞𝑥

l

𝑝𝑥,𝑖 ≤ 𝑞𝑥
𝑝𝑥,𝑖 ∈ (−∞ ∶ 𝑞𝑥]

means

𝑞 ≔ (−∞ ∶ 𝑞𝑥] × [−∞ ∶ ∞]l≔ 𝑞𝑥 × [−∞ ∶ ∞]

Sweep

𝑀𝐿 𝑀𝐿

(19 / 70)

Stop

Principle once more

𝑥𝑀𝑖𝑑𝑞𝑥

l

Instead of

intersecting edges by line search points in half-space

𝑞𝑥

l

𝑥𝑀𝑖𝑑

(20 / 70)

i. Segment intersected by vertical line

◼ Query line l≔ 𝑞𝑥 × [−∞ ∶ ∞]

◼ Horizontal segment of 𝑀 stabs the query

line l left of 𝑥𝑀𝑖𝑑 iff its (segment’s)

left endpoint lies in half-space

𝑞 ≔ (−∞ ∶ 𝑞𝑥] × [−∞ ∶ ∞]
◼ In IT node with stored median 𝑥𝑀𝑖𝑑

report all segments from 𝑀
– ML: whose left point lies in

(−∞ ∶ 𝑞𝑥]

if l lies left from xMid

– MR: whose right point lies in

[𝑞𝑥 ∶ +∞)

if l lies right from xMid

l

Inspired by [Berg]

𝑥𝑀𝑖𝑑𝑞𝑥

l

De facto a 1D problem

𝑞𝑥

(21 / 70)

Static interval tree [Edelsbrunner80]

1 2 3 4 5 6

1 3 5

2

4

2,4 6,5

1 3

5 6

[Kukral]

Tree over sorted segment end-points

(22 / 70)

Primary structure – static tree for endpoints

1 2 3 4 5 6

1 3 5

2

4

2,4 6,5

1 3

v = vertex

d(v)= midpoint of

segment

endpoints

5 6

[Kukral]

Static

(23 / 70)

ML(v) – left endpoints of interval containing v

(sorted ascending)

MR(v) – right endpoints

(descending)

Secondary lists of incident interval end-pts.

1 2 3 4 5 6

1 3 5

2

4

2,4 6,5

1 3
ML(v) MR(v)

5 6

[Kukral]

Dynamic

(24 / 70)

Input:
Output:

(50 / 70)

Interval tree construction

ConstructIntervalTree(S) // Intervals all active – no active lists

Set S of intervals on the real line – on x-axis

The root of an interval tree for S

1. if (|S| == 0) return null // no more intervals

2. else

3. xMed = median endpoint of intervals in S // median endpoint

4. L = { [xlo, xhi] in S | xhi < xMed } // left of median

5. R = { [xlo, xhi] in S | xlo > xMed } // right of median

6. M = { [xlo, xhi] in S | xlo <= xMed <= xhi } // contains median

7. ML = sort M in increasing order of xlo // sort M

8. MR = sort M in decreasing order of xhi

9. t = new IntTreeNode(xMed, ML, MR) // this node

10. t.left = ConstructIntervalTree(L) // left subtree

11. t.right = ConstructIntervalTree(R) // right subtree

12. return t

steps 4.,5.,6. done in one step if presorted [Mount]

Merged procedures from in lecture 09

- PrimaryTree(S) on slide 33

- InsertInterval (b, e, T) on slide 35

Input:
Output:

(51 / 70)

Line stabbing query for an interval tree

Stab(t, qx)
IntTreeNode t, Scalar qx
prints the intersected intervals

1. if (t == null) return // no leaf: fell out of the tree

2. if (qx < t.xMed) // left of median?

3. for (i = 0; i < t.ML.length; i++) // traverse 𝑀𝐿 left end-points

4. if (t.ML[i].lo ≤ qx) print (t.ML[i]) // ..report if in range

5. else break // ..else done

6. Stab (t.left, qx) // recurse on left subtre

7. else // (qx ≥ t.xMed) // right of or equal to median

8. for (i = 0; i < t.MR.length; i++) { // traverse 𝑀𝑅 right end-points

9. if (t.MR[i].hi ≥ qx) print (t.MR[i]) // ..report if in range

10. else break // ..else done

11. Stab (t.right, qx) // recurse on right subtree

Note: Small inefficiency for qx == t.xMed – recurse on right

[Mount]

Less effective variant of QueryInterval (b, e, T)

on slide 34 in lecture 09

with merged parts: fork and search right

Complexity of line stabbing via interval tree

◼ Construction - 𝑂(𝑛 log 𝑛) time

– Each step divides at maximum into two halves or less

(minus elements of M) => tree of height ℎ = 𝑂(log 𝑛)

– If presorted endpoints in three lists L,R, and M

then median in O(1) and copy to new L,R,M in 𝑂(𝑛)

◼ Vertical line stabbing query - 𝑂(𝑘 + log 𝑛) time

– One node processed in 𝑂(1 + 𝑘′), 𝑘′reported intervals

– 𝑣 visited nodes in 𝑂(𝑣 + 𝑘), 𝑘 total reported intervals

– 𝑣 = ℎ = tree height = 𝑂(log 𝑛)

◼ Storage - 𝑂(𝑛)

– Tree has 𝑂(𝑛) nodes, each segment stored twice

(two endpoints)

𝑘 = Σ𝑘′

with sorted lists

(27 / 70)

Talk overview

1. Windowing of axis parallel line segments in 2D

– 3 variants of interval tree – IT in x-direction

– Differ in storage of segment end points ML and MR

i. Line stabbing (standard IT with sorted lists) lecture 9 - intersections

ii. Line segment stabbing (IT with range trees)

iii. Line segment stabbing (IT with priority search trees)

2. Windowing of line segments in general position

– segment tree + BST

1D

2D

2D

(28 / 70)

Line segment stabbing (IT with range trees)

Enhance 1D interval trees to 2D

l

𝑞𝑥

1D

l

𝑞𝑦

𝑞𝑦
′

𝑞𝑥

2D

to segments change lines

𝑞𝑥 × [−∞ ∶ ∞] (no y-test) 𝑞𝑥 × [𝑞𝑦 ∶ 𝑞𝑦
′] (additional y-test)

Sorted lists Range trees

(30 / 70)

i. Segments × vertical line

◼ Query line l≔ 𝑞𝑥 × [−∞ ∶ ∞]

◼ Horizontal segment of ML stabs the query

line l left of 𝑥𝑀𝑖𝑑 iff its left endpoint lies in

half-space

𝑞 ≔ (−∞ ∶ 𝑞𝑥] × [−∞ ∶ ∞]
◼ In IT node with stored median xMid

report all segments from M
– ML: whose left point lies in

(−∞ ∶ 𝑞𝑥]

if l lies left from xMid

– MR: whose right point lies in

[𝑞𝑥 ∶ +∞)

if l lies right from xMid

l

De facto a 1D problem

qx

Inspired by [Berg]

𝑥𝑀𝑖𝑑qx

l

Tree node

𝑀𝐿 𝑀𝑅

(31 / 70)

ii. Segments × vertical line segment

◼ Query segment 𝑞 ≔ 𝑞𝑥 × [𝑞𝑦 ∶ 𝑞𝑦
′]

◼ Horizontal segment of ML stabs the query

segment q left of 𝑥𝑀𝑖𝑑 iff its left endpoint lies in

semi-infinite rectangular region

𝑞 ≔ (−∞ ∶ 𝑞𝑥] × [𝑞𝑦 ∶ 𝑞𝑦
′]

◼ In IT node with stored median xMid

report all segments

– 𝑀𝐿: whose left points lie in

(−∞ ∶ 𝑞𝑥] × [𝑞𝑦 ∶ 𝑞𝑦′]
where 𝑞𝑥 lies left from 𝑥𝑀𝑖𝑑

– 𝑀𝑅: whose right point lies in

[𝑞𝑥 ∶ +∞) × [𝑞𝑦 ∶ 𝑞𝑦′]
where 𝑞𝑥 lies right from 𝑥𝑀𝑖𝑑

A 2D problem

(−∞ ∶ 𝑞𝑥] × [𝑞𝑦 ∶ 𝑞𝑦
′]

New test

Inspired by [Berg]

𝑞

𝑥𝑀𝑖𝑑qx

𝑀𝐿 𝑀𝑅

𝑞𝑦

𝑞𝑦
′

(32 / 70)

Data structure for endpoints

◼ Storage of 𝑀𝐿 and 𝑀𝑅

– 1D Sorted lists is not enough for line segments

– We need to test in 𝑦 too

– Use 2D range trees

(one for 𝑀𝐿 and one for 𝑀𝑅 in each node)

◼ Instead 𝑂(𝑛) sequential search in 𝑀𝐿 and 𝑀𝑅

perform 𝑂(log 𝑛) search

in range tree with fractional cascading

(33 / 70)

2D range tree (without fractional cascading-more in Lecture 3)

Segment left end-points for 𝑀𝐿

[Mount]

𝑞𝑦
′

𝑞𝑦

𝑞𝑦
′

𝑞𝑦

Inspired by [Berg]

𝑥𝑀𝑖𝑑

𝑞𝑥𝑥𝑚𝑖𝑛

(34 / 70)

Complexity of range tree line segment stabbing

◼ Construction - 𝑂(𝑛 log 𝑛) time

– Each step divides at maximum into two halves L,R
or less (minus elements of 𝑀) => int. tree height 𝑂(log 𝑛)

– If the range trees are efficiently build in 𝑂(𝑛) after points sorted

◼ Vertical line segment stab. q. - 𝑂(𝑘 + log2 𝑛) time

– One node processed in 𝑂(log 𝑛 + 𝑘’), 𝑘’ reported segm.

– 𝑣-visited nodes in 𝑂(𝑣 log 𝑛 + 𝑘), 𝑘 total reported segm.

– 𝑣 = interval tree height = 𝑂(log 𝑛)

– 𝑂(𝑘 + log2 𝑛) time - range tree with fractional cascading

– 𝑂(𝑘 + log3 𝑛) time - range tree without fractional casc.

