CGl

DEPARTMENT OF COMPUTER GRAPHICS AND INTERACTION

INTERSECTIONS OF LINE

SEGMENTS AN
AXIS ALIGNED

D
RECTANGLES,

OVERLAY OF S

PETR FELKEL

FEL CTU PRAGUE
felkel@fel.cvut.cz

UBDIVISIONS

https://cw.felk.cvut.cz/doku.php/courses/adm39vqg/start

Based on [Berg], [Mount], [Kukral], and [Drtina]

Version from 19.11.2020

Talk overview

= Intersections of line segments (Bentley-Ottmann)
— Motivation

— Sweep line algorithm recapitulation
— Sweep line intersections of line segments

= Intersection of polygons or planar subdivisions
— See assignment [21] or [Berg, Section 2.3]

= Intersection of axis parallel rectangles
— See assignment [26]

- o —f—
+++++
> -~ -+
—~ DCGI Felkel: Computational geometry
(2/96)

Geometric intersections — what are they for?

One of the most basic problems in computational geometry

= Solid modeling
— Intersection of object boundaries in CSG

= Overlay of subdivisions, e.g. layers in GIS
— Bridges on intersections of roads and rivers
— Maintenance responsibilities (road network X county boundaries)

= Robotics
— Collision detection and collision avoidance

= Computer graphics
— Rendering via ray shooting (intersection of the ray with objects)

- o —f—
A e =~ == ——
-+ =
DC GI Felkel: Computational geometry
(3/96)

Line segment intersection

- —:_ -
+++++
> -~ -+
—~ DCGI Felkel: Computational geometry
(4/96)

Line segment intersection

= |ntersection of complex shapes is often reduced to simpler
and simpler intersection problems

= Line segment intersection is the most basic intersection
algorithm

= Problem statement:
Given n line segments in the plane, report all points where
a pair of line segments intersect.

= Problem complexity
— Worst case — | = O(n?) intersections
— Practical case — only some intersections

— Use an output sensitive algorithm
* O(nlog n + 1) optimal randomized algorithm
* O(nlog n +1log n) sweep line algorithm - %

LoFr @\
* i : Computational geometry Q‘% L -
DCGI Felkel: | _ | " \

(5/96)

[Berg]

Plane sweep line algorithm recapitulation

= Horizontal line (sweep line, scan line) ! moves
top-down (or vertical line: left to right) OvVer the set of objects
The move is not continuous, but f jumps from one

event point to another
— Event points are in priority queue or sorted list (~y)
— The (left) top-most event point is removed first
— New event points may be created
(usually as interaction of neighbors on the sweep line)
and inserted into the queue

Scan-line status
— Stores information about the objects intersected by {
+ff It is updated while stopping on event point

Postupovy plan

Status m

\
¥

\
N

Line segment intersection - Sweep line alg.

= Avoid testing of pairs of segments far apart
= Compute intersections of neighbors on the sweep line only

= O(nlogn+llogn)timein O(n) memory
— 2n steps for end points,
— | steps for intersections,

— log n search the status tree

= Ignore “"degenerate cases” (most of them will be solved later on)
— No segment is parallel to the sweep line
— Segments intersect in one point and do not overlap
— No three segments meet in a common point

- —:_ -
A A =~ == ——
> -~ -+
DC GI Felkel: Computational geometry
(7/96)

Line segment intersections

Status = ordered sequence of segments stav
intersecting the sweep line {

Events (waiting in the priority queue) Postupovy plén
= points, where the algorithm actually does something
— Segment end-points
* known at algorithm start

— Segment intersections between neighboring segments
along SL

* discovered as the sweep executes

- —:_ -
+++++
> -~ -+
—~ DCGI Felkel: Computational geometry
(8/96)

Detecting intersections

= Intersection events must be detected and inserted
to the event queue before they occur

= Given two segments a, b intersecting in point p,
there must be a placement of sweep line { prior

to p, such that segments a, b are adjacent along /

(only adjacent will be tested for intersection)
— segments a, b are not adjacent when the alg. starts

— segments a, b are adjacent just before p
=> there must be an event point when a,b become
adjacent and therefore are tested for intersection

=> All intersections are found

S o o~ == =

Felkel: Computational geomet

7 DCGI 0199

Data structures

Sweep line f status = order of segments along /
= Balanced binary search tree of segments

= Coords of intersections with { vary as { moves
=> store pointers to line segments in tree nodes

— Position of [is plugged in the y=mx+b to get the x-key
T &

DC GI Felkel: Computational geometry
(10/96)

Data structures

Event queue (postupovy plan, éasovy plan) y Jtc’p'down
s Define: Order > (top-down, lexicographic) I
p > qiff p, >q, orp, =q, and p, < gy x
top-down, left-right approach
(points on { treated left to right)

= Operations
— Insertion of computed intersection points
— Fetching the next event — must have
(highest y below [or the leftmost right of e) |

— Test, if the segment is already present in the queue} may
(Locate and delete intersection event in the queue) | have

- —:_ -
+++++
> -~ -+
—~ DCGI Felkel: Computational geometry
(11/96)

Problem with duplicities of intersections

Intersection may be detected many times

1
2 s
3

3X defected
intersection

- —:_ -
+++++
> -~ -+
—~ DCGI Felkel: Computational geometry
(12/96)

Data structures

Event queue data structure
3x aﬁétected

a) Heap o dote

— Problem: can not check duplicated intersection events
(reinvented & stored more than once)

