CGl

DEPARTMENT OF COMPUTER GRAPHICS AND INTERACTION

INTERSECTIONS OF LINE

SEGMENTS AN
AXIS ALIGNED

D
RECTANGLES,

OVERLAY OF S

PETR FELKEL

FEL CTU PRAGUE
felkel@fel.cvut.cz

UBDIVISIONS

https://cw.felk.cvut.cz/doku.php/courses/adm39vqg/start

Based on [Berg], [Mount], [Kukral], and [Drtina]

Version from 19.11.2020

Talk overview

= Intersections of line segments (Bentley-Ottmann)
— Motivation

— Sweep line algorithm recapitulation
— Sweep line intersections of line segments

= Intersection of polygons or planar subdivisions
— See assignment [21] or [Berg, Section 2.3]

= Intersection of axis parallel rectangles
— See assignment [26]

- o —f—
+++++
> -~ -+
—~ DCGI Felkel: Computational geometry
(2/96)

Geometric intersections — what are they for?

One of the most basic problems in computational geometry

= Solid modeling
— Intersection of object boundaries in CSG

= Overlay of subdivisions, e.g. layers in GIS
— Bridges on intersections of roads and rivers
— Maintenance responsibilities (road network X county boundaries)

= Robotics
— Collision detection and collision avoidance

= Computer graphics
— Rendering via ray shooting (intersection of the ray with objects)

- o —f—
A e =~ == ——
-+ =
DC GI Felkel: Computational geometry
(3/96)

Line segment intersection

- —:_ -
+++++
> -~ -+
—~ DCGI Felkel: Computational geometry
(4/96)

Line segment intersection

= |ntersection of complex shapes is often reduced to simpler
and simpler intersection problems

= Line segment intersection is the most basic intersection
algorithm

= Problem statement:
Given n line segments in the plane, report all points where
a pair of line segments intersect.

= Problem complexity
— Worst case — | = O(n?) intersections
— Practical case — only some intersections

— Use an output sensitive algorithm
* O(nlog n + 1) optimal randomized algorithm
* O(nlog n +1log n) sweep line algorithm - %

LoFr @\
* i : Computational geometry Q‘% L -
DCGI Felkel: | _ | " \

(5/96)

[Berg]

Plane sweep line algorithm recapitulation

= Horizontal line (sweep line, scan line) ! moves
top-down (or vertical line: left to right) OvVer the set of objects
The move is not continuous, but f jumps from one

event point to another
— Event points are in priority queue or sorted list (~y)
— The (left) top-most event point is removed first
— New event points may be created
(usually as interaction of neighbors on the sweep line)
and inserted into the queue

Scan-line status
— Stores information about the objects intersected by {
+ff It is updated while stopping on event point

Postupovy plan

Status m

\
¥

\
N

Line segment intersection - Sweep line alg.

= Avoid testing of pairs of segments far apart
= Compute intersections of neighbors on the sweep line only

= O(nlogn+llogn)timein O(n) memory
— 2n steps for end points,
— | steps for intersections,

— log n search the status tree

= Ignore “"degenerate cases” (most of them will be solved later on)
— No segment is parallel to the sweep line
— Segments intersect in one point and do not overlap
— No three segments meet in a common point

- —:_ -
A A =~ == ——
> -~ -+
DC GI Felkel: Computational geometry
(7/96)

Line segment intersections

Status = ordered sequence of segments stav
intersecting the sweep line {

Events (waiting in the priority queue) Postupovy plén
= points, where the algorithm actually does something
— Segment end-points
* known at algorithm start

— Segment intersections between neighboring segments
along SL

* discovered as the sweep executes

- —:_ -
+++++
> -~ -+
—~ DCGI Felkel: Computational geometry
(8/96)

Detecting intersections

= Intersection events must be detected and inserted
to the event queue before they occur

= Given two segments a, b intersecting in point p,
there must be a placement of sweep line { prior

to p, such that segments a, b are adjacent along /

(only adjacent will be tested for intersection)
— segments a, b are not adjacent when the alg. starts

— segments a, b are adjacent just before p
=> there must be an event point when a,b become
adjacent and therefore are tested for intersection

=> All intersections are found

S o o~ == =

Felkel: Computational geomet

7 DCGI 0199

Data structures

Sweep line f status = order of segments along /
= Balanced binary search tree of segments

= Coords of intersections with { vary as { moves
=> store pointers to line segments in tree nodes

— Position of [is plugged in the y=mx+b to get the x-key
T &

DC GI Felkel: Computational geometry
(10/96)

Data structures

Event queue (postupovy plan, éasovy plan) y Jtc’p'down
s Define: Order > (top-down, lexicographic) I
p > qiff p, >q, orp, =q, and p, < gy x
top-down, left-right approach
(points on { treated left to right)