◼ Storage - 𝑂(𝑛 log 𝑛)
– Dominated by the range trees

2D range tree search with Fractional Cascading

k = ∑𝑘′

interval tree

interval tree

(35 / 70)

Complexity of range tree line segment stabbing

◼ Construction - 𝑂(𝑛 log 𝑛) time

– Each step divides at maximum into two halves L,R
or less (minus elements of 𝑀) => int. tree height 𝑂(log 𝑛)

– If the range trees are efficiently build in 𝑂(𝑛) after points sorted

◼ Vertical line segment stab. q. - 𝑂(𝑘 + log2 𝑛) time

– One node processed in 𝑂(log 𝑛 + 𝑘’), 𝑘’ reported segm.

– 𝑣-visited nodes in 𝑂(𝑣 log 𝑛 + 𝑘), 𝑘 total reported segm.

– 𝑣 = interval tree height = 𝑂(log 𝑛)

– 𝑂(𝑘 + log2 𝑛) time - range tree with fractional cascading

– 𝑂(𝑘 + log3 𝑛) time - range tree without fractional casc.

◼ Storage - 𝑂(𝑛 log 𝑛)
– Dominated by the range trees

2D range tree search with Fractional Cascading

Can be done better?

k = ∑𝑘′

interval tree

interval tree

(35 / 70)

Talk overview

1. Windowing of axis parallel line segments in 2D

– 3 variants of interval tree – IT in x-direction

– Differ in storage of segment end points ML and MR

i. Line stabbing (standard IT with sorted lists) lecture 9 - intersections

ii. Line segment stabbing (IT with range trees)

iii. Line segment stabbing (IT with priority search trees)

2. Windowing of line segments in general position

– segment tree + BST

1D

2D

2D

(36 / 70)

iii. Priority search trees [McCreight85]

◼ Another variant for case c) on slide 9

– Exploit the fact that query rectangle in each node in

interval tree is unbounded (in 𝑥 direction)

◼ Priority search trees

– as secondary data structure for both left and right

endpoints (𝑀𝐿 and 𝑀𝑅) of segments

in nodes of interval tree – one for ML, one for MR

– Improve the storage to 𝑂(𝑛) for horizontal segment

intersection with left window edge (2D range tree has 𝑂(𝑛 log𝑛))

◼ For cases a) and b) - 𝑂(𝑛 log 𝑛) storage remains

– we need range trees for windowing segment endpoints

min 𝑥

(38 / 70)

Rectangular range queries variants

◼ Let 𝑃 = { 𝑝1, 𝑝2, … , 𝑝𝑛 } is set of points in plane

◼ Goal: rectangular range queries of the form
(–∞ ∶ 𝑞𝑥] × [𝑞𝑦 ∶ 𝑞𝑦

′] – unbounded (in 𝑥 direction)

◼ In 1D: search for nodes 𝑣 with 𝑣𝑥 ∈ (–∞ ∶ 𝑞𝑥]
– range tree 𝑂(log 𝑛 + 𝑘) time (search the end, report left)

– ordered list 𝑂(1 + 𝑘) time 1 is for possibly fail test of the first

(start in the leftmost, stop on 𝑣 with 𝑣𝑥 > 𝑞𝑥)

– use heap 𝑂(1 + 𝑘) time !

(traverse all children, stop when 𝑣𝑥 > 𝑞𝑥)

◼ In 2D – use heap for points with 𝑥 ∈ (–∞ ∶ 𝑞𝑥]

+ integrate information about y-coordinate

(39 / 70)

Rectangular range queries variants

◼ Let 𝑃 = { 𝑝1, 𝑝2, … , 𝑝𝑛 } is set of points in plane

◼ Goal: rectangular range queries of the form
(–∞ ∶ 𝑞𝑥] × [𝑞𝑦 ∶ 𝑞𝑦

′] – unbounded (in 𝑥 direction)

◼ In 1D: search for nodes 𝑣 with 𝑣𝑥 ∈ (–∞ ∶ 𝑞𝑥]
– range tree 𝑂(log 𝑛 + 𝑘) time (search the end, report left)

– ordered list 𝑂(1 + 𝑘) time 1 is for possibly fail test of the first

(start in the leftmost, stop on 𝑣 with 𝑣𝑥 > 𝑞𝑥)

– use heap 𝑂(1 + 𝑘) time !

(traverse all children, stop when 𝑣𝑥 > 𝑞𝑥)

◼ In 2D – use heap for points with 𝑥 ∈ (–∞ ∶ 𝑞𝑥]

+ integrate information about y-coordinate

= Priority search tree
(39 / 70)

Heap for 1D unbounded range queries

◼ Traverse all children, stop if 𝑣𝑥 > 𝑞𝑥

◼ Example: Query (–∞ ∶ 10], 𝑞𝑥 = 10

6

50 100

12

7

9

11

99 19

stop

report

[Berg]

xMidqx

l𝑣𝑥

heap without pop

𝑥

(40 / 70)

Principle of priority search tree

◼ Heap ≤𝑥

– relation between parent and its child nodes only

– no relation between the child nodes themselves

◼ Priority search tree

– relate the child nodes according to y ≤𝑦

B

C

A ≤
𝑦

≤
𝑦

≤
𝑦

𝑥 Heap

A ≤𝑥B

A ≤𝑥C

𝑦 BVS

B ≤𝑦 A ≤𝑦 C ⇒ B ≤𝑦 C

𝑦

𝑥

(41 / 70)

Priority search tree (PST)

= Heap in 2D that can incorporate info about both 𝑥, 𝑦
– BST on 𝑦-coordinate (horizontal slabs) ~ 1D range tree

– Heap on 𝑥-coordinate (minimum x from slab along x)

◼ If 𝑃 is empty, PST is empty leaf

◼ else
– 𝑝𝑚𝑖𝑛 = point with smallest 𝑥-coordinate in 𝑃 – a heap root

– 𝑦𝑚𝑒𝑑 = 𝑦-coord. median of points 𝑃 \ {𝑝𝑚𝑖𝑛} – BST root

– 𝑃𝑏𝑒𝑙𝑜𝑤 ≔ { 𝑝 ∈𝑃 \ 𝑝𝑚𝑖𝑛 ∶ 𝑝𝑦≤ 𝑦𝑚𝑒𝑑 }

– 𝑃𝑎𝑏𝑜𝑣𝑒 ≔ { 𝑝 ∈𝑃 \ 𝑝𝑚𝑖𝑛 ∶ 𝑝𝑦> 𝑦𝑚𝑒𝑑 }

◼ Point 𝑝𝑚𝑖𝑛 and scalar 𝑦𝑚𝑒𝑑 are stored in the PST root

◼ The left subtree is PST of 𝑃𝑏𝑒𝑙𝑜𝑤
◼ The right subtree is PST of 𝑃𝑎𝑏𝑜𝑣𝑒

(42 / 70)

Priority search tree construction example

11 15

128

4

2

1
3

5

7

9

14

13

10
6

[Schirra]

y

x

(43 / 70)

Priority search tree construction example

11 15

128

4

2

1
3

5

7

9

14

13

10
6

[Schirra]

y

x

(44 / 70)

Priority search tree construction example

11 15

128

4

2

1
3

5

7

9

14

13

10
6

[Schirra]

y

x

𝑝𝑚𝑖𝑛

𝑦𝑚𝑒𝑑

heap

BST

(45 / 70)

Priority search tree construction example

11 15

128

4

2

1

1
3

5

7

9

14

13

10
6

[Schirra]

y

x

𝑝𝑚𝑖𝑛

𝑦𝑚𝑒𝑑

heap

BST

𝑝𝑚𝑖𝑛

(45 / 70)

Priority search tree construction example

11 15

128

4

2

1

1
3

5

7

9

14

13

10
6

[Schirra]

y

x

𝑝𝑚𝑖𝑛

𝑦𝑚𝑒𝑑

heap

BST

𝑦𝑚𝑒𝑑

𝑝𝑚𝑖𝑛

(45 / 70)

Priority search tree construction example

11 15

128

4

2

1

1
3

5

7

9

14

13

10
6

[Schirra]

y

x

𝑝𝑚𝑖𝑛

𝑦𝑚𝑒𝑑

heap

BST

𝑦𝑚𝑒𝑑

𝑝𝑚𝑖𝑛

(45 / 70)

Priority search tree construction example

11 15

128

4

2

1

1
3

5

7

9

14

13

10
6

[Schirra]

y

x

𝑝𝑚𝑖𝑛

𝑦𝑚𝑒𝑑

y10

heap

BST

𝑦𝑚𝑒𝑑

𝑝𝑚𝑖𝑛

(45 / 70)

Priority search tree construction example

11 15

128

4

2

1

1
3

5

7

9

14

13

10
6

[Schirra]

y

x

y

>y

𝑝𝑚𝑖𝑛

𝑦𝑚𝑒𝑑

y10

heap

BST

𝑦𝑚𝑒𝑑

𝑝𝑚𝑖𝑛

(45 / 70)

Priority search tree construction example

11 15

128

4

2

3

1

1
3

5

7

9

14

13

10
6

[Schirra]

y

x

y

>y

𝑝𝑚𝑖𝑛

𝑦𝑚𝑒𝑑

y10

heap

BST

𝑦𝑚𝑒𝑑

𝑝𝑚𝑖𝑛

(45 / 70)

Priority search tree construction example

11 15

128

4

2

3

1

1
3

5

7

9

14

13

10
6

[Schirra]

y

x

y

>y

𝑝𝑚𝑖𝑛

𝑦𝑚𝑒𝑑

y10

heap

BST

𝑦𝑚𝑒𝑑

𝑝𝑚𝑖𝑛

(45 / 70)

Priority search tree construction example

11 15

128

4

2

3

1

1
3

5

7

9

14

13

10
6

[Schirra]

y

x

y

>y

𝑝𝑚𝑖𝑛

𝑦𝑚𝑒𝑑

y10

y9

heap

BST

𝑦𝑚𝑒𝑑

𝑝𝑚𝑖𝑛

(45 / 70)

Priority search tree construction example

11 15

128

4

2

7

3

1

1
3

5

7

9

14

13

10
6

[Schirra]

y

x

y

>y

𝑝𝑚𝑖𝑛

𝑦𝑚𝑒𝑑

y10

y9

heap

BST

𝑦𝑚𝑒𝑑

𝑝𝑚𝑖𝑛

(45 / 70)