— Intersections processed twice or even more times
— Memory complexity up to O(n?)
b) Ordered dictionary (balanced binary tree)
— Can check duplicated events (adds just constant factor)
— Nothing inserted twice

— If non-neighbor intersections are deleted
i.e., if only intersections of neighbors along f are stored

. - then memory complexity just O(n) %
o o Felkel: Computational geometry
DCGI (13/96)

l top-down

Line segment intersection algorithm

FindIntersections(S)
Input: A set S of line segments in the plane
Output: The set of intersection points + pointers to segments in each
1. init an empty event queue Q and insert the segment endpoints
init an empty status structure T
while Q in not empty

remove next event p from Q

handleEventPoint(p)

a &~ Wb

Upper endpoint Improved algorithm:
Intersection Handles all in p
Lower endpoint In a single step

Note: Upper-endpoint events store info about the segment

» . .
-’ - -

S o o~ == =

- + = 4

handleEventPoint() principle

= Upper endpoint U(p)
— insert p (on s;) to status T
— add intersections with left and
right neighbors to Q > intesecton
= Intersection C(p)
— switch order of segments in T
— add intersections with nearest left
and nearest right neighbor to Q
= Lower endpoint L(p)
— remove p (on s;) from T

— add intersections of left and right
-~ = neighbors to Q

——
+ -+
DC GI Felkel: Computational geometry
(157 96)

More than two segments incident

52

U(p) = {s,}] start here
C(p)={s;, 84} || crosson/
L(p) ={s4, S5t 1 end here - CBer)

A /@\&?)g __
-~ Felkel: Computational geometry A
DCGI L SR s b

H an d I e Eve n tS [modified Berg, page 25]

handleEventPoint(p) // precisely: handle all events with point p UK(P)

1.

N o Ok

Let U(p) = set of segments whose Upper endpoint is p.
These segments are stored with the event point p (will be added to T)

Search T for all segments S(p) that contain p (are adjacent in T):

Let L(p) U S(p) = segments whose Lower endpoint is p L(p)
Let C(p) U S(p) = segments that Contain p in interior P

If(L(p) U U(p) U C(p) contains more than one segment) é{
report p as intersection o together with L(p), U(p), C(p)

C(p)
Delete the segments in L(p) u C(p) from T s\ ;&/‘/;, 0
if(U(p) u C(p) = @) then findNewEvent(s,, S@// left & right neighbors
else Insert the segments in U(p) u C(p) into T~—~// reverse order of C(p) in T

(order as below f, horizontal segment as the last) 5
S
s’ = leftmost segm. of U(p) u C(p); findNewEvent(s,, s’, p) y’%ﬁs

r

s” = rightmost segm. of U(p) u C(p); findNewEvent(s”, s, p) s

A o o - -
DC GI Felkel: Computational geometry
(17 1 96) .

Detection of new intersections

findNewEvent(s,, s,, p) // with handling of horizontal segments
Input: two segments (left & right from p in T) and a current event point p
Output: updated event queue Q with new intersection o

1. if [(s and s, intersect below the sweep line {') // intersection below {
Non-overlapping

or (s, intersect s” on f and to the right of p)] // horizontal segment

and(the intersection © is not presentin Q)
2. then
insert intersection® as a new event into Q

o Reported intersection - line 4
o New intersection to Q - line 6,8,9

S’ = leftmost from U(p) [l C(p)
S” = rightmost from U(p) [C(p) line 8

s,and s” intersect on /,

T s, and s, intersect below s” is horizontal and to the.right.of p
> + —+ 4

line 6 line 8

Line segment intersections

= Memory O(l) = O(n?) with duplicities in Q
or O(n) with duplicities in Q deleted
= Operational complexity
— n + | stops
— log n each
=>0O(l+n)logn total

= The algorithm is by Bentley-Ottmann

Bentley, J. L.; Ottmann, T. A. (1979), "Algorithms for reporting and counting geometric intersections", IEEE
Transactions on Computers C-28 (9): 643-647, doi:10.1109/TC.1979.1675432 .

See also http://wapedia.mobi/en/Bentley%E2%80%930ttmann algorithm

L &'?‘
s . WO
- D C GI Felkel: Com(;:l:jt;osr;a|:geomet'-'y | _ . \

Overlay of two subdivisions
(intersection of DCELSs)

L B S
* ++ i Felkel: Computational geometry / %@g
DCGI Y SOUL L=

Overlay of two subdivisions

DCEL S, '/\ DCEL S,

hole

e o o = =

7 DC I Felkel: Compgtational.geometry L
‘ ; (21796)

Overlay Is a new planar subdivision

DCEL 0(S,, S,)

- : -
+++++
> -~ -+
—/— DCGI Felkel: Computational geometry
(22 /96)

Sweep line overlay algorithm

Compute new planar subdivision

Re-use not intersected half-edge records

Compute intersections and new half-edge records A
. (s
Compute labels of new facesreiel: computational geometry i _ _

(VAL] (231 96)

The algorithm principle

Copy DCELSs of both subdivisions to invalid DCEL D

Transform the result into a valid DCEL for the
subdivision overlay 0(S¢,55)

— Compute the intersection of edges
(from different subdivisions S; N S,)

— Link together appropriate parts of the two DCELs
 Vertex and half-edge records
* Face records

- o —f—
+++++
> -~ -+
—~ DCGI Felkel: Computational geometry
(24 /1 96)