= Operations
— Insertion of computed intersection points
— Fetching the next event
(highest y below [or the leftmost right of e)

— Test, if the segment is already present in the queue
(Locate and delete intersection event in the queue)

- —:_ -
+++++
> -~ -+
—~ DCGI Felkel: Computational geometry
(11/96)

Data structures

Event queue (postupovy plan, éasovy plan) y Jtc’p'down
s Define: Order > (top-down, lexicographic) I
p > qiff p, >q, orp, =q, and p, < gy x
top-down, left-right approach
(points on { treated left to right)

= Operations
— Insertion of computed intersection points
— Fetching the next event — must have
(highest y below [or the leftmost right of e) |

— Test, if the segment is already present in the queue
(Locate and delete intersection event in the queue)

- —:_ -
+++++
> -~ -+
—~ DCGI Felkel: Computational geometry
(11/96)

Data structures

Event queue (postupovy plan, éasovy plan) y Jtc’p'down
s Define: Order > (top-down, lexicographic) I
p > qiff p, >q, orp, =q, and p, < gy x
top-down, left-right approach
(points on { treated left to right)

= Operations
— Insertion of computed intersection points
— Fetching the next event — must have
(highest y below [or the leftmost right of e) |

— Test, if the segment is already present in the queue} may
(Locate and delete intersection event in the queue) | have

- —:_ -
+++++
> -~ -+
—~ DCGI Felkel: Computational geometry
(11/96)

Problem with duplicities of intersections

Intersection may be detected many times

- —:_ -
+++++
> -~ -+
—~ DCGI Felkel: Computational geometry
(12/96)

Problem with duplicities of intersections

Intersection may be detected many times

- —:_ -
+++++
> -~ -+
—~ DCGI Felkel: Computational geometry
(12/96)

Problem with duplicities of intersections

Intersection may be detected many times

N

- —:_ -
+++++
> -~ -+
—~ DCGI Felkel: Computational geometry
(12/96)

Problem with duplicities of intersections

Intersection may be detected many times

: ~

- —:_ -
+++++
> -~ -+
—~ DCGI Felkel: Computational geometry
(12/96)

Problem with duplicities of intersections

Intersection may be detected many times

: ~

- —:_ -
+++++
> -~ -+
—~ DCGI Felkel: Computational geometry
(12/96)

Problem with duplicities of intersections

Intersection may be detected many times

: ~

- —:_ -
+++++
> -~ -+
—~ DCGI Felkel: Computational geometry
(12/96)

Problem with duplicities of intersections

Intersection may be detected many times

- —:_ -
+++++
> -~ -+
—~ DCGI Felkel: Computational geometry
(12/96)

Problem with duplicities of intersections

Intersection may be detected many times

- —:_ -
+++++
> -~ -+
—~ DCGI Felkel: Computational geometry
(12/96)

Problem with duplicities of intersections

Intersection may be detected many times

- —:_ -
+++++
> -~ -+
—~ DCGI Felkel: Computational geometry
(12/96)

Problem with duplicities of intersections

Intersection may be detected many times

- —:_ -
+++++
> -~ -+
—~ DCGI Felkel: Computational geometry
(12/96)

Problem with duplicities of intersections

Intersection may be detected many times

- —:_ -
+++++
> -~ -+
—~ DCGI Felkel: Computational geometry
(12/96)

Problem with duplicities of intersections

Intersection may be detected many times

1
2 s
3

3X defected
intersection

- —:_ -
+++++
> -~ -+
—~ DCGI Felkel: Computational geometry
(12/96)

Problem with duplicities of intersections

Intersection may be detected many times

1
2 s
3

3X defected
intersection

- —:_ -
+++++
> -~ -+
—~ DCGI Felkel: Computational geometry
(12/96)

Data structures

Event queue data structure
3x aﬁétected

a) Heap o dote

— Problem: can not check duplicated intersection events
(reinvented & stored more than once)

— Intersections processed twice or even more times
— Memory complexity up to O(n?)
b) Ordered dictionary (balanced binary tree)
— Can check duplicated events (adds just constant factor)
— Nothing inserted twice

— If non-neighbor intersections are deleted
i.e., if only intersections of neighbors along f are stored

. - then memory complexity just O(n) %
o o Felkel: Computational geometry
DCGI (13/96)

l top-down

Line segment intersection algorithm

FindIntersections(S)
Input: A set S of line segments in the plane
Output: The set of intersection points + pointers to segments in each
1. init an empty event queue Q and insert the segment endpoints
init an empty status structure T
while Q in not empty

remove next event p from Q

handleEventPoint(p)

a &~ Wb

Upper endpoint
Intersection
Lower endpoint

Note: Upper-endpoint events store info about the segment

. . . .
-’ - -

S o o~ == =

- + = 4

l top-down

Line segment intersection algorithm

FindIntersections(S)
Input: A set S of line segments in the plane
Output: The set of intersection points + pointers to segments in each
1. init an empty event queue Q and insert the segment endpoints
init an empty status structure T
while Q in not empty

remove next event p from Q

handleEventPoint(p)

a &~ Wb

Upper endpoint Improved algorithm:
Intersection Handles all in p
Lower endpoint In a single step