Priority search tree construction example

11 15

128

4

2

7

3

1

1
3

5

7

9

14

13

10
6

[Schirra]

y

x

y

>y

𝑝𝑚𝑖𝑛

𝑦𝑚𝑒𝑑

y10

y9

heap

BST

𝑦𝑚𝑒𝑑

𝑝𝑚𝑖𝑛

(45 / 70)

Priority search tree construction example

11 15

128

4

2

7

3

1

1
3

5

7

9

14

13

10
6

[Schirra]

y

x

y

>y

𝑝𝑚𝑖𝑛

𝑦𝑚𝑒𝑑

y10

y14

y9

heap

BST

𝑦𝑚𝑒𝑑

𝑝𝑚𝑖𝑛

(45 / 70)

Priority search tree construction example

11 15

128

4

2

14

7

3

1

1
3

5

7

9

14

13

10
6

[Schirra]

y

x

y

>y

𝑝𝑚𝑖𝑛

𝑦𝑚𝑒𝑑

y10

y14

y9

heap

BST

𝑦𝑚𝑒𝑑

𝑝𝑚𝑖𝑛

(45 / 70)

Priority search tree construction example

11 15

128

4

2

9

14

7

3

1

1
3

5

7

9

14

13

10
6

[Schirra]

y

x

y

>y

𝑝𝑚𝑖𝑛

𝑦𝑚𝑒𝑑

y10

y14

y9

heap

BST

𝑦𝑚𝑒𝑑

𝑝𝑚𝑖𝑛

(45 / 70)

Priority search tree construction example

11 15

128

4

2

9

14

5

7

3

1

1
3

5

7

9

14

13

10
6

[Schirra]

y

x

y

>y

𝑝𝑚𝑖𝑛

𝑦𝑚𝑒𝑑

y10

y14

y9

heap

BST

𝑦𝑚𝑒𝑑

𝑝𝑚𝑖𝑛

(45 / 70)

Priority search tree construction example

11 15

128

4

2

9

14

5

7

3

1

1
3

5

7

9

14

13

10
6

[Schirra]

y

x

y

>y

𝑝𝑚𝑖𝑛

𝑦𝑚𝑒𝑑

y10

y14

y9

heap

BST

𝑦𝑚𝑒𝑑

𝑝𝑚𝑖𝑛

(45 / 70)

Priority search tree construction example

11 15

128

4

2

9

14

5

7

3

1

1
3

5

7

9

14

13

10
6

[Schirra]

y

x

y

>y

𝑝𝑚𝑖𝑛

𝑦𝑚𝑒𝑑

y10

y13

y14

y9

heap

BST

𝑦𝑚𝑒𝑑

𝑝𝑚𝑖𝑛

(45 / 70)

Priority search tree construction example

11 15

128

4

2

13

9

14

5

7

3

1

1
3

5

7

9

14

13

10
6

[Schirra]

y

x

y

>y

𝑝𝑚𝑖𝑛

𝑦𝑚𝑒𝑑

y10

y13

y14

y9

heap

BST

𝑦𝑚𝑒𝑑

𝑝𝑚𝑖𝑛

(45 / 70)

Priority search tree construction example

11 15

128

4

2

10

13

9

14

5

7

3

1

1
3

5

7

9

14

13

10
6

[Schirra]

y

x

y

>y

𝑝𝑚𝑖𝑛

𝑦𝑚𝑒𝑑

y10

y13

y14

y9

heap

BST

𝑦𝑚𝑒𝑑

𝑝𝑚𝑖𝑛

(45 / 70)

Priority search tree construction example

11 15

128

4

2

10

13

9

14

5

7

3

2

1

1
3

5

7

9

14

13

10
6

[Schirra]

y

x

y

>y

𝑝𝑚𝑖𝑛

𝑦𝑚𝑒𝑑

y10

y13

y14

y9

heap

BST

𝑦𝑚𝑒𝑑

𝑝𝑚𝑖𝑛

(45 / 70)

Priority search tree construction example

11 15

128

4

2

10

13

9

14

5

7

3

2

1

1
3

5

7

9

14

13

10
6

[Schirra]

y

x

y

>y

𝑝𝑚𝑖𝑛

𝑦𝑚𝑒𝑑

y10

y13

y14

y9

heap

BST

𝑦𝑚𝑒𝑑

𝑝𝑚𝑖𝑛

(45 / 70)

Priority search tree construction example

11 15

128

4

2

10

13

9

14

5

7

3

2

1

1
3

5

7

9

14

13

10
6

[Schirra]

y

x

y

>y

𝑝𝑚𝑖𝑛

𝑦𝑚𝑒𝑑

y10

y8

y13

y14

y9

heap

BST

𝑦𝑚𝑒𝑑

𝑝𝑚𝑖𝑛

(45 / 70)

Priority search tree construction example

11 15

128

4

2

10

13

9

14

6

5

7

3

2

1

1
3

5

7

9

14

13

10
6

[Schirra]

y

x

y

>y

𝑝𝑚𝑖𝑛

𝑦𝑚𝑒𝑑

y10

y8

y13

y14

y9

heap

BST

𝑦𝑚𝑒𝑑

𝑝𝑚𝑖𝑛

(45 / 70)

Priority search tree construction example

11 15

128

4

2

10

13

9

14

6

5

7

3

2

1

1
3

5

7

9

14

13

10
6

[Schirra]

y

x

y

>y

𝑝𝑚𝑖𝑛

𝑦𝑚𝑒𝑑

y10

y8

y13

y14

y9

heap

BST

𝑦𝑚𝑒𝑑

𝑝𝑚𝑖𝑛

(45 / 70)

Priority search tree construction example

11 15

128

4

2

10

13

9

14

6

5

7

3

2

1

1
3

5

7

9

14

13

10
6

[Schirra]

y

x

y

>y

𝑝𝑚𝑖𝑛

𝑦𝑚𝑒𝑑

y10

y8

y12

y13

y14

y9

heap

BST

𝑦𝑚𝑒𝑑

𝑝𝑚𝑖𝑛

(45 / 70)

Priority search tree construction example

11 15

128

4

2

12

10

13

9

14

6

5

7

3

2

1

1
3

5

7

9

14

13

10
6

[Schirra]

y

x

y

>y

𝑝𝑚𝑖𝑛

𝑦𝑚𝑒𝑑

y10

y8

y12

y13

y14

y9

heap

BST

𝑦𝑚𝑒𝑑

𝑝𝑚𝑖𝑛

(45 / 70)

Priority search tree construction example

11 15

128

4

2
8

12

10

13

9

14

6

5

7

3

2

1

1
3

5

7

9

14

13

10
6

[Schirra]

y

x

y

>y

𝑝𝑚𝑖𝑛

𝑦𝑚𝑒𝑑

y10

y8

y12

y13

y14

y9

heap

BST

𝑦𝑚𝑒𝑑

𝑝𝑚𝑖𝑛

(45 / 70)

Priority search tree construction example

11 15

128

4

2
8

12

10

13

9

14

4

6

5

7

3

2

1

1
3

5

7

9

14

13

10
6

[Schirra]

y

x

y

>y

𝑝𝑚𝑖𝑛

𝑦𝑚𝑒𝑑

y10

y8

y12

y13

y14

y9

heap

BST

𝑦𝑚𝑒𝑑

𝑝𝑚𝑖𝑛

(45 / 70)

Priority search tree construction example

11 15

128

4

2
8

12

10

13

9

14

4

6

5

7

3

2

1

1
3

5

7

9

14

13

10
6

[Schirra]

y

x

y

>y

𝑝𝑚𝑖𝑛

𝑦𝑚𝑒𝑑

y10

y8

y12

y13

y14

y9

heap

BST

𝑦𝑚𝑒𝑑

𝑝𝑚𝑖𝑛

(45 / 70)

Priority search tree construction example

11 15

128

4

2
8

12

10

13

9

14

4

6

5

7

3

2

1

1
3

5

7

9

14

13

10
6

[Schirra]

y

x

y

>y

𝑝𝑚𝑖𝑛

𝑦𝑚𝑒𝑑

y10

y8

y15

y12

y13

y14

y9

heap

BST

𝑦𝑚𝑒𝑑

𝑝𝑚𝑖𝑛

(45 / 70)

Priority search tree construction example

11 15

128

4

2

15

8

12

10

13

9

14

4

6

5

7

3

2

1

1
3

5

7

9

14

13

10
6

[Schirra]

y

x

y

>y

𝑝𝑚𝑖𝑛

𝑦𝑚𝑒𝑑

y10

y8

y15

y12

y13

y14

y9

heap

BST

𝑦𝑚𝑒𝑑

𝑝𝑚𝑖𝑛

(45 / 70)

Priority search tree construction example

11 15

128

4

2

11

15

8

12

10

13

9

14

4

6

5

7

3

2

1

1
3

5

7

9

14

13

10
6

[Schirra]

y

x

y

>y

𝑝𝑚𝑖𝑛

𝑦𝑚𝑒𝑑

y10

y8

y15

y12

y13

y14

y9

heap

BST

𝑦𝑚𝑒𝑑

𝑝𝑚𝑖𝑛

(45 / 70)

Input:
Output:

(104 / 70)

Priority search tree construction

PrioritySearchTree(𝑷)
set 𝑃 of points in plane
priority search tree 𝑇

1. if 𝑃 = ∅ then PST is an empty leaf
2. else
3. 𝑝𝑚𝑖𝑛 = point with smallest 𝑥-coordinate in 𝑃 // heap on 𝑥 root
4. 𝑦𝑚𝑒𝑑 = 𝑦-coord. median of points 𝑃 \ 𝑝𝑚𝑖𝑛 // BST on 𝑦 root
5. Split points P \ {pmin} into two subsets – according to 𝑦𝑚𝑒𝑑