At an Event point

N Update queue Q (pop, delete intersections of separated edges below)

and sSweep line status tree T (add/remove/swap edges,
compute intersections with neighbors)

as in line segment intersection algorithm

(cross pointers between edges in 7 and D to access part of D when
processing an intersection)

s For vertex from one subdivision
— No additional work

= For Intersection of edges from different subdivisions
— Link both DCELs
— Handle all possible cases

—
——

- - @‘
S & : Computational geome Q‘% Q ox
DCGI Felkel: C (;)25t/t96) I.g tr-'y | . i \

Three types of intersections

New are intersections of different subdivisions

vertex — vertex: overlap of vertices

vertex — edge: edge passes through a vertex

Let’s discuss this case,
the other two are similar

edge — edge: edges intersect in their interior

T _
: Computational geometry % 2 '
~ DCGI b @ro) \

vertex — edge update — the principle

\‘?

é o4

Before: Before: After:
The geometry two half-edges four half-edges
(two shorter
and
two new)

- —:_ -
A A =~ == ——
> -~ -+
DC GI Felkel: Computational geometry
(27 1 96)

Pointers around the end-points of edge e

1. Edge e = (u, w) splits into two edges e’ and ¢’ at intersection v

e’ = (w,v) e = (v,u)
& uhalf-edge (w,v) = {2 Shorten half-edge (w, u) to (w, v)
(3”

\ shortened (u, w) Shorten half-edge (u, w) to (u, V)J)

Its new twin
XB. Create their twin (v, w) for (w, v)

Create their twin (v,u) for (u,v)

' (4. Set new twin’s next to former edge e next

% next(v,u) = next(w,u) now in next(w, v)
next(v, w) = next(u, w) now in next(u, v)

QS. Set prev pointers to new twins
prev(next(v,u)) = (v,u)

- prev(next(v,w)) = (v,w)

e g oy
ERE Felkel: Computational geometry /a\"ﬁ{?fa/g
DCGI o PR

Pointers around Iintersection v

. Find the next edge x for e’ from half-edge (w, v)

= first CW half-edge from e’ with v as origin
"~ hext(w,v) = x
_~prev(x) = (w,v)
. Find the prev edge for e’ from half-edge (v, w)
= first CCW half-edge from e’ with v as destination

next, prev similarly

. Find the next edge for e’ from half-edge (u, v)

first CW half-edge
from e’

= first CW half-edge from e”’ with v as origin
next, prev similarly
9. Find the prev edge for e”’ from half-edge (v, u)
= first CCW half-edge from e’ with v as destination
next, prev similarly

L Fr m
I Felkel: Computational geometry /Q\"ﬁ{?fa/g -_
DCGI (29/96) _ | :)

Time cost for updating half-edge records

= All operations with splitting of edges in
intersections and reconnecting of prev, next
pointers take 0(1) time

= Locating of edge position in cyclic order
— around single vertex v takes 0(deg(v))

— which sums to 0(m) = number of edges processed by
the edge intersection algorithm = 0(n)

— The overall complexity is not increased
O(nlogn + klogn)

n =|S4|+ |S;| k = complexity of the overlay (=intersections)
Complexity of input subdivisions

+++++
> -~ -+
—~ DCGI Felkel: Computational geometry
(30/96)

Face records for the overlay subdivision

= Create face records for each face f in 0(54,S,)

— Each face f has it unique outer boundary (CCW)
(except the background that has none)

— Each face has its OuterComponent(f) — store edge of it
— Together faces = #outer boundaries + 1

= InnerComponents(f) — list of edges of holes (cw)

= Label of f in 51 Used for Boolean operations
= Label of fin S, suchas 1 NSz, S1US; Si\S

Polygon examples: T 92 w

D S e mtﬁmﬁcuﬂn dlffcmmc

—~ DCGI Felkel: Computational geometry
(31/96)

Extraction of faces

= [Traverse cycles in DCEL (Tarjan alg. DFS) ...O(n)

= Decide, if the cycle is outer or inner boundary
— Find leftmost vertex of the cycle (bottom leftmost)
— Incident face lies to the left of edges
— Angle < 180° = outer
— Angle > 180° = inner (hole)

- : -
+++++
> -~ -+
—~ DCGI Felkel: Computational geometry
(32/96)

Which boundary cycles bound same face?

= Single outer boundary shares the face with its
holes — inner boundaries

= Graph

— Node for each cycle

@) inner
@ outer €)unbounded e \/

oa (‘31\
— Arc if inner cycle has half-edge immediately-to-the left
of the leftmost vertex

— Each connected component — set of cycles of one face

- : -
+++++
> -~ -+
—~ DCGI Felkel: Computational geometry
(33/96)

Graph G of faces and their relations

@ inner (cw)
outer (ccw)
unbounded

Connected component in §
— represents a face f

— connects outer face with its.holes
InnerComponents(f)

Felkel: Computational geometry @
(34 / 96)

Graph G construction

ldea — during sweep line, we know the nearest left
edge for every vertex v (and half-edge with origin v)

1. Make node for every cycle
(graph traversal)

2. During plane sweep,

— store pointer to graph node for
each edge

— remember the leftmost vertex and
its nearest left edge

3. Create arc between cycles of the
leftmost vertex an its nearest left

Y edge
+< -~ - <
—~ DCGI Felkel: Computational geometry
4. (35 / 96)

Face label determination

For intersection v of two edges:
During the sweep-line

In both new pieces, remember the
face of half-edge being split into two

After
Label the face by both labels

For face in other face:
Known half-edge label only from S;