Note: Upper-endpoint events store info about the segment

» . .
-’ - -

S o o~ == =

- + = 4

handleEventPoint() principle

= Upper endpoint U(p)
— insert p (on s;) to status T
— add intersections with left and
right neighbors to Q > intesecton
= Intersection C(p)
— switch order of segments in T
— add intersections with nearest left
and nearest right neighbor to Q
= Lower endpoint L(p)
— remove p (on s;) from T

— add intersections of left and right
-~ = neighbors to Q

——
+ -+
DC GI Felkel: Computational geometry
(157 96)

More than two segments incident

52

U(p) = {s,}] start here
C(p)={s;, 84} || crosson/
L(p) ={s4, S5t 1 end here - CBer)

A /@\&?)g __
-~ Felkel: Computational geometry A
DCGI L SR s b

H an d I e Eve n tS [modified Berg, page 25]

handleEventPoint(p) // precisely: handle all events with point p UK(P)

1.

N o Ok

Let U(p) = set of segments whose Upper endpoint is p.
These segments are stored with the event point p (will be added to T)

Search T for all segments S(p) that contain p (are adjacent in T):

Let L(p) U S(p) = segments whose Lower endpoint is p L(p)
Let C(p) U S(p) = segments that Contain p in interior P

If(L(p) U U(p) U C(p) contains more than one segment) é{
report p as intersection o together with L(p), U(p), C(p)

C(p)
Delete the segments in L(p) u C(p) from T s\ ;&/‘/;, ¢
if(U(p) u C(p) = @) then findNewEvent(s,, S@// left & right neighbors
else Insert the segments in U(p) u C(p) into T~—~// reverse order of C(p) in T
(order as below f, horizontal segment as the last) 5
s’ = leftmost segm. of U(p) u C(p); findNewEvent(s,, s’, p) %<
s” = rightmost segm. of U(p) u C(p); findNewEvent(s”, s, p)

A o o - -
DC GI Felkel: Computational geometry
(17 1 96) .

H an d I e Eve n tS [modified Berg, page 25]

handleEventPoint(p) // precisely: handle all events with point p UK(P)

1.

N o Ok

Let U(p) = set of segments whose Upper endpoint is p.
These segments are stored with the event point p (will be added to T)

Search T for all segments S(p) that contain p (are adjacent in T):

Let L(p) U S(p) = segments whose Lower endpoint is p L(p)
Let C(p) U S(p) = segments that Contain p in interior P

If(L(p) U U(p) U C(p) contains more than one segment) é{
report p as intersection o together with L(p), U(p), C(p)

C(p)
Delete the segments in L(p) u C(p) from T s\ ;&/‘/;, ¢
if(U(p) u C(p) = @) then findNewEvent(s,, S@// left & right neighbors
else Insert the segments in U(p) u C(p) into T~—~// reverse order of C(p) in T
(order as below f, horizontal segment as the last) 5
s’ = leftmost segm. of U(p) u C(p); findNewEvent(s,, s’, p) %
s” = rightmost segm. of U(p) u C(p); findNewEvent(s”, s, , p) s

A o o - -
DC GI Felkel: Computational geometry
(17 1 96) .

H an d I e Eve n tS [modified Berg, page 25]

handleEventPoint(p) // precisely: handle all events with point p UK(P)

1.

N o Ok

Let U(p) = set of segments whose Upper endpoint is p.
These segments are stored with the event point p (will be added to T)

Search T for all segments S(p) that contain p (are adjacent in T):

Let L(p) U S(p) = segments whose Lower endpoint is p L(p)
Let C(p) U S(p) = segments that Contain p in interior P

If(L(p) U U(p) U C(p) contains more than one segment) é{
report p as intersection o together with L(p), U(p), C(p)

C(p)
Delete the segments in L(p) u C(p) from T s\ ;&/‘/;, 0
if(U(p) u C(p) = @) then findNewEvent(s,, S@// left & right neighbors
else Insert the segments in U(p) u C(p) into T~—~// reverse order of C(p) in T

(order as below f, horizontal segment as the last) 5
S
s’ = leftmost segm. of U(p) u C(p); findNewEvent(s,, s’, p) S’%

s” = rightmost segm. of U(p) u C(p); findNewEvent(s”, s, p) s

A o o - -
DC GI Felkel: Computational geometry
(17 1 96) .