6. 𝑃𝑏𝑒𝑙𝑜𝑤 ≔ { 𝑝 ∈ 𝑃 \ 𝑝𝑚𝑖𝑛 ∶ 𝑝𝑦≤ 𝑦𝑚𝑒𝑑 }
7. 𝑃𝑎𝑏𝑜𝑣𝑒 ≔ { 𝑝 ∈𝑃 \ 𝑝𝑚𝑖𝑛 ∶ 𝑝𝑦> 𝑦𝑚𝑒𝑑 }
8. T = newTreeNode() … Notation on the next slide:
9. T.p = 𝑝𝑚𝑖𝑛 // point [𝑥, 𝑦] … 𝑝(𝑣), 𝑣 = tree node
10. T.y = 𝑦𝑚𝑒𝑑 // scalar … 𝑦(𝑣)
11. T.left = PrioritySearchTree(𝑃𝑏𝑒𝑙𝑜𝑤) … 𝑙(𝑣)
12. T.rigft = PrioritySearchTree(𝑃𝑎𝑏𝑜𝑣𝑒) … 𝑟(𝑣)

13. 𝑂(𝑛 log 𝑛) , but 𝑂(𝑛) if presorted on 𝑦-coordinate and bottom up

Input:
Output:

(105 / 70)

Query Priority Search Tree

QueryPrioritySearchTree(𝑻, (–∞ ∶ 𝑞𝑥] × [𝑞𝑦 ∶ 𝑞𝑦
′])

A priority search tree and a range, unbounded to the left
All points lying in the range

1. Search with 𝑞𝑦 and 𝑞𝑦
′ in 𝑇 // BST on 𝑦-coordinate – select 𝑦 range

Let 𝜈𝑠𝑝𝑙𝑖𝑡 be the node where the two search paths split (split node)

2. for each node 𝜈 on the search path of qy or 𝑞𝑦
′ // points along the paths

3. if 𝑝(𝑣) ∈ (–∞ ∶ 𝑞𝑥] × [𝑞𝑦 ∶ 𝑞𝑦
′] then Report 𝑝(𝜈) // starting in tree root

4. for each node 𝜈 on the path of 𝑞𝑦 in the left subtree of 𝜈𝑠𝑝𝑙𝑖𝑡 // inner trees

5. if the search path goes left at 𝜈
6. ReportInSubtree(𝑟(𝜈), 𝑞𝑥) // report right subtree

7. for each node 𝜈 on the path of 𝑞𝑦
′ in right subtree of 𝜈𝑠𝑝𝑙𝑖𝑡

8. if the search path goes right at 𝜈
9. ReportInSubtree(𝑙(𝜈), 𝑞𝑥) // rep. left subtree

[Berg]

Input:
Output:

(106 / 70)

Query Priority Search Tree

QueryPrioritySearchTree(𝑻, (–∞ ∶ 𝑞𝑥] × [𝑞𝑦 ∶ 𝑞𝑦
′])

A priority search tree and a range, unbounded to the left
All points lying in the range

1. Search with 𝑞𝑦 and 𝑞𝑦
′ in 𝑇 // BST on 𝑦-coordinate – select 𝑦 range

Let 𝜈𝑠𝑝𝑙𝑖𝑡 be the node where the two search paths split (split node)

2. for each node 𝜈 on the search path of qy or 𝑞𝑦
′ // points along the paths

3. if 𝑝(𝑣) ∈ (–∞ ∶ 𝑞𝑥] × [𝑞𝑦 ∶ 𝑞𝑦
′] then Report 𝑝(𝜈) // starting in tree root

4. for each node 𝜈 on the path of 𝑞𝑦 in the left subtree of 𝜈𝑠𝑝𝑙𝑖𝑡 // inner trees

5. if the search path goes left at 𝜈
6. ReportInSubtree(𝑟(𝜈), 𝑞𝑥) // report right subtree

7. for each node 𝜈 on the path of 𝑞𝑦
′ in right subtree of 𝜈𝑠𝑝𝑙𝑖𝑡

8. if the search path goes right at 𝜈
9. ReportInSubtree(𝑙(𝜈), 𝑞𝑥) // rep. left subtree

[Berg]

Input:
Output:

(107 / 70)

Query Priority Search Tree

QueryPrioritySearchTree(𝑻, (–∞ ∶ 𝑞𝑥] × [𝑞𝑦 ∶ 𝑞𝑦
′])

A priority search tree and a range, unbounded to the left
All points lying in the range

1. Search with 𝑞𝑦 and 𝑞𝑦
′ in 𝑇 // BST on 𝑦-coordinate – select 𝑦 range

Let 𝜈𝑠𝑝𝑙𝑖𝑡 be the node where the two search paths split (split node)

2. for each node 𝜈 on the search path of qy or 𝑞𝑦
′ // points along the paths

3. if 𝑝(𝑣) ∈ (–∞ ∶ 𝑞𝑥] × [𝑞𝑦 ∶ 𝑞𝑦
′] then Report 𝑝(𝜈) // starting in tree root

4. for each node 𝜈 on the path of 𝑞𝑦 in the left subtree of 𝜈𝑠𝑝𝑙𝑖𝑡 // inner trees

5. if the search path goes left at 𝜈
6. ReportInSubtree(𝑟(𝜈), 𝑞𝑥) // report right subtree

7. for each node 𝜈 on the path of 𝑞𝑦
′ in right subtree of 𝜈𝑠𝑝𝑙𝑖𝑡

8. if the search path goes right at 𝜈
9. ReportInSubtree(𝑙(𝜈), 𝑞𝑥) // rep. left subtree

[Berg]

Input:
Output:

(108 / 70)

Query Priority Search Tree

QueryPrioritySearchTree(𝑻, (–∞ ∶ 𝑞𝑥] × [𝑞𝑦 ∶ 𝑞𝑦
′])

A priority search tree and a range, unbounded to the left
All points lying in the range

1. Search with 𝑞𝑦 and 𝑞𝑦
′ in 𝑇 // BST on 𝑦-coordinate – select 𝑦 range

Let 𝜈𝑠𝑝𝑙𝑖𝑡 be the node where the two search paths split (split node)

2. for each node 𝜈 on the search path of qy or 𝑞𝑦
′ // points along the paths

3. if 𝑝(𝑣) ∈ (–∞ ∶ 𝑞𝑥] × [𝑞𝑦 ∶ 𝑞𝑦
′] then Report 𝑝(𝜈) // starting in tree root

4. for each node 𝜈 on the path of 𝑞𝑦 in the left subtree of 𝜈𝑠𝑝𝑙𝑖𝑡 // inner trees

5. if the search path goes left at 𝜈
6. ReportInSubtree(𝑟(𝜈), 𝑞𝑥) // report right subtree

7. for each node 𝜈 on the path of 𝑞𝑦
′ in right subtree of 𝜈𝑠𝑝𝑙𝑖𝑡

8. if the search path goes right at 𝜈
9. ReportInSubtree(𝑙(𝜈), 𝑞𝑥) // rep. left subtree

[Berg]

Input:
Output:

(109 / 70)

Query Priority Search Tree

QueryPrioritySearchTree(𝑻, (–∞ ∶ 𝑞𝑥] × [𝑞𝑦 ∶ 𝑞𝑦
′])

A priority search tree and a range, unbounded to the left
All points lying in the range

1. Search with 𝑞𝑦 and 𝑞𝑦
′ in 𝑇 // BST on 𝑦-coordinate – select 𝑦 range

Let 𝜈𝑠𝑝𝑙𝑖𝑡 be the node where the two search paths split (split node)

2. for each node 𝜈 on the search path of qy or 𝑞𝑦
′ // points along the paths

3. if 𝑝(𝑣) ∈ (–∞ ∶ 𝑞𝑥] × [𝑞𝑦 ∶ 𝑞𝑦
′] then Report 𝑝(𝜈) // starting in tree root

4. for each node 𝜈 on the path of 𝑞𝑦 in the left subtree of 𝜈𝑠𝑝𝑙𝑖𝑡 // inner trees

5. if the search path goes left at 𝜈
6. ReportInSubtree(𝑟(𝜈), 𝑞𝑥) // report right subtree

7. for each node 𝜈 on the path of 𝑞𝑦
′ in right subtree of 𝜈𝑠𝑝𝑙𝑖𝑡

8. if the search path goes right at 𝜈
9. ReportInSubtree(𝑙(𝜈), 𝑞𝑥) // rep. left subtree

[Berg]

Input:
Output:

(110 / 70)

Query Priority Search Tree

QueryPrioritySearchTree(𝑻, (–∞ ∶ 𝑞𝑥] × [𝑞𝑦 ∶ 𝑞𝑦
′])

A priority search tree and a range, unbounded to the left
All points lying in the range

1. Search with 𝑞𝑦 and 𝑞𝑦
′ in 𝑇 // BST on 𝑦-coordinate – select 𝑦 range

Let 𝜈𝑠𝑝𝑙𝑖𝑡 be the node where the two search paths split (split node)

2. for each node 𝜈 on the search path of qy or 𝑞𝑦
′ // points along the paths

3. if 𝑝(𝑣) ∈ (–∞ ∶ 𝑞𝑥] × [𝑞𝑦 ∶ 𝑞𝑦
′] then Report 𝑝(𝜈) // starting in tree root

4. for each node 𝜈 on the path of 𝑞𝑦 in the left subtree of 𝜈𝑠𝑝𝑙𝑖𝑡 // inner trees

5. if the search path goes left at 𝜈
6. ReportInSubtree(𝑟(𝜈), 𝑞𝑥) // report right subtree

7. for each node 𝜈 on the path of 𝑞𝑦
′ in right subtree of 𝜈𝑠𝑝𝑙𝑖𝑡

8. if the search path goes right at 𝜈
9. ReportInSubtree(𝑙(𝜈), 𝑞𝑥) // rep. left subtree

[Berg]

Input:
Output:

(111 / 70)

Query Priority Search Tree

QueryPrioritySearchTree(𝑻, (–∞ ∶ 𝑞𝑥] × [𝑞𝑦 ∶ 𝑞𝑦
′])

A priority search tree and a range, unbounded to the left
All points lying in the range

1. Search with 𝑞𝑦 and 𝑞𝑦
′ in 𝑇 // BST on 𝑦-coordinate – select 𝑦 range

Let 𝜈𝑠𝑝𝑙𝑖𝑡 be the node where the two search paths split (split node)