Use graph G to locate outer boundary
label for face from S,

(or store containing face f of other
subdivision for each vertex)

: Computational geome % : - ;
Felkel: C (Z(:,t%) I.g t? _ | \

Map overlay algorithm

MapOverlay(5¢,S5,)
Input: Two planar subdivisions S; and S, stored in DCEL // complexity n

Output: The overlay of S; and S, stored in DCEL D

1. Copy both DCELSs for of S; anq S, into.DCEL D /I 0O(n) J/ 08" logn + klogn)

2. Use plane sweep to compute intersections of edges from S; and S, — _
Update vertex and edge records in D when the event involves edges of 6&5&???1‘?%1;0”)
Store the half-edge to the left of the event point at the vertex in D

5. Traverse D (depth-first search) to determine the boundary cycles // O(n)

4. Construct the graph G (boundary and hole cycles, immediately to the left of hole),

5. for each connected component in G do n

6. C < the unique outer boundary cycle

7. f < the face bounded by the cycle C.

8. Create a face record for f /1 0(k)

9 OuterComponent(f) < some half-edge of C,

10. InnerComponents(f) < list of pointers to one half-edge e in each hole @
11, IncidentFace(e) < f for all half-edges bounding cycleg C and the holes

2. Label each face of 0(S;, S,) with the names of the faces of S; and S, containing it

Felkel: Computational geome

(DAL] o715 ?O(n logﬁ + klogn) v @J@J

Running time

The overlay of two planar subdivisions with total
complexity n can be constructed in
O(nlogn + klogn)

where k = complexity of the overlay (=intersections)

++++;f e £
= ol DCGI Felkel: Computational geometry P& T

(38796) .

Axis parallel rectangles
iIntersection

T X
s _ A
e D C GI Felkel: Com(zl:jt;osr;al geometry | | _ \

Intersection of axis parallel rectangles

= Given the collection of n isothetic rectangles,
report all intersecting parts

A

e Alternate sides

 Overap belong to two
r, i

pencils of lines
(trsy pfimek)

(often used with

Iy

k points in infinity
 Inclusion \ 3 _
P = axis parallel)
I 2D => 2 pencils
My ry

[
»

_Answer: (rq, 1) (ry, rg) (ry, rg) (ra, ra) (r3, rs) (f3, ro) (r s) (7, rg)

[?]
+++++ A
e . (e
e DCGI Felkel: Com(zuotjt;osr;al geometl-'y _ | + \

Brute force intersection

Brute force algorithm
Input: set S of axis parallel rectangles
Output: pairs of intersected rectangles

1. For every pair (1;,17) of rectangles € S,i # j
2. if (r; N7, # @) then
3. report (r;,1;)

Analysis
Preprocessing: None.

Query: 0(N?) (’;’) =" e o).

Storage: O(N)

—_
—_

-4 ——
* A o~ ==
-~ -

DCGI

Plane sweep intersection algorithm

= Vertical sweep line moves from left to right

= Stops at every x-coordinate of a rectangle
(either at its left side or at its right side). @O O

= active rectangles — a set
= rectangles currently intersecting the sweep line
— left side event of a rectangle [] — start
=> the rectangle is added to the active set.

— right side 1 —end
=> the rectangle is deleted from the active set.

= [he active set used to detect rectangle intersection

+++++ A
- -+ - : Q?“ Q o
e DCGI Felkel: Com(zl;tjt;osr;al geometl-'y _ | + \

Example rectangles and sweep line

Ay ->
not active
rectangle
active
rectangle
—> s 3 X
B sweep line

+++++ [Drtina]

-~ DCGI Felkel: Computational geometry
(43 /96)

Interval tree as sweep line status structure

= Vertical sweep-line => only y-coordinates along it

= The status tree is drawn horizontal - turn 90° right
as if the sweep line (y-axis) is horizontal

yI_

>

not active
ectangle
E— active I
actanglel
r ;
1l
» X
y
sweep liNe gy L R

- —:_ -
+++++
> -~ -+
—~ DCGI Felkel: Computational geometry
(44 / 96)

Intersection test — between pair of intervals

= Giventwo intervals | = [y,, y,Jand I' =[y';, y'5]
the condition | n I" is equivalent to one of these

mutually exclusive conditions: 1st variant
y.’1 y.’z
a) yi <V i<y, — s
Y1 Yo
OR
y y y,‘l y’2
b)y 1 =yi=vy ° f ’
Y Yo
Intervals along the sweep line a) b) b)
L | [T [] I I I |

+++_/—_/— _—’I_— -+ Interseé:ion (fork) /@‘&?% :
Felkel: Computational met A
” DCGI B SRR A ik

Intersection test — between pair of intervals

= Giventwo intervals | = [y,, y,Jand I' =[y';, y'5]
the condition | n I' is equivalent to both of these

conditions simultaneously: ond variant
y.’1 y.’z
\
1 , < e o
)V =Y, V. | v, |
Y 1 Y5
‘ ' o }
AND .
, Y Y2
2)y1=VY ', ’ f ? .
Intervals along the sweep line y1 y2
2) 1,2) 1,2) 1,2) 1)
S [Tl el [l |] £
P Intersection (fork) /(‘(H% :
Felkel: Computational geomet 3
~ DCGI ww SO LR

(46/96)

Static interval tree — stores all end point y;