H an d I e Eve n tS [modified Berg, page 25]

handleEventPoint(p) // precisely: handle all events with point p UK(P)

1.

N o Ok

Let U(p) = set of segments whose Upper endpoint is p.
These segments are stored with the event point p (will be added to T)

Search T for all segments S(p) that contain p (are adjacent in T):

Let L(p) U S(p) = segments whose Lower endpoint is p L(p)
Let C(p) U S(p) = segments that Contain p in interior P

If(L(p) U U(p) U C(p) contains more than one segment) é{
report p as intersection o together with L(p), U(p), C(p)

C(p)
Delete the segments in L(p) u C(p) from T s\ ;&/‘/;, 0
if(U(p) u C(p) = @) then findNewEvent(s,, S@// left & right neighbors
else Insert the segments in U(p) u C(p) into T~—~// reverse order of C(p) in T

(order as below f, horizontal segment as the last) 5
S
s’ = leftmost segm. of U(p) u C(p); findNewEvent(s,, s’, p) y’%ﬁs

r

s” = rightmost segm. of U(p) u C(p); findNewEvent(s”, s, p) s

A o o - -
DC GI Felkel: Computational geometry
(17 1 96) .

Detection of new intersections

findNewEvent(s,, s,, p) // with handling of horizontal segments
Input: two segments (left & right from p in T) and a current event point p
Output: updated event queue Q with new intersection o

1. if [(s and s, intersect below the sweep line {') // intersection below {
Non-overlapping

or (s, intersect s” on f and to the right of p)] // horizontal segment

and(the intersection © is not presentin Q)
2. then
insert intersection® as a new event into Q

o Reported intersection - line 4
o New intersection to Q - line 6,8,9

S’ = leftmost from U(p) [l C(p)
S” = rightmost from U(p) [C(p) line 8

s,and s” intersect on /,

T s, and s, intersect below s” is horizontal and to the.right.of p
> + —+ 4

line 6 line 8

Line segment intersections

= Memory O(l) = O(n?) with duplicities in Q
or O(n) with duplicities in Q deleted
= Operational complexity
— n + | stops
— log n each
=>0O(l+n)logn total

= The algorithm is by Bentley-Ottmann

Bentley, J. L.; Ottmann, T. A. (1979), "Algorithms for reporting and counting geometric intersections", IEEE
Transactions on Computers C-28 (9): 643-647, doi:10.1109/TC.1979.1675432 .

See also http://wapedia.mobi/en/Bentley%E2%80%930ttmann algorithm

L &'?‘
s . WO
- D C GI Felkel: Com(;:l:jt;osr;a|:geomet'-'y | _ . \

Overlay of two subdivisions
(intersection of DCELSs)

L B S
* ++ i Felkel: Computational geometry / %@g
DCGI Y SOUL L=

Overlay of two subdivisions

DCEL S,

hole

e o o = =

7 DC I Felkel: Compgtational.geometry L
‘ ; (21796)

Overlay of two subdivisions

DCEL S, '/\ DCEL S,

e o o = =

7 DC I Felkel: Compgtational.geometry L
‘ ; (21796)

Overlay Is a new planar subdivision

DCEL 0(S,, S,)

- : -
+++++
> -~ -+
—/— DCGI Felkel: Computational geometry
(22 /96)

Sweep line overlay algorithm

Compute new planar subdivision

elkel: Computational geome @ A\ .
(S A CAV] | il (Zst/tge) ? ? | | ' \ J

Sweep line overlay algorithm

Compute new planar subdivision

Re-use not intersected half-edge records

elkel: Computational geome @‘ A\ .
Nl e (Zst/tgs) ! v | | ' \

Sweep line overlay algorithm

Compute new planar subdivision

Re-use not intersected half-edge records

Compute intersections and new half-edge records @)
Felkel: Computational geometry . \ _

(VAL] (231 96)

Sweep line overlay algorithm

Compute new planar subdivision

Re-use not intersected half-edge records

Compute intersections and new half-edge records A
. (s
Compute labels of new facesreiel: computational geometry i _ _

(231 96)

Sweep line overlay algorithm

Compute new planar subdivision

Re-use not intersected half-edge records

Compute intersections and new half-edge records A
. (s
Compute labels of new facesreiel: computational geometry i _ _

(231 96)

Sweep line overlay algorithm

Compute new planar subdivision

Re-use not intersected half-edge records

Compute intersections and new half-edge records A
. (s
Compute labels of new facesreiel: computational geometry i _ _

(231 96)

Sweep line overlay algorithm

Compute new planar subdivision

Re-use not intersected half-edge records

Compute intersections and new half-edge records A
. (s
Compute labels of new facesreiel: computational geometry i _ _

(231 96)

The algorithm principle

Copy DCELSs of both subdivisions to invalid DCEL D

Transform the result into a valid DCEL for the
subdivision overlay 0(S¢,55)