2. for each node 𝜈 on the search path of qy or 𝑞𝑦
′ // points along the paths

3. if 𝑝(𝑣) ∈ (–∞ ∶ 𝑞𝑥] × [𝑞𝑦 ∶ 𝑞𝑦
′] then Report 𝑝(𝜈) // starting in tree root

4. for each node 𝜈 on the path of 𝑞𝑦 in the left subtree of 𝜈𝑠𝑝𝑙𝑖𝑡 // inner trees

5. if the search path goes left at 𝜈
6. ReportInSubtree(𝑟(𝜈), 𝑞𝑥) // report right subtree

7. for each node 𝜈 on the path of 𝑞𝑦
′ in right subtree of 𝜈𝑠𝑝𝑙𝑖𝑡

8. if the search path goes right at 𝜈
9. ReportInSubtree(𝑙(𝜈), 𝑞𝑥) // rep. left subtree

[Berg]

Input:
Output:

(112 / 70)

Query Priority Search Tree

QueryPrioritySearchTree(𝑻, (–∞ ∶ 𝑞𝑥] × [𝑞𝑦 ∶ 𝑞𝑦
′])

A priority search tree and a range, unbounded to the left
All points lying in the range

1. Search with 𝑞𝑦 and 𝑞𝑦
′ in 𝑇 // BST on 𝑦-coordinate – select 𝑦 range

Let 𝜈𝑠𝑝𝑙𝑖𝑡 be the node where the two search paths split (split node)

2. for each node 𝜈 on the search path of qy or 𝑞𝑦
′ // points along the paths

3. if 𝑝(𝑣) ∈ (–∞ ∶ 𝑞𝑥] × [𝑞𝑦 ∶ 𝑞𝑦
′] then Report 𝑝(𝜈) // starting in tree root

4. for each node 𝜈 on the path of 𝑞𝑦 in the left subtree of 𝜈𝑠𝑝𝑙𝑖𝑡 // inner trees

5. if the search path goes left at 𝜈
6. ReportInSubtree(𝑟(𝜈), 𝑞𝑥) // report right subtree

7. for each node 𝜈 on the path of 𝑞𝑦
′ in right subtree of 𝜈𝑠𝑝𝑙𝑖𝑡

8. if the search path goes right at 𝜈
9. ReportInSubtree(𝑙(𝜈), 𝑞𝑥) // rep. left subtree

[Berg]

Input:
Output:

(113 / 70)

Reporting of subtrees between the 𝑦-paths

ReportInSubtree(ν, qx)

The root 𝜈 of a subtree of a priority search tree and a value 𝑞𝑥.

All points 𝑝 in the subtree with 𝑥-coordinate at most 𝑞𝑥.

1. if 𝑥 𝑝 𝜈 ≤ 𝑞𝑥 // 𝑥 ∈ (–∞ ∶ 𝑞𝑥] -- heap condition

2. Report point 𝑝(𝜈).
3. if 𝜈 is not a leaf

4. ReportInSubtree(𝑙(𝜈), 𝑞𝑥)

5. ReportInSubtree(𝑟(𝜈), 𝑞𝑥)

Search according to 𝑥 in the heap

Priority search tree query (–∞ ∶ 𝑞𝑥] × [𝑞𝑦 ∶ 𝑞𝑦
′]

-

11 15

128

4

2

11

15

8

12

10

13

9

14

4

6

5

7

3

2

1

1
3

5

7

9

14

13

10
6

Based on [Schirra] [Berg]

Given interval [𝑞𝑦 ∶ 𝑞𝑦
′]

Given 𝑞𝑥

Segment left end-points

(49 / 70)

Priority search tree query (–∞ ∶ 𝑞𝑥] × [𝑞𝑦 ∶ 𝑞𝑦
′]

-

11 15

128

4

2

11

15

8

12

10

13

9

14

4

6

5

7

3

2

1

1
3

5

7

9

14

13

10
6

Based on [Schirra] [Berg]

𝑞𝑦

𝑞𝑦
′

Given interval [𝑞𝑦 ∶ 𝑞𝑦
′]

Given 𝑞𝑥

Segment left end-points

(49 / 70)

Priority search tree query (–∞ ∶ 𝑞𝑥] × [𝑞𝑦 ∶ 𝑞𝑦
′]

1. select y range (𝑦-BVS~ 1D range tree)

11 15

128

4

2

11

15

8

12

10

13

9

14

4

6

5

7

3

2

1

1
3

5

7

9

14

13

10
6

Based on [Schirra] [Berg]

𝑞𝑦

𝑞𝑦
′

Given interval [𝑞𝑦 ∶ 𝑞𝑦
′]

Given 𝑞𝑥

Segment left end-points

(49 / 70)

Priority search tree query (–∞ ∶ 𝑞𝑥] × [𝑞𝑦 ∶ 𝑞𝑦
′]

1. select y range (𝑦-BVS~ 1D range tree)

11 15

128

4

2

11

15

8

12

10

13

9

14

4

6

5

7

3

2

1

1
3

5

7

9

14

13

10
6

Based on [Schirra] [Berg]

𝑦-range path

𝑞𝑦

𝑞𝑦
′

Given interval [𝑞𝑦 ∶ 𝑞𝑦
′]

Given 𝑞𝑥

Segment left end-points

(49 / 70)

Priority search tree query (–∞ ∶ 𝑞𝑥] × [𝑞𝑦 ∶ 𝑞𝑦
′]

1. select y range (𝑦-BVS~ 1D range tree)

11 15

128

4

2

11

15

8

12

10

13

9

14

4

6

5

7

3

2

1

1
3

5

7

9

14

13

10
6

Based on [Schirra] [Berg]

𝑦-range path

𝑞𝑦

𝑞𝑦
′

Given interval [𝑞𝑦 ∶ 𝑞𝑦
′]

Given 𝑞𝑥

Segment left end-points

(49 / 70)

Priority search tree query (–∞ ∶ 𝑞𝑥] × [𝑞𝑦 ∶ 𝑞𝑦
′]

1. select y range (𝑦-BVS~ 1D range tree)

11 15

128

4

2

11

15

8

12

10

13

9

14

4

6

5

7

3

2

1

1
3

5

7

9

14

13

10
6

𝑣𝑠𝑝𝑙𝑖𝑡

Based on [Schirra] [Berg]

𝑦-range path

𝑞𝑦

𝑞𝑦
′

Given interval [𝑞𝑦 ∶ 𝑞𝑦
′]

Given 𝑞𝑥

Segment left end-points

(49 / 70)

Priority search tree query (–∞ ∶ 𝑞𝑥] × [𝑞𝑦 ∶ 𝑞𝑦
′]

1. select y range (𝑦-BVS~ 1D range tree)

11 15

128

4

2

11

15

8

12

10

13

9

14

4

6

5

7

3

2

1

1
3

5

7

9

14

13

10
6

𝑣𝑠𝑝𝑙𝑖𝑡

Based on [Schirra] [Berg]

𝑦-range path

𝑞𝑦

𝑞𝑦
′

Given interval [𝑞𝑦 ∶ 𝑞𝑦
′]

Given 𝑞𝑥

Segment left end-points

(49 / 70)

Priority search tree query (–∞ ∶ 𝑞𝑥] × [𝑞𝑦 ∶ 𝑞𝑦
′]

1. select y range (𝑦-BVS~ 1D range tree)

11 15

128

4

2

11

15

8

12

10

13

9

14

4

6

5

7

3

2

1

1
3

5

7

9

14

13

10
6

𝑣𝑠𝑝𝑙𝑖𝑡

Based on [Schirra] [Berg]

𝑦-range path

𝑞𝑦

𝑞𝑦
′

Given interval [𝑞𝑦 ∶ 𝑞𝑦
′]

Given 𝑞𝑥

Segment left end-points

(49 / 70)

Priority search tree query (–∞ ∶ 𝑞𝑥] × [𝑞𝑦 ∶ 𝑞𝑦
′]

1. select y range (𝑦-BVS~ 1D range tree)

2. report points on paths (𝑥-heap)

11 15

128

4

2

11

15

8

12

10

13

9

14

4

6

5

7

3

2

1

1
3

5

7

9

14

13

10
6

𝑣𝑠𝑝𝑙𝑖𝑡

Based on [Schirra] [Berg]

𝑦-range path

𝑞𝑦

𝑞𝑦
′

Given interval [𝑞𝑦 ∶ 𝑞𝑦
′]

Given 𝑞𝑥

Segment left end-points

(49 / 70)

Priority search tree query (–∞ ∶ 𝑞𝑥] × [𝑞𝑦 ∶ 𝑞𝑦
′]

1. select y range (𝑦-BVS~ 1D range tree)

2. report points on paths (𝑥-heap)

11 15

128

4

2

11

15

8

12

10

13

9

14

4

6

5

7

3

2

1

1
3

5

7

9

14

13

10
6

𝑣𝑠𝑝𝑙𝑖𝑡

𝑥 too high – stop

𝑥 ok – report this point

Based on [Schirra] [Berg]

𝑦-range path

𝑞𝑦

𝑞𝑦
′

Given interval [𝑞𝑦 ∶ 𝑞𝑦
′]

Given 𝑞𝑥

Segment left end-points

(49 / 70)

Priority search tree query (–∞ ∶ 𝑞𝑥] × [𝑞𝑦 ∶ 𝑞𝑦
′]

1. select y range (𝑦-BVS~ 1D range tree)

2. report points on paths (𝑥-heap)

11 15

128

4

2

11

15

8

12

10

13

9

14

4

6

5

7

3

2

1

1
3

5

7

9

14

13

10
6

𝑣𝑠𝑝𝑙𝑖𝑡

𝑥 too high – stop

𝑥 ok – report this point

Based on [Schirra] [Berg]

𝑦-range path

𝑞𝑦

𝑞𝑦
′

Given interval [𝑞𝑦 ∶ 𝑞𝑦
′]

Given 𝑞𝑥

Segment left end-points

(49 / 70)

Priority search tree query (–∞ ∶ 𝑞𝑥] × [𝑞𝑦 ∶ 𝑞𝑦
′]

1. select y range (𝑦-BVS~ 1D range tree)

2. report points on paths (𝑥-heap)