= Letv=y,,., bethe median of end-points of segments

= S, :segments of S that are completely to the left of y,,,.q4
= Sneq: S€gments of S that contain y,;,.4

= S, :segments of S that are completely to the right of y,,,.4

Smed

Ymed

S o o~ == =

—~ DCGI Felkel: Computational geometry
(47 196)

Static interval tree — Example

-!S J_ <—
53 : S9
o4
=
-.S N
S5 0
Smed 57

Left ends — ascending —>
Right ends — descending <—

Sr

Interval tree on
So and s~

-+ -+ -+ - |
, [Vigneron] -

ot DCGI Felkel: Computational geometry _
(487 96) L

Interval tree on
Sz and sx

Static interval tree [Edelsbrunner80]

= Stores intervals along y sweep
line -7

= 3 kinds of information /’
- end points

- incident
intervals

- active nodg

I
5 6

1 2 3 4 5 6

- o —f—
A e o - ® ®
> = [Kukral]
DCGI Felkel: Computational geometry
(49 / 96)

Primary structure — static tree for endpoints

Static — known
from beginning

v = midpoint of all
segment endpoints -

H(v) = value (y-coord) of v ./’

I\
5 6

Secondary lists of incident interval end-pts.

ML(v) — left endpoints of interval containing v Dynamic

(sorted ascending) -7 T

MR(v) — right endpoints ~ /
7
/
\
‘2,4\ 0,5

(descending)
M L(v) MR(v)

1 2 3 4 5

> ++: —l_'—_ — @ -0
>~ e == [Kukral]
—~ DCGI Felkel: Computational geometry
(51/96)

5T6N
6

}
®

Active nodes — intersected by the sweep line

Subset of all nodes currently LPTR Dynamic

iIntersected by the sweep line Active node

(nodes with intervals) 4
// \ RPTR
\

. /
Active node 2 /
¢—o —o

/o 2,4 6,5

Active node

1 2 3 4 5 6

> -+ 4 [Kukral]

—/— DCGI Felkel: Computational geometry :>
(52 /96)

Entries in the event queue

*———o

. (Xi Y, Vir» t)
(x1,1, 3, left)
(x,,2,4, left)
(x3,1, 3, right)
(x4,2,4,right)

Y’
Static nodes in the SL status tree

1,2,3,4

L Fr m
* ++ i Felkel: Computational geometry / %@g -
DCGI (53/96) : | _)

Query = sweep and report intersections

Rectangleintersections(S)
Input: Set S of rectangles
Output: Intersected rectangle pairs

1. Preprocess(S) // create the interval tree T (for y-coords)
// and event queue Q (for x-coords)

2. while (Q #9@)do

3. Get next entry (x;, y;; yir, t) from Q It €{left| rf%ht}

4. if (t=left) //leftedge [] L0

5. a) QuerylInterval (y;; y;r,root(T)) // report intersections

6. b) Insertinterval (y;, y;r,root(T)) //insert new interval

7. else // right edge []

8. c) Deletelnterval (y;; y;g, root(T))

» . . .
- o~ -
S o o~ == =

Preprocessing

Preprocess(S)
Input: Set S of rectangles
Output: Primary structure of the interval tree T and the event queue Q

1. T =PrimaryTree(S) // Construct the static primary structure
/[of the interval tree -> sweep line STATUS T

2. Il Init event queue Q with vertical rectangle edges in ascending order ~x
I/ Put the left edges with the same x ahead of right ones

3. fori=1ton

4. insert((xiL,yiL, Vir, left), Q) // left edges of i-th rectangle

d. insert((xiR,yiL, yiR,right), Q) // right edges

. . . .
-’ - -

s A =~ ==

> -~ -4] i

Interval tree — primary structure construction

PrimaryTree(S) // only the y-tree structure, without intervals
Input: Set S of rectangles

Output: Primary structure of an interval tree T

1. §, = Sort endpoints of all segments in S according to y-coordinate
2. T=B3ST(S,)

3. return T

BST(S,)

if(|S,|=0)return null

yMed = median of S, // the smaller item for even S,.size
L = endpoints p, < yMed

R = endpoints p, > yMed

t = new IntervalTreeNode(yMed)

t.left =BST(L)

t.right = BST(R)

return t

- -~ -4 | -:
” DCGI P & 2 N Hra /E%

N>R WD

Interval tree — search the intersections

Querylnterval (b, e, T)
Input: Interval of the edge and current tree T

Output: Report the rectangles that intersect [b, e] Hg) et for oot

New interval being

1. if(T= null)return _ /
2. i=0;if(b <H(v) <e) // forks at this node b | v ©
3. while {MRLoN T == b} && (i < Count(Vv)) // Repor’t aII intervals inM
4, Reportintersection; i++
5. Querylinterval(b,e,T.LPTR)= // jump to actlve' o e I erva bene
6. Queryinterval(b,e, T.RPTR)e— // node below ! l
7. elseif (H(v) < b <e) //search RIGHT (<) | A
8. while (MR(v).[i]] >= b) && (i < Count(v)) |
0. Reportintersection; i++ p—ooRSle GCrossB
10. Querylinterval(b,e, T.RPTR) @ CrOssesAB.C
11. else //'b<e =< H(v)//search LEFT(-g>) Crossesc
12. while (ML(V)[l] <= e) .Crosses nothin$
13. Reportintersection; i++ (stored mtervats — e
14 = Querylnterval(b,e, T.LPTR) °'2ctive rectapgles v :
“ DCGI = \[rJDW' o lerrr o).