— Compute the intersection of edges
(from different subdivisions S; N S,)

— Link together appropriate parts of the two DCELs
 Vertex and half-edge records
* Face records

- o —f—
+++++
> -~ -+
—~ DCGI Felkel: Computational geometry
(24 /1 96)

At an Event point

N Update queue Q (pop, delete intersections of separated edges below)

and sSweep line status tree T (add/remove/swap edges,
compute intersections with neighbors)

as in line segment intersection algorithm

(cross pointers between edges in 7 and D to access part of D when
processing an intersection)

s For vertex from one subdivision
— No additional work

= For Intersection of edges from different subdivisions
— Link both DCELs
— Handle all possible cases

—
——

- - @‘
S & : Computational geome Q‘% Q ox
DCGI Felkel: C (;)25t/t96) I.g tr-'y | . i \

Three types of intersections

New are intersections of different subdivisions

vertex — vertex: overlap of vertices

vertex — edge: edge passes through a vertex

edge — edge: edges intersect in their interior

T _
: Computational geometry % 2 '
~ DCGI b @ro) \

Three types of intersections

New are intersections of different subdivisions

vertex — vertex: overlap of vertices

vertex — edge: edge passes through a vertex

Let’s discuss this case,
the other two are similar

edge — edge: edges intersect in their interior

T _
: Computational geometry % 2 '
~ DCGI b @ro) \

vertex — edge update — the principle

\‘?

é o4

Before: Before: After:
The geometry two half-edges four half-edges
(two shorter
and
two new)

- —:_ -
A A =~ == ——
> -~ -+
DC GI Felkel: Computational geometry
(27 1 96)

Pointers around the end-points of edge e

1. Edge e = (u, w) splits into two edges e’ and ¢’ at intersection v
e’ = (w,v) e = (v,u)
uhalf-edge w,v)= |2. Shorten half-edge (w,u) to (w,v)
shortened (v, w) Shorten half-edge (u, w) to (u, v))

Its new twin
XB. Create their twin (v, w) for (w, v)

Create their twin (v,u) for (u,v)

4. Set new twin’s next to former edge e next
next(v,u) = next(w,u) now in next(w, v)
next(v, w) = next(u, w) now in next(u, v)

5. Set prev pointers to new twins
prev(next(v,u)) = (v,u)

- prev(next(v,w)) = (v,w)

e g oy
ERE Felkel: Computational geometry /a\"ﬁ{?fa/g
DCGI o PR

Pointers around the end-points of edge e

1. Edge e = (u, w) splits into two edges e’ and ¢’ at intersection v
e’ = (w,v) e = (v,u)
K uhalf-edge w,v)= |2. Shorten half-edge (w,u) to (w,v)
shortened (v, w) Shorten half-edge (u, w) to (u, v))

Its new twin
XB. Create their twin (v, w) for (w, v)

Create their twin (v,u) for (u,v)

(4. Set new twin’s next to former edge e next
next(v,u) = next(w,u) now in next(w, v)
next(v, w) = next(u, w) now in next(u, v)

5. Set prev pointers to new twins
prev(next(v,u)) = (v,u)

- prev(next(v,w)) = (v,w)

e g oy
ERE Felkel: Computational geometry /a\"ﬁ{?fa/g
DCGI o PR

Pointers around the end-points of edge e

1. Edge e = (u, w) splits into two edges e’ and ¢’ at intersection v
e’ = (w,v) e = (v,u)
K uhalf-edge w,v)= |2. Shorten half-edge (w,u) to (w,v)
shortened (v, w) Shorten half-edge (u, w) to (u, v))

Its new twin
XB. Create their twin (v, w) for (w, v)

Create their twin (v,u) for (u,v)

(4. Set new twin’s next to former edge e next
next(v,u) = next(w,u) now in next(w, v)
next(v, w) = next(u, w) now in next(u, v)

5. Set prev pointers to new twins
prev(next(v,u)) = (v,u)

- prev(next(v,w)) = (v,w)

e g oy
ERE Felkel: Computational geometry /a\"ﬁ{?fa/g
DCGI o PR

Pointers around the end-points of edge e

1. Edge e = (u, w) splits into two edges e’ and ¢’ at intersection v

e’ = (w,v) e = (v,u)
& uhalf-edge (w,v) = {2 Shorten half-edge (w, u) to (w, v)
(3”

\ shortened (u, w) Shorten half-edge (u, w) to (u, V)J)

Its new twin
XB. Create their twin (v, w) for (w, v)

Create their twin (v,u) for (u,v)

(4. Set new twin’s next to former edge e next
next(v,u) = next(w,u) now in next(w, v)
next(v, w) = next(u, w) now in next(u, v)

QS. Set prev pointers to new twins
prev(next(v,u)) = (v,u)