11 15

128

4

2

11

15

8

12

10

13

9

14

4

6

5

7

3

2

1

1
3

5

7

9

14

13

10
6

𝑣𝑠𝑝𝑙𝑖𝑡

𝑥 too high – stop

𝑥 ok – report this point

Based on [Schirra] [Berg]

𝑦-range path

𝑞𝑦

𝑞𝑦
′

Given interval [𝑞𝑦 ∶ 𝑞𝑦
′]

Given 𝑞𝑥

Segment left end-points

(49 / 70)

Priority search tree query (–∞ ∶ 𝑞𝑥] × [𝑞𝑦 ∶ 𝑞𝑦
′]

1. select y range (𝑦-BVS~ 1D range tree)

2. report points on paths (𝑥-heap)

11 15

128

4

2

11

15

8

12

10

13

9

14

4

6

5

7

3

2

1

1
3

5

7

9

14

13

10
6

𝑣𝑠𝑝𝑙𝑖𝑡

𝑥 too high – stop

𝑥 ok – report this point

Based on [Schirra] [Berg]

𝑦-range path

𝑞𝑦

𝑞𝑦
′

Given interval [𝑞𝑦 ∶ 𝑞𝑦
′]

Given 𝑞𝑥

Segment left end-points

(49 / 70)

Priority search tree query (–∞ ∶ 𝑞𝑥] × [𝑞𝑦 ∶ 𝑞𝑦
′]

1. select y range (𝑦-BVS~ 1D range tree)

2. report points on paths (𝑥-heap)

11 15

128

4

2

11

15

8

12

10

13

9

14

4

6

5

7

3

2

1

1
3

5

7

9

14

13

10
6

𝑣𝑠𝑝𝑙𝑖𝑡

𝑥 too high – stop

𝑥 ok – report this point

Based on [Schirra] [Berg]

𝑦-range path

𝑞𝑦

𝑞𝑦
′

Given interval [𝑞𝑦 ∶ 𝑞𝑦
′]

Given 𝑞𝑥

Segment left end-points

(49 / 70)

Priority search tree query (–∞ ∶ 𝑞𝑥] × [𝑞𝑦 ∶ 𝑞𝑦
′]

1. select y range (𝑦-BVS~ 1D range tree)

2. report points on paths (𝑥-heap)

11 15

128

4

2

11

15

8

12

10

13

9

14

4

6

5

7

3

2

1

1
3

5

7

9

14

13

10
6

𝑣𝑠𝑝𝑙𝑖𝑡

𝑥 too high – stop

𝑥 ok – report this point

Based on [Schirra] [Berg]

𝑦-range path

𝑞𝑦

𝑞𝑦
′

Given interval [𝑞𝑦 ∶ 𝑞𝑦
′]

Given 𝑞𝑥

Segment left end-points

(49 / 70)

Priority search tree query (–∞ ∶ 𝑞𝑥] × [𝑞𝑦 ∶ 𝑞𝑦
′]

1. select y range (𝑦-BVS~ 1D range tree)

2. report points on paths (𝑥-heap)

3. report subtrees (𝑥-heap)

11 15

128

4

2

11

15

8

12

10

13

9

14

4

6

5

7

3

2

1

1
3

5

7

9

14

13

10
6

𝑣𝑠𝑝𝑙𝑖𝑡

𝑥 too high – stop

𝑥 ok – report this point

Based on [Schirra] [Berg]

𝑦-range path

𝑞𝑦

𝑞𝑦
′

Given interval [𝑞𝑦 ∶ 𝑞𝑦
′]

Given 𝑞𝑥

Segment left end-points

(49 / 70)

Priority search tree query (–∞ ∶ 𝑞𝑥] × [𝑞𝑦 ∶ 𝑞𝑦
′]

1. select y range (𝑦-BVS~ 1D range tree)

2. report points on paths (𝑥-heap)

3. report subtrees (𝑥-heap)

11 15

128

4

2

11

15

8

12

10

13

9

14

4

6

5

7

3

2

1

1
3

5

7

9

14

13

10
6

𝑣𝑠𝑝𝑙𝑖𝑡

𝑥 too high – stop

𝑥 ok – report this point

Based on [Schirra] [Berg]

𝑦-range path

𝑞𝑦

𝑞𝑦
′

Given interval [𝑞𝑦 ∶ 𝑞𝑦
′]

Given 𝑞𝑥

Segment left end-points

(49 / 70)

Priority search tree complexity

For set of 𝑛 points in the plane

◼ Build 𝑂(𝑛 log 𝑛)

◼ Storage 𝑂(𝑛)

◼ Query 𝑂(𝑘 + log 𝑛)

– points in query range (–∞ ∶ 𝑞𝑥] × [𝑞𝑦 ∶ 𝑞𝑦
′]

– 𝑘 is number of reported points

◼ Use Priority search tree as associated data

structure for interval trees for storage of set 𝑀
(one for 𝑀𝐿, one for 𝑀𝑅)

(50 / 70)

Talk overview

1. Windowing of axis parallel line segments in 2D

– 3 variants of interval tree – IT in x-direction

– Differ in storage of segment end points ML and MR

i. Line stabbing (standard IT with sorted lists) lecture 9 - intersections

ii. Line segment stabbing (IT with range trees)

iii. Line segment stabbing (IT with priority search trees)

2. Windowing of line segments in general position

– segment tree + BST

1D

2D

2D

(51 / 70)

2. Windowing of line segments in general position

[Vakken]

(53 / 70)

◼ Two cases of intersection

a,b) Endpoint inside the query window => range tree

c) Segment intersects side of query window => ???

◼ Intersection with BBOX (segment bounding box)?

– Intersection with 4n sides of the segment BBOX?

– But segments may not intersect the window –> query y

Windowing of arbitrary oriented line segments

(54 / 70)

◼ Two cases of intersection

a,b) Endpoint inside the query window => range tree

c) Segment intersects side of query window => ???

◼ Intersection with BBOX (segment bounding box)?

– Intersection with 4n sides of the segment BBOX?

– But segments may not intersect the window –> query y

Windowing of arbitrary oriented line segments

NOT

(54 / 70)

Talk overview

1. Windowing of axis parallel line segments in 2D

(variants of interval tree - IT)

i. Line stabbing (IT with sorted lists)

ii. Line segment stabbing (IT with range trees)

iii. Line segment stabbing (IT with priority search trees)

2. Windowing of line segments in general position

– segment tree

Note: segment = interval

it consists of elementary intervals

1D

2D

2D

(55 / 70)

Segment tree [Bentley, 1977]

◼ Exploits locus approach

– Partition parameter space into regions of same answer

– Localization of such region = knowing the answer

◼ For given set 𝑆 of 𝑛 intervals (segments) on real line

– Finds 𝑚 elementary intervals (induced by interval end-points)

– Partitions 1D parameter space into these elementary

intervals

– Stores line segments 𝑠𝑖 with the elementary intervals

– Reports the segments 𝑠𝑖 containing query point 𝑞𝑥.

𝑥1−∞ 𝑥2 𝑥3 𝑥4 +∞

Plain is partitioned into vertical slabs

−∞ ∶ 𝑥1 , 𝑥1 ∶ 𝑥1 , 𝑥1 ∶ 𝑥2 , 𝑥2 ∶ 𝑥2 , … ,
𝑥𝑚

𝑥𝑚−1 ∶ 𝑥𝑚 , 𝑥𝑚 ∶ 𝑥𝑚 , (𝑥𝑚 ∶ +∞)

(56 / 70)

𝑥3 ∶ 𝑥3𝑥2 ∶ 𝑥2

Segment tree example

x

Intervals

Elementary Intervals

𝑥1 ∶ 𝑥1

…

…

Segments 𝑆 = {𝑠1, 𝑠2, … , 𝑠𝑛}
𝑠𝑖 = 𝑥𝑖 , 𝑥𝑖

′

−∞ ∶ 𝑥1 𝑥1 ∶ 𝑥2 (𝑥𝑚 ∶ +∞)

[Berg]

𝑥𝑚 ∶ 𝑥𝑚

(57 / 70)

𝑥3 ∶ 𝑥3𝑥2 ∶ 𝑥2

Segment tree example

x

Intervals

Elementary Intervals

𝑥1 ∶ 𝑥1

…

…

Segments 𝑆 = {𝑠1, 𝑠2, … , 𝑠𝑛}
𝑠𝑖 = 𝑥𝑖 , 𝑥𝑖

′

−∞ ∶ 𝑥1 𝑥1 ∶ 𝑥2 (𝑥𝑚 ∶ +∞)

[Berg]

𝑥𝑚 ∶ 𝑥𝑚

(57 / 70)

𝑥3 ∶ 𝑥3𝑥2 ∶ 𝑥2

Segment tree example

x

Intervals

Elementary Intervals

𝑥1 ∶ 𝑥1

…

…

Segments 𝑆 = {𝑠1, 𝑠2, … , 𝑠𝑛}
𝑠𝑖 = 𝑥𝑖 , 𝑥𝑖

′

−∞ ∶ 𝑥1 𝑥1 ∶ 𝑥2 (𝑥𝑚 ∶ +∞)

[Berg]

𝑥𝑚 ∶ 𝑥𝑚

𝑣

(57 / 70)

𝑥3 ∶ 𝑥3𝑥2 ∶ 𝑥2

Segment tree example

x

Intervals

Elementary Intervals

𝑥1 ∶ 𝑥1

…

…

Segments 𝑆 = {𝑠1, 𝑠2, … , 𝑠𝑛}
𝑠𝑖 = 𝑥𝑖 , 𝑥𝑖

′

−∞ ∶ 𝑥1 𝑥1 ∶ 𝑥2 (𝑥𝑚 ∶ +∞)

[Berg]

𝑥𝑚 ∶ 𝑥𝑚

𝑣

𝐼𝑛𝑡(𝑣)

(57 / 70)

Number of elementary intervals for 𝑛 segments

𝑛 = 0

𝑛 = 1

𝑛 = 2

𝑛

= 1

= 4 + 1

= 4 ∗ 2 + 1

= 4𝑛 + 1Each end-point adds two elementary intervals

Each segment four…

(58 / 70)