Interval tree - interval insertion

Insertinterval (b, e, T)
Input: Interval [b,e] and interval tree T
Output: T after insertion of the interval

New interval
1 oy = rOOt(T) H(V) being inserted
2. while(v!=null) //find the fork node @ /
3. i if (H(v)<b<e) | ; ;
4, v =v.right // continue right |
5. elseif (b<e<H(WV)) : .
6. v = v.left // continue left |
7. else /[b<H(v) <e //insertinterval . pa— .
8. set v node to active ¢ 1
9. | connect LPTR resp. RPTR to its parent (active node above)
10. ¢ insert [b,e] into list ML(v) — sorted in ascending order of b’s
11. insert [b,e] into list MR(v) — sorted in descending order of e’s
12. break
13. endwhile

14, return T %
” DCGI . RS s

Example 1

Felkel: Computational geometry

(59 / 96)

Ao

Example 1 — static tree on endpoints

H(v) — value of node v

v

\ 4

A
\ 4

A £ [Drtina]
-+ -
DC GI Felkel: Computational geometry
(607 96)

Interval insertion [1,3] a) Query Interval &

Search MR(Vv) or ML(v): «—— b <H(v) <e

1<(2<3

MR(V) is empty

No active sons, stop

1

D Active rectangle
O Current node

‘ Active node

+

DCGI

[Drtina]
Felkel: Computational geometry
(61796)

Interval insertion [1,3] Db) Insert Interval &

b<H(v)=<e
o ?1<(2<37

| X

] Active rectangle) 4
O Current node

@ Active node [ertine] %
S o Felkel: Computational geometry

Interval insertion [1,3] Db) Insert Interval &

® 1 5@5 3 fork
=> to lists

| X

D Active rectangle ¢ 4
O Current node

@ Active node [ertine] %
o o Felkel: Computational geometry

Interval insertion [2,4] a) Query Interval

Search MR(v) only: -« H(v) <b<e
MR(W)[1] = 3 = 27 @) <2<4
=> |ntersection

] Active rectangle
O Current node

‘ Active node [Drtina] %
o o Felkel: Computational geometry
DCGI A

Interval insertion [2,4] Db) Insert Interval &

] Active rectangle
O Current node
‘ Active node

7 DCGI

b<H()=<e

2=<(2)=4 fork
=> {o lists

[Drtina]
Felkel: Computational geometry
(6517 96)

Interval delete [1,3]]

] Active rectangle
O Current node

@ Active node [ertine] @
o o Felkel: Computational geometry

Interval delete [1,3]

] Active rectangle
O Current node

‘ Active node

7 DCGI

Felkel: Computational geometry

(67 / 96)

Interval delete [2,4]]

D Active rectangle
O Current node

@ Active node [ertine] %
S o Felkel: Computational geometry

A
\ 4

Interval delete [2,4]]

=
N
w
N

A
\ 4

A

[
»

-/-++ _/—_,:_ _—;__—'_ - [Drtina] /@‘%&?)\.

DC GI Felkel: Computational geometry \‘sl
(69/96) :

Example 2

Felkel: Computational geometry

(70 / 96)

R

Query = sweep and report intersections

Rectanglelntersections(S) /[this is a copy of the slide before
Input: Set S of rectangles // just to remember the algorithm
Output: Intersected rectangle pairs

1. Preprocess(S) // create the interval tree T (for y-coords)
// and event queue Q (for x-coords)

2. while (Q #9@)do

3. Get next entry (x;, y;; yir, t) from Q It €{left] rf%ht}

4. if (t=left) /lleftedge [LU

5. a) Querylinterval (y;;, y;r,root(T)) // report intersections

6. b) Insertinterval (y;, y;r,root(T)) //insert new interval

7. else // right edge []

8. c) Deletelnterval (y;; y;g, root(T))

. . . .
-’ - -

S o o~ == =

- + = 4

Example 2 — tree created by PrimaryTree(S)

T SRR

———//

A
A 4
A
A\ 4
A
A\ 4
A
A 4

}
t

7'y
(D

3 [Drtina]
DC GI Felkel: Computational geometry
(721 96)

Example 2 — slightly unbalanced tree

A

A 4
A
A\ 4
A

A 4

A

»
Ll

Felkel: Computational geometry

(731 96)

[Drtina]

A\ 4
A
A 4

R

nsert [2,3] — empty =>b) Insert Interval b < H(v) <e

Insert the new interval to secondary lists 72 < @ < 37

fork node => active
=> to lists

A
A 4
A
A\ 4
A
A\ 4
A
A 4

] Active rectangle
O Current node b

. k o ‘

‘ Active node P R
73 Felkel: Computational geometry [Drtina]

DCGI (747 96) | . I

A
A 4

nsert [3,7] a) Query Interval H(v) <b <e

for (all in MR(v)) test MR(V)[i] >= 3 ?@s 3<77?
o => report intersection c
T IR go right, nil, stop

] Active rectangle
O Current node b

@ Active node e >
Es Felkel: Computational geometry [Drtina]
DC GI (751 96) | . I

A
A 4
A
A 4
A

A\ 4
A
A 4

A
A 4

A

nsert [3,7] b) Insert Interval b<H(®) <e

Insert the new interval to secondary lists 337

o—0

fork node

=> to lists

A
\ 4
A
A 4
A
A\ 4
A
A 4

D Active rectangle
O Current node b
‘ Active node

—~ DCGI Felkel: Computational geometry
(76 / 96)