- prev(next(v,w)) = (v,w)

e g oy
ERE Felkel: Computational geometry /a\"ﬁ{?fa/g
DCGI o PR

Pointers around the end-points of edge e

1. Edge e = (u, w) splits into two edges e’ and ¢’ at intersection v

e’ = (w,v) e = (v,u)
& uhalf-edge (w,v) = {2 Shorten half-edge (w, u) to (w, v)
(3”

\ shortened (u, w) Shorten half-edge (u, w) to (u, V)J)

Its new twin
XB. Create their twin (v, w) for (w, v)

Create their twin (v,u) for (u,v)

' (4. Set new twin’s next to former edge e next

% next(v,u) = next(w,u) now in next(w, v)
next(v, w) = next(u, w) now in next(u, v)

QS. Set prev pointers to new twins
prev(next(v,u)) = (v,u)

- prev(next(v,w)) = (v,w)

e g oy
ERE Felkel: Computational geometry /a\"ﬁ{?fa/g
DCGI o PR

Pointers around Iintersection v

. Find the next edge x for e’ from half-edge (w, v)

= first CW half-edge from e’ with v as origin
"~ hext(w,v) = x
_~prev(x) = (w,v)
. Find the prev edge for e’ from half-edge (v, w)
= first CCW half-edge from e’ with v as destination

next, prev similarly

. Find the next edge for e’ from half-edge (u, v)
= first CW half-edge from e”’ with v as origin
next, prev similarly
9. Find the prev edge for e”’ from half-edge (v, u)
= first CCW half-edge from e’ with v as destination
next, prev similarly

L Fr m
I Felkel: Computational geometry /Q\"ﬁ{?fa/g -_
DCGI (29/96) _ | :)

Pointers around Iintersection v

. Find the next edge x for e’ from half-edge (w, v)

= first CW half-edge from e’ with v as origin
"~ hext(w,v) = x
_~prev(x) = (w,v)
. Find the prev edge for e’ from half-edge (v, w)
= first CCW half-edge from e’ with v as destination

next, prev similarly

\ W 8
first CW half-edge
from e’

. Find the next edge for e’ from half-edge (u, v)
= first CW half-edge from e”’ with v as origin
next, prev similarly
9. Find the prev edge for e”’ from half-edge (v, u)
= first CCW half-edge from e’ with v as destination
next, prev similarly

L Fr m
I Felkel: Computational geometry /Q\"ﬁ{?fa/g -_
DCGI (29/96) _ | :)

Pointers around Iintersection v

. Find the next edge x for e’ from half-edge (w, v)

= first CW half-edge from e’ with v as origin
"~ hext(w,v) = x
_~prev(x) = (w,v)
. Find the prev edge for e’ from half-edge (v, w)
= first CCW half-edge from e’ with v as destination

next, prev similarly

\ W 8
first CW half-edge
from e’

. Find the next edge for e’ from half-edge (u, v)
= first CW half-edge from e”’ with v as origin
next, prev similarly
9. Find the prev edge for e”’ from half-edge (v, u)
= first CCW half-edge from e’ with v as destination
next, prev similarly

L Fr m
I Felkel: Computational geometry /Q\"ﬁ{?fa/g -_
DCGI (29/96) _ | :)

Pointers around Iintersection v

. Find the next edge x for e’ from half-edge (w, v)

= first CW half-edge from e’ with v as origin
"~ hext(w,v) = x
_~prev(x) = (w,v)
. Find the prev edge for e’ from half-edge (v, w)
= first CCW half-edge from e’ with v as destination

next, prev similarly

\ W 8
first CW half-edge
from e’

. Find the next edge for e’ from half-edge (u, v)
= first CW half-edge from e”’ with v as origin
next, prev similarly
9. Find the prev edge for e”’ from half-edge (v, u)
= first CCW half-edge from e’ with v as destination
next, prev similarly

L Fr m
I Felkel: Computational geometry /Q\"ﬁ{?fa/g -_
DCGI (29/96) _ | :)

Pointers around Iintersection v

. Find the next edge x for e’ from half-edge (w, v)

= first CW half-edge from e’ with v as origin
"~ hext(w,v) = x
_~prev(x) = (w,v)
. Find the prev edge for e’ from half-edge (v, w)
= first CCW half-edge from e’ with v as destination

next, prev similarly

. Find the next edge for e’ from half-edge (u, v)

first CW half-edge
from e’

= first CW half-edge from e”’ with v as origin
next, prev similarly
9. Find the prev edge for e”’ from half-edge (v, u)
= first CCW half-edge from e’ with v as destination
next, prev similarly

L Fr m
I Felkel: Computational geometry /Q\"ﬁ{?fa/g -_
DCGI (29/96) _ | :)

Pointers around Iintersection v

. Find the next edge x for e’ from half-edge (w, v)