Segment tree definition

Segment tree

◼ Skeleton is a balanced binary tree 𝑇

◼ Leaves ~ elementary intervals

◼ Internal nodes 𝑣
~ union of elementary intervals of its children

– Store: 1. interval 𝐼𝑛𝑡(𝑣) = union of elementary intervals
of its children

2. canonical set 𝑆(𝑣) of segments [𝑥𝑖 ∶ 𝑥𝑖’] ∈ 𝑆

– Holds 𝐼𝑛𝑡 𝑣 ⊆ [𝑥𝑖 ∶ 𝑥𝑖 ’] and 𝐼𝑛𝑡 parent 𝑣 ⊆ [𝑥𝑖 ∶ 𝑥𝑖 ’]
(node interval is not larger than the segment)

– Segments [𝑥𝑖 ∶ 𝑥𝑖 ’] are stored as high as possible, such
that 𝐼𝑛𝑡(𝑣) is completely contained in the segment

segments 𝑠𝑖

(59 / 70)

Segments span the slab

Segments span the slab of the node,

but not of its parent

(stored as up as possible)

Int(v2)

Int(v1)

Int(v3)

[Berg]

𝐼𝑛𝑡(𝑣𝑗) ⊆ 𝑠𝑖

and

𝐼𝑛𝑡(parent 𝑣) ⊆ 𝑠𝑖

Set of segments

of node 𝑣𝑖

(60 / 70)

Input:
Output:

(146 / 70)

Query segment tree – stabbing query (1D)

QuerySegmentTree(𝑣, 𝑞𝑥)
The root of a (subtree of a) segment tree and a query point 𝑞𝑥
All intervals (=segments) in the tree containing 𝑞𝑥.

1. Report all the intervals 𝑠𝑖 in 𝑆(𝜈). // covered by the current node

2. if 𝜈 is not a leaf // root covers “all”(−∞,+∞)
3. if 𝑞𝑥 ∈ Int(𝑙(𝜈)) // go left

4. QuerySegmentTree(𝑙(𝜈), 𝑞𝑥)

5. else // or go right

6. QuerySegmentTree(𝑟(𝜈), 𝑞𝑥)

Query time 𝑂(log 𝑛 + 𝑘), where 𝑘 is the number of reported intervals

𝑂(1 + 𝑘𝑣) for one node

Height 𝑂(log 𝑛)

Input:
Output:

(147 / 70)

Segment tree construction

ConstructSegmentTree(𝑆)

Set of intervals (segments) 𝑆
segment tree

1. Sort endpoints of segments in 𝑆, get elementary intervals … 𝑂(𝑛 log𝑛)

2. Construct a binary search tree 𝑇 on elementary intervals … 𝑂(𝑛)
(bottom up) and determine the interval 𝐼𝑛𝑡(𝑣) it represents

3. Compute the canonical subsets for the nodes

(lists of their segments 𝑠𝑖):

4. v = root(𝑇)

5. for all segments 𝑠𝑖 = 𝑥𝑖 ∶ 𝑥𝑖
′ ∈ 𝑆

6. InsertSegmentTree(𝑣, 𝑥𝑖 ∶ 𝑥𝑖
′)

Input:
Output:

(148 / 70)

Segment tree construction – interval insertion

InsertSegmentTree(𝑣, 𝑥 ∶ 𝑥′)

The root of (a sub-tree of) a segment tree and an interval.

The interval will be stored in the sub-tree.

1. if Int v ⊆ 𝑥 ∶ 𝑥′ // Int v contains 𝑠𝑖 = 𝑥 ∶ 𝑥′

2. store 𝑠𝑖 = 𝑥 ∶ 𝑥′ at 𝜈

3. else if Int l v ∩ 𝑥 ∶ 𝑥′ ≠ ∅ // part of 𝑠𝑖 to the left

4. InsertSegmentTree(l v , 𝑥 ∶ 𝑥′)

5. if Int r v ∩ 𝑥 ∶ 𝑥′ ≠ ∅ // part of 𝑠𝑖 to the right

6. InsertSegmentTree(r v , 𝑥 ∶ 𝑥′)

One interval is stored at most twice in one level =>

Single interval insert 𝑂 log 𝑛 , insert 𝑛 intervals 𝑂 2𝑛 log 𝑛
Construction total 𝑂 𝑛 log 𝑛

Storage 𝑂 𝑛 log 𝑛
Tree height 𝑂 log 𝑛 , name stored max 2x in one level

Storage total 𝑂 𝑛 log 𝑛 – see next slide

Space complexity - notes

Worst case – 𝑂(𝑛2) segments in leafs

But

Store segments as high, as possible

Segment max 2 times in one level

max4𝑛 + 1 elementary intervals (leaves)

⇒ 𝑂 𝑛 space for the tree

⇒ 𝑂 𝑛 log 𝑛 space for interval names

𝑠 covered by 𝑣1 and 𝑣3

⇒ 𝑣2 covered, 𝐼𝑛𝑡(𝑣2) ∈ 𝑠

As 𝑣2 lies between 𝑣1 and 𝑣3
⇒ 𝐼𝑛𝑡(𝑝𝑎𝑟𝑒𝑛𝑡(𝑣2)) ∈ 𝑠 ⇒

segment 𝑠 will not be

stored in 𝑣2

𝑠
[Berg]

[Berg]

⇐

𝑠
𝑠 𝑠

(64 / 70)

Segment tree complexity

A segment tree for set 𝑆 of 𝑛 intervals in the plane,

◼ Build 𝑂(𝑛 log 𝑛)

◼ Storage 𝑂(𝑛 log 𝑛)

◼ Query 𝑂(𝑘 + log 𝑛)

– Report all intervals that contain a query point

– 𝑘 is number of reported intervals

(65 / 70)

Segment tree versus Interval tree

◼ Segment tree

– 𝑂(𝑛 log 𝑛) storage versus 𝑂(𝑛) of Interval tree

– But returns exactly the intersected segments 𝑠𝑖,
interval tree must search the lists 𝑀𝐿 and/or 𝑀𝑅

◼ Good for

1. extensions (allows different structuring of intervals)

2. stabbing counting queries

– store number of intersected intervals in nodes

– 𝑂(𝑛) storage and 𝑂(log 𝑛) query time = optimal

3. higher dimensions – multilevel segment trees

(Interval and priority search trees do not exist in ^dims)

(66 / 70)

Talk overview

1. Windowing of axis parallel line segments in 2D

(variants of interval tree - IT)

i. Line stabbing (standard IT with sorted lists)

ii. Line segment stabbing (IT with range trees)

iii. Line segment stabbing (IT with priority search trees)

2. Windowing of line segments in general position

– segment tree

– the windowing algorithm

1D

2D

2D

(67 / 70)

2. Windowing of line segments in general position

qx

𝑞𝑦

𝑞𝑦
′

[Vakken]

Test intersection with border

Done 4x (rectangle)

(68 / 70)

Windowing of arbitrary oriented line segments

◼ Let 𝑆 be a set of arbitrarily oriented line segments in

the plane.

◼ Report the segments intersecting a vertical query

segment 𝑞 ∶= 𝑞𝑥 × [𝑞𝑦 ∶ 𝑞𝑦
′] – window border

◼ Segment tree 𝑇 on 𝑥 intervals of segments in 𝑆

– node 𝑣 of 𝑇 corresponds to vertical slab 𝐼𝑛𝑡(𝑣) × (−∞ ∶ ∞)

– segments span the slab of the

node, but not of its parent

– segments do not intersect

=> segments in the slab (node)

can be vertically ordered – BST

[Berg]

𝑞𝑥

𝑞𝑦

𝑞𝑦
′

(69 / 70)

Segments between vertical segment endpoints

Segment 𝑠 is intersected by vert.query segment 𝑞 iff

– The lower endpoint (B) of 𝑞 is below 𝑠 and

– The upper endpoint (A) of 𝑞 is above 𝑠

[Berg]

A

B

𝑞

𝑆1

𝑆4
𝑆5

𝑆3

𝑆2

𝑆1

𝑆2

𝑆3

𝑆4

𝑆5

(70 / 70)

Segments between vertical segment endpoints

Segment 𝑠 is intersected by vert.query segment 𝑞 iff

– The lower endpoint (B) of 𝑞 is below 𝑠 and

– The upper endpoint (A) of 𝑞 is above 𝑠

A is above

B is below

[Berg]

A

B

𝑞

𝑆1

𝑆4
𝑆5

𝑆3

𝑆2

𝑆1

𝑆2

𝑆3

𝑆4

𝑆5

(70 / 70)

Segments between vertical segment endpoints

Segment 𝑠 is intersected by vert.query segment 𝑞 iff

– The lower endpoint (B) of 𝑞 is below 𝑠 and

– The upper endpoint (A) of 𝑞 is above 𝑠

A is above

B is below

[Berg]

A

B

𝑞

𝑆1

𝑆4
𝑆5

𝑆3

𝑆2

𝑆1

𝑆2

𝑆3

𝑆4

𝑆5

(70 / 70)

Segments between vertical segment endpoints

Segment 𝑠 is intersected by vert.query segment 𝑞 iff

– The lower endpoint (B) of 𝑞 is below 𝑠 and

– The upper endpoint (A) of 𝑞 is above 𝑠

A is above

B is below

[Berg]

A

B

𝑞

𝑆1

𝑆4
𝑆5

𝑆3

𝑆2

𝑆1

𝑆2

𝑆3

𝑆4

𝑆5

(70 / 70)

Segments between vertical segment endpoints

Segment 𝑠 is intersected by vert.query segment 𝑞 iff

– The lower endpoint (B) of 𝑞 is below 𝑠 and

– The upper endpoint (A) of 𝑞 is above 𝑠

A is above

B is below

A above

B below

[Berg]

A

B

𝑞

𝑆1

𝑆4
𝑆5

𝑆3

𝑆2

𝑆1

𝑆2

𝑆3

𝑆4

𝑆5

(70 / 70)

Segments between vertical segment endpoints

Segment 𝑠 is intersected by vert.query segment 𝑞 iff

– The lower endpoint (B) of 𝑞 is below 𝑠 and

– The upper endpoint (A) of 𝑞 is above 𝑠

A is above

B is below

A above

B below

[Berg]