A
A 4

A

»
Ll

[Drtina]

nsert [0,2] a)uery Interval

b <e < H(v)

for (all in ML(v)) test ML(Vv).[i] <2

+

] Active rectangle
O Current node
‘ Active node

DCGI

=> report intersection c
go left, nil, stop

> 0) 1 2 3 4) 6 7 8
’ Je C L. d e ,
’ b ,
< € >
[Drtina]

Felkel: Computational geometry

(77 1 96)

nsert [0,2] b) Insert Interval 1/2 b <e <H(V)
Y1 20<2<3p
? => insert left
8 -
7 -
6 -
5 -
4 .-
2 -
1 --
g 0 1 2 3 4 5 6 7 8
0 X
] Active rectangle “ e e d ol >
O Current node < b >
‘ Active node 4 £ >
[Drtina]

7 DCGI

Felkel: Computational geometry

(78 96)

nsert [0,2] b) Insert Interval 2/2 b<H(®) <e
v Insert the new interval to secondary lists 70127
? of the left son e .
: LPTR =>
IR R link to parent | — fork node act!ve
yau - _,- FAR a => to lists
d !-I é—eo *—e
ST L . 2,3 7,3
e (1, 7
R —
C
(0)0 2(2) (a) (e
a
g [
> 0] 1 2 3 4 5 6 7 8
0 X
] Active rectangle < a4 APEEREERS L > >
O Current node < b >
‘ Active node L = >
[Drtina]

7 DCGI

Felkel: Computational geometry

(791 96)

nsert [1 ,5] a) Query Interval 1/2 b <H(V) <e

for (all in MR(v)) ?71<(3x57
o => report intersection c,d o
go left -> 1 // —
go right - nil / A a
""""""""""""" i 2,3 \7,3

v
o
=
N
w
AN
ol
o
~
(@)

A
A 4
4

A
A 4
A
A 4

] Active rectangle
O Current node b
‘ Active node

—~ DCGI Felkel: Computational geometry
(80 /96)

A
A 4

A

»
Ll

[Drtina]

nsert [1 ,5] a) Query Interval 2/2 H(v) <b<e

for (all in MR(v)) test MR(V)[i] =1 ?@s 1<57?
o => report intersection 'é'“' o
R 1 go right, nil, stop

v
o
=
N
w
AN
ol
o
~
(@)

A
A 4
A
A 4
A
A 4
A
A 4

] Active rectangle
O Current node b

@ Active node e >
Es Felkel: Computational geometry [Drtina]
DCGI A

A
A 4

A

nsert [1,5] b) insert Interval b < H(v) <e
v Insert the new interval to secondary lists ?71 57
® ./'/" B
8 - '_/' e

4 // \\
3T = I ;o
(0)0 2(2) (a) (e
a
g [
g 0 1 2 3 4 S 6 7 8
0
] Active rectangle « a4 e e d ol >
O Current node < b >
: B e .
‘ Active node L _
[Drtina]

7 DCGI

Felkel: Computational geometry

(82796)

nsert [7,8] a)Query Interval H(v) <b <e

for (all in MR(v)) test MR(V).[i] =7 ?@s 7<87?
=> report intersection.d

S f_l go right, nil, stop

v
o
=
N
w
IN
Ul
o
~
e¢)

X

] Active rectangle
O Current node < b
‘ Active node

€ >
. [Drtina]
—/— DCGI Felkel: Computational geometry
(83/96)

A
A 4
A
A 4
A
\ 4

A

4

A 4

A

nsert [7,8] b) Insert Interval b<H(®) <e

Insert the new interval to secondary lists

right <= ’) /<87

link to parent .~ """"ﬂgh’f< "i /(<87

] Active rectangle
O Current node
‘ Active node

7 DCGI

X

v

/'/. / \ 7 8
"/ o’/—/o—o \b—o—o a \
' 1,2,3 7,5,3 \

A

A 4
A
A 4
A
17
v

A 4

A

€ >
3 [Drtina]
Felkel: Computational geometry
(84 /96)

oo

=

N W »~ 01 OO ~

Delete [3, 7] Delete Interval b < H(v) <e
| Delete the interval [3,7] from secondary lists 73787

/
/

,-"/ o’/—/o \5—0
f 1,2 5,3

] Active rectangle
O Current node
‘ Active node

7 DCGI

g 0) 1 2 3 4 S 6 7 8
X
<t a i 2 - d > f —
’ b ‘
< e' >
[Drtina]

Felkel: Computational geometry

(85/96)

nsert [4,6] a) Query Interval H(v) <b <e

for (all in MR(v)) test MR(Vv).[i] =4 => report intersection b @s 4<67

for (all in ML(v)) test ML(v).[i] < 6~ e ''''''''''''''''' 4 <6<y
:l => no intersection =

,'/' “—e N a _
: /12 63 ‘-

[\

/ \ / \

/ \ / \
// \\ / \
8

v
o
=
N
w
IN
Ul
o
~
e¢)

X

A
A 4
A
A\ 4
A
A\ 4
A

)
] Active rectangle
O Current node < b
‘ Active node

€ =
- [Drtina]
—~ DCGI Felkel: Computational geometry
(86 /96)

A 4

A

nsert [4,06] b) insert Interval H(v) <b <e
v Insert the new interval to secondary lists : 4<67
P /././"- ----- \.__lt:::_.,_'__ _.\?\‘4‘_’@ ’)
8 - /'/. / \ .\A\' .\.\‘\