= first CW half-edge from e’ with v as origin
"~ hext(w,v) = x
_~prev(x) = (w,v)
. Find the prev edge for e’ from half-edge (v, w)
= first CCW half-edge from e’ with v as destination

next, prev similarly

. Find the next edge for e’ from half-edge (u, v)

first CW half-edge
from e’

= first CW half-edge from e”’ with v as origin
next, prev similarly
9. Find the prev edge for e”’ from half-edge (v, u)
= first CCW half-edge from e’ with v as destination
next, prev similarly

L Fr m
I Felkel: Computational geometry /Q\"ﬁ{?fa/g -_
DCGI (29/96) _ | :)

Pointers around Iintersection v

. Find the next edge x for e’ from half-edge (w, v)

= first CW half-edge from e’ with v as origin
"~ hext(w,v) = x
_~prev(x) = (w,v)
. Find the prev edge for e’ from half-edge (v, w)
= first CCW half-edge from e’ with v as destination

next, prev similarly

. Find the next edge for e’ from half-edge (u, v)

first CW half-edge
from e’

= first CW half-edge from e”’ with v as origin
next, prev similarly
9. Find the prev edge for e”’ from half-edge (v, u)
= first CCW half-edge from e’ with v as destination
next, prev similarly

L Fr m
I Felkel: Computational geometry /Q\"ﬁ{?fa/g -_
DCGI (29/96) _ | :)

Pointers around Iintersection v

. Find the next edge x for e’ from half-edge (w, v)

= first CW half-edge from e’ with v as origin
"~ hext(w,v) = x
_~prev(x) = (w,v)
. Find the prev edge for e’ from half-edge (v, w)
= first CCW half-edge from e’ with v as destination

next, prev similarly

. Find the next edge for e’ from half-edge (u, v)

first CW half-edge
from e’

= first CW half-edge from e”’ with v as origin
next, prev similarly
9. Find the prev edge for e”’ from half-edge (v, u)
= first CCW half-edge from e’ with v as destination
next, prev similarly

L Fr m
I Felkel: Computational geometry /Q\"ﬁ{?fa/g -_
DCGI (29/96) _ | :)

Pointers around Iintersection v

. Find the next edge x for e’ from half-edge (w, v)

= first CW half-edge from e’ with v as origin
"~ hext(w,v) = x
_~prev(x) = (w,v)
. Find the prev edge for e’ from half-edge (v, w)
= first CCW half-edge from e’ with v as destination

next, prev similarly

. Find the next edge for e’ from half-edge (u, v)

first CW half-edge
from e’

= first CW half-edge from e”’ with v as origin
next, prev similarly
9. Find the prev edge for e”’ from half-edge (v, u)
= first CCW half-edge from e’ with v as destination
next, prev similarly

L Fr m
I Felkel: Computational geometry /Q\"ﬁ{?fa/g -_
DCGI (29/96) _ | :)

Pointers around Iintersection v

. Find the next edge x for e’ from half-edge (w, v)

= first CW half-edge from e’ with v as origin
"~ hext(w,v) = x
_~prev(x) = (w,v)
. Find the prev edge for e’ from half-edge (v, w)
= first CCW half-edge from e’ with v as destination

next, prev similarly

. Find the next edge for e’ from half-edge (u, v)

first CW half-edge
from e’

= first CW half-edge from e”’ with v as origin
next, prev similarly
9. Find the prev edge for e”’ from half-edge (v, u)
= first CCW half-edge from e’ with v as destination
next, prev similarly

L Fr m
I Felkel: Computational geometry /Q\"ﬁ{?fa/g -_
DCGI (29/96) _ | :)

Time cost for updating half-edge records

= All operations with splitting of edges in
intersections and reconnecting of prev, next
pointers take 0(1) time

= Locating of edge position in cyclic order
— around single vertex v takes 0(deg(v))

— which sums to 0(m) = number of edges processed by
the edge intersection algorithm = 0(n)

— The overall complexity is not increased
O(nlogn + klogn)

n =|S4|+ |S;| k = complexity of the overlay (=intersections)
Complexity of input subdivisions

+++++
> -~ -+
—~ DCGI Felkel: Computational geometry
(30/96)

Face records for the overlay subdivision

= Create face records for each face f in 0(54,S,)

— Each face f has it unique outer boundary (CCW)
(except the background that has none)

— Each face has its OuterComponent(f) — store edge of it
— Together faces = #outer boundaries + 1

= InnerComponents(f) — list of edges of holes (cw)

= Label of f in 51 Used for Boolean operations
= Label of fin S, suchas 1 NSz, S1US; Si\S

Polygon examples: T 92 w

D S e mtﬁmﬁcuﬂn dlffcmmc

—~ DCGI Felkel: Computational geometry
(31/96)

Extraction of faces

= [Traverse cycles in DCEL (Tarjan alg. DFS) ...O(n)

= Decide, if the cycle is outer or inner boundary
— Find leftmost vertex of the cycle (bottom leftmost)
— Incident face lies to the left of edges
— Angle < 180° = outer
— Angle > 180° = inner (hole)

- : -
+++++
> -~ -+
—~ DCGI Felkel: Computational geometry
(32/96)

Which boundary cycles bound same face?