A

B

𝑞

𝑆1

𝑆4
𝑆5

𝑆3

𝑆2

𝑆1

𝑆2

𝑆3

𝑆4

𝑆5

(70 / 70)

Segments between vertical segment endpoints

Segment 𝑠 is intersected by vert.query segment 𝑞 iff

– The lower endpoint (B) of 𝑞 is below 𝑠 and

– The upper endpoint (A) of 𝑞 is above 𝑠

A is above

B is below

A above

B below

[Berg]

A

B

𝑞

𝑆1

𝑆4
𝑆5

𝑆3

𝑆2

𝑆1

𝑆2

𝑆3

𝑆4

𝑆5

(70 / 70)

Segments between vertical segment endpoints

Segment 𝑠 is intersected by vert.query segment 𝑞 iff

– The lower endpoint (B) of 𝑞 is below 𝑠 and

– The upper endpoint (A) of 𝑞 is above 𝑠

A is above

B is below
A below

B below

A above

B below

[Berg]

A

B

𝑞

𝑆1

𝑆4
𝑆5

𝑆3

𝑆2

𝑆1

𝑆2

𝑆3

𝑆4

𝑆5

(70 / 70)

Segments between vertical segment endpoints

Segment 𝑠 is intersected by vert.query segment 𝑞 iff

– The lower endpoint (B) of 𝑞 is below 𝑠 and

– The upper endpoint (A) of 𝑞 is above 𝑠

A is above

B is below
A below

B below

A above

B below

[Berg]

A

B

𝑞

𝑆1

𝑆4
𝑆5

𝑆3

𝑆2

𝑆1

𝑆2

𝑆3

𝑆4

𝑆5

(70 / 70)

Segments between vertical segment endpoints

Segment 𝑠 is intersected by vert.query segment 𝑞 iff

– The lower endpoint (B) of 𝑞 is below 𝑠 and

– The upper endpoint (A) of 𝑞 is above 𝑠

A is above

B is below
A below

B below

A above

B below

[Berg]

A

B

𝑞

𝑆1

𝑆4
𝑆5

𝑆3

𝑆2

𝑆1

𝑆2

𝑆3

𝑆4

𝑆5

(70 / 70)

Segments between vertical segment endpoints

Segment 𝑠 is intersected by vert.query segment 𝑞 iff

– The lower endpoint (B) of 𝑞 is below 𝑠 and

– The upper endpoint (A) of 𝑞 is above 𝑠

A is above

B is below
A below

B below

A above

B below

[Berg]

A

B

𝑞

𝑆1

𝑆4
𝑆5

𝑆3

𝑆2

𝑆1

𝑆2

𝑆3

𝑆4

𝑆5

(70 / 70)

Segments between vertical segment endpoints

Segment 𝑠 is intersected by vert.query segment 𝑞 iff

– The lower endpoint (B) of 𝑞 is below 𝑠 and

– The upper endpoint (A) of 𝑞 is above 𝑠

A is above

B is below
A below

B below

A above

B below

[Berg]

A

B

𝑞

𝑆1

𝑆4
𝑆5

𝑆3

𝑆2

𝑆1

𝑆2

𝑆3

𝑆4

𝑆5

(70 / 70)

Segments between vertical segment endpoints

Segment 𝑠 is intersected by vert.query segment 𝑞 iff

– The lower endpoint (B) of 𝑞 is below 𝑠 and

– The upper endpoint (A) of 𝑞 is above 𝑠

A is above

B is below
A below

B below

A above

B below

A above

B above

[Berg]

A

B

𝑞

𝑆1

𝑆4
𝑆5

𝑆3

𝑆2

𝑆1

𝑆2

𝑆3

𝑆4

𝑆5

(70 / 70)

Segments between vertical segment endpoints

Segment 𝑠 is intersected by vert.query segment 𝑞 iff

– The lower endpoint (B) of 𝑞 is below 𝑠 and

– The upper endpoint (A) of 𝑞 is above 𝑠

A is above

B is below
A below

B below

A above

B below

A above

B above

[Berg]

A

B

𝑞

𝑆1

𝑆4
𝑆5

𝑆3

𝑆2

𝑆1

𝑆2

𝑆3

𝑆4

𝑆5

(70 / 70)

Segments between vertical segment endpoints

Segment 𝑠 is intersected by vert.query segment 𝑞 iff

– The lower endpoint (B) of 𝑞 is below 𝑠 and

– The upper endpoint (A) of 𝑞 is above 𝑠

A is above

B is below
A below

B below

A above

B below

A above

B above

[Berg]

A

B

𝑞

𝑆1

𝑆4
𝑆5

𝑆3

𝑆2

𝑆1

𝑆2

𝑆3

𝑆4

𝑆5

(70 / 70)

Segments between vertical segment endpoints

Segment 𝑠 is intersected by vert.query segment 𝑞 iff

– The lower endpoint (B) of 𝑞 is below 𝑠 and

– The upper endpoint (A) of 𝑞 is above 𝑠

A is above

B is below
A below

B below

A above

B below

A above

B above

A above

B below

[Berg]

A

B

𝑞

𝑆1

𝑆4
𝑆5

𝑆3

𝑆2

𝑆1

𝑆2

𝑆3

𝑆4

𝑆5

(70 / 70)

Segments between vertical segment endpoints

Segment 𝑠 is intersected by vert.query segment 𝑞 iff

– The lower endpoint (B) of 𝑞 is below 𝑠 and

– The upper endpoint (A) of 𝑞 is above 𝑠

A is above

B is below
A below

B below

A above

B below

A above

B above

A above

B below

[Berg]

A

B

𝑞

𝑆1

𝑆4
𝑆5

𝑆3

𝑆2

𝑆1

𝑆2

𝑆3

𝑆4

𝑆5

(70 / 70)

Segments between vertical segment endpoints

Segment 𝑠 is intersected by vert.query segment 𝑞 iff

– The lower endpoint (B) of 𝑞 is below 𝑠 and

– The upper endpoint (A) of 𝑞 is above 𝑠

A is above

B is below
A below

B below

A above

B below

A above

B above

A above

B below

[Berg]

A

B

𝑞

𝑆1

𝑆4
𝑆5

𝑆3

𝑆2

𝑆1

𝑆2

𝑆3

𝑆4

𝑆5

(70 / 70)

Segments between vertical segment endpoints

Segment 𝑠 is intersected by vert.query segment 𝑞 iff

– The lower endpoint (B) of 𝑞 is below 𝑠 and

– The upper endpoint (A) of 𝑞 is above 𝑠

A is above

B is below
A below

B below

A above

B below

A above

B above

A above

B below

[Berg]

A

B

𝑞

𝑆1

𝑆4
𝑆5

𝑆3

𝑆2

𝑆1

𝑆2

𝑆3

𝑆4

𝑆5

(70 / 70)

Segments between vertical segment endpoints

◼ Segments (in the slab) do not mutually intersect

=> segments can be vertically ordered and stored in BST

– Each node 𝑣 of the 𝑥 segment tree (vertical slab)

has an associated 𝑦-BST

– BST 𝑇(𝑣) of node 𝑣 stores the canonical subset 𝑆(𝑣)
according to the vertical order

– Intersected segments can be found by searching 𝑇(𝑣) in

𝑂(𝑘𝑣 + log 𝑛), 𝑘𝑣 is the number of intersected segments

(71 / 70)

Windowing of arbitrary oriented line segments complexity

Structure associated to node (BST) uses storage

linear in the size of 𝑆(𝑣)

◼ Build 𝑂(𝑛 log 𝑛)

◼ Storage 𝑂(𝑛 log 𝑛)

◼ Query 𝑂(𝑘 + log2 𝑛) … 𝑂(log 𝑛) segm tree +𝑂(log 𝑛) BST

– Report all segments that contain a query point

– 𝑘 is number of reported segments

(72 / 70)

Windowing of line segments in 2D – conclusions

Construction: all interval tree variants 𝑂(𝑛 log 𝑛)

1. Axis parallel Search Memory

i. Line (sorted lists) 𝑂(𝑘 + log 𝑛) 𝑂(𝑛)

ii. Segment (range trees) 𝑂(𝑘 + log2 𝑛) 𝑂(𝑛 log 𝑛)

iii. Segment (priority s. tr.) 𝑂(𝑘 + log 𝑛) 𝑂(𝑛)

2. In general position

– segment tree + BST 𝑂(𝑘 + log2 𝑛) 𝑂(𝑛 log 𝑛)

1D

2D

2D

(73 / 70)

References

[Berg] Mark de Berg, Otfried Cheong, Marc van Kreveld, Mark Overmars:

Computational Geometry: Algorithms and Applications, Springer-

Verlag, 3rd rev. ed. 2008. 386 pages, 370 fig. ISBN: 978-3-540-

77973-5, Chapters 3 and 9, http://www.cs.uu.nl/geobook/

[Mount] Mount, D.: Computational Geometry Lecture Notes for Fall 2016,

University of Maryland, Lecture 33.
http://www.cs.umd.edu/class/fall2016/cmsc754/Lects/cmsc754-fall16-lects.pdf

[Rourke] Joseph O´Rourke: Computational Geometry in C, Cambridge

University Press, 1993, ISBN 0-521- 44592-2

http://maven.smith.edu/~orourke/books/compgeom.html

[Vigneron] Segment trees and interval trees, presentation, INRA, France,

http://w3.jouy.inra.fr/unites/miaj/public/vigneron/cs4235/slides.html

[Schirra] Stefan Schirra. Geometrische Datenstrukturen. Sommersemester

2009 http://wwwisg.cs.uni-

magdeburg.de/ag/lehre/SS2009/GDS/slides/S10.pdf

(74 / 70)

http://www.cs.uu.nl/geobook/
http://www.cs.umd.edu/class/fall2016/cmsc754/Lects/cmsc754-fall16-lects.pdf
http://maven.smith.edu/~orourke/books/compgeom.html
http://w3.jouy.inra.fr/unites/miaj/public/vigneron/cs4235/slides.html
http://wwwisg.cs.uni-magdeburg.de/ag/lehre/SS2009/GDS/slides/S10.pdf