7] j '/_/ /// \\\ e _______ ___\'\\:\‘\

'-’ “—e —e \\'\

6~ e i 1,2 5’3 ll \\\ \\

s 6 (D)

a
g [
> 0 1 2 3 4 5 6 4 8
0 X
)
] Active rectangle < a4 e ale d (st
O Current node < b >
. E e N
‘ Active node L .
3 [Drtina]
o o Felkel: Computational geometry
DCGI

(87 1 96)

Delete [1,5] pelete Interval b < H(v) <e
v Delete the interval [1,5] from secondary lists 71 57
) //./‘ ------- ..__\\.\.\ o
8 p / >~
7 - - p——] '/'/ /// \\\ e ——————— o
'-’ “—e —e \\‘
°T /12 53 /] -
1 G 4 6 0
4 N // \\ \
/ \ 7 8
(0)0 2(2) (a) (s,
g [
g 0 1 2 3 4 5 6 7 8
0 1 X
] Active rectangle < a4 SPEELEENS d > -
O Current node < b >
‘ Active node 3 - ~
[Drtina]

+

DCGI

Felkel: Computational geometry

(88796)

Delete [0,2] Delete Interval 1/2 b <e < H(V)

YA

A
A 4
A
A\ 4
A
A\ 4
y

D Active rectangle
O Current node b
‘ Active node

—~ DCGI Felkel: Computational geometry
(89/96)

A
A 4

»
>

A

[Drtina]

Delete [0,2] Delete Interval 2/2 b<H(®) <e

v Delete the interval [0,2] from secondary lists of node 1 ?0 s@s 27

_______ N
® % ~

/ N

/ e \'\

A
\ 4
A
A\ 4
A
A\ 4
y

] Active rectangle
O Current node b
‘ Active node

—~ DCGI Felkel: Computational geometry
(90 /96)

A
A 4

»
>

A

[Drtina]

Delete [7,8] pelete Interval b < H(v) <e

" Search for and delete node with interval [7,8] A3)</7<87?
'\-_\\ Ab7<8?
Rt o ?27<47)<87?

2 3 ,/ \\\ \\

D Active rectangle
O Current node b
‘ Active node

A
\ 4
A
A\ 4
A
A\ 4
A
A 4

A
A 4

»
>

A

[Drtina]

—~ DCGI Felkel: Computational geometry
(91/96)

oo

=

N W b~ 01 OO N

Delete [2,3] pelete Interval

A

Search for and delete node with interval [2,3]

] Active rectangle

O Current node
‘ Active node

7 DCGI

) \
—
'~N

\.
\.

/7

0 1 2 3 4 5 6 7 8
X
< a > < c >« d >« >
b R
: < e' =
[Drtina]

Felkel: Computational geometry

(92 / 96)

Delete [4,06] pelete Interval b < H(v) <e

Y 1 search for and delete node with interval [4,6] . ?4 s@)s 6 ?

N o—0

X

A
\ 4
A
A\ 4
A
A\ 4
y

A 4

D Active rectangle
O Current node < b
‘ Active node

—~ DCGI Felkel: Computational geometry
(93 /96)

A 4

A

»
Ll

[Drtina]

oo

=

Empty tree

Search for and delete node with interval [4,6]

N W b~ 01 OO N

X

A
\ 4
A
A\ 4
A
A\ 4
A
A 4

] Active rectangle
O Current node < b
‘ Active node

—~ DCGI Felkel: Computational geometry
(94 / 96)

A 4

A

»
Ll

[Drtina]

Complexities of rectangle intersections

= nrectangles, s intersected pairs found

= O(nlog n) preprocessing time to separately sort
— X-coordinates of the rectangles for the plane sweep
— the y-coordinates for initializing the interval tree.

= The plane sweep itself takes O(n log n + s) time,
so the overall time is O(nlog n + s)

= O(n) space

= This time is optimal for a decision-tree algorithm
(i.e., one that only makes comparisons between
rectangle coordinates).

T X
e . (e
e DCGI Felkel: Com(p;l;tjt;osr;al geometl-'y _ | + \

References

[Berg]

[Mount]

[Rourke]

[Drtina]

[Kukral]

Mark de Berg, Otfried Cheong, Marc van Kreveld, Mark Overmars:
Computational Geometry: Algorithms and Applications, Springer-
Verlag, 3rd rev. ed. 2008. 386 pages, 370 fig. ISBN: 978-3-540-
77973-5, Chapters 3 and 9, http://www.cs.uu.nl/geobook/

Mount, D.: Computational Geometry Lecture Notes for Fall 2016,
University of Maryland, Lecture 5.
http://www.cs.umd.edu/class/fall2016/cmsc754/Lects/cmsc’54-fall16-lects.pdf
Joseph O'Rourke: .: Computational Geometry in C, Cambridge
University Press, 1993, ISBN 0-521- 44592-2
http://maven.smith.edu/~orourke/books/compgeom.html

Tomas Drtina: Intersection of rectangles. Semestral Assignment.
Computational Geometry course, FEL CTU Prague, 2006

Petr Kukral: Intersection of rectangles. Semestral Assignment.
Computational Geometry course, FEL CTU Prague, 2006

[Vigneron] Segment trees and interval trees, presentation, INRA, France,

http://w3.jouy.inra.fr/unites/miaj/public/vigneron/cs4235/slides.html

DC GI Felkel: Computational geometry = L i ar \
(96 / 96) | - /e I