= Single outer boundary shares the face with its
holes — inner boundaries

= Graph

— Node for each cycle

@) inner
@ outer €)unbounded e \/

oa (‘31\
— Arc if inner cycle has half-edge immediately-to-the left
of the leftmost vertex

— Each connected component — set of cycles of one face

- : -
+++++
> -~ -+
—~ DCGI Felkel: Computational geometry
(33/96)

Graph G of faces and their relations

@ inner (cw)
outer (ccw)
unbounded

Connected component in §
— represents a face f

— connects outer face with its.holes
InnerComponents(f)

Felkel: Computational geometry @
(34 / 96)

Graph G construction

ldea — during sweep line, we know the nearest left
edge for every vertex v (and half-edge with origin v)

1. Make node for every cycle
(graph traversal)

2. During plane sweep,

— store pointer to graph node for
each edge

— remember the leftmost vertex and
its nearest left edge

3. Create arc between cycles of the
leftmost vertex an its nearest left

Y edge
+< -~ - <
—~ DCGI Felkel: Computational geometry
4. (35 / 96)

Face label determination

For intersection v of two edges:
During the sweep-line

In both new pieces, remember the
face of half-edge being split into two

After
Label the face by both labels

For face in other face:
Known half-edge label only from S;

Use graph G to locate outer boundary
label for face from S,

(or store containing face f of other
subdivision for each vertex)

: Computational geome % : - ;
Felkel: C (Z(:,t%) I.g t? _ | \

Map overlay algorithm

MapOverlay(5¢,S5,)
Input: Two planar subdivisions S; and S, stored in DCEL

Output: The overlay of S; and S, stored in DCEL D

1. Copy both DCELs for of S; and S, into DCEL D

2. Use plane sweep to compute intersections of edges from S; and S, _
Update vertex and edge records in D when the event involves edges of 6&5&???1‘?%1;0”)
Store the half-edge to the left of the event point at the vertex in D

3. Traverse D (depth-first search) to determine the boundary cycles

4. Construct the graph G (boundary and hole cycles, immediately to the left of hole),

5. for each connected component in G do

6. C < the unique outer boundary cycle

7. f < the face bounded by the cycle C.

8. Create a face record for f

9 OuterComponent(f) < some half-edge of C,

10. InnerComponents(f) < list of pointers to one half-edge e in each hole @
11, IncidentFace(e) < f for all half-edges bounding cycle C and the holes

12. Label each face of 0(S;, S,) with the names of the faces of §; and S, containing it

Felkel: Computational geometry

(DASIC]| (37/96) | o o ﬂ @’U@J

Map overlay algorithm

MapOverlay(5¢,S5,)
Input: Two planar subdivisions S; and S, stored in DCEL // complexity n

Output: The overlay of S; and S, stored in DCEL D

1. Copy both DCELs for of S; and S, into DCEL D

2. Use plane sweep to compute intersections of edges from S; and S, _
Update vertex and edge records in D when the event involves edges of 6&5&???1‘?%1;0”)
Store the half-edge to the left of the event point at the vertex in D

3. Traverse D (depth-first search) to determine the boundary cycles

4. Construct the graph G (boundary and hole cycles, immediately to the left of hole),

5. for each connected component in G do

6. C < the unique outer boundary cycle

7. f < the face bounded by the cycle C.

8. Create a face record for f

9 OuterComponent(f) < some half-edge of C,

10. InnerComponents(f) < list of pointers to one half-edge e in each hole @
11, IncidentFace(e) < f for all half-edges bounding cycle C and the holes

12. Label each face of 0(S;, S,) with the names of the faces of §; and S, containing it

Felkel: Computational geometry

(DASIC]| (37/96) | o o ﬂ @’U@J

Map overlay algorithm

MapOverlay(5¢,S5,)
Input: Two planar subdivisions S; and S, stored in DCEL // complexity n

Output: The overlay of S; and S, stored in DCEL D
1. Copy both DCELs for of S; and S, into DCEL D // O(n)
2. Use plane sweep to compute intersections of edges from S; and S, _
: . tSlrﬁ1ersse<3t|on)
Update vertex and edge records in D when the event involves edges of both 57, 5,
Store the half-edge to the left of the event point at the vertex in D
3. Traverse D (depth-first search) to determine the boundary cycles

4. Construct the graph G (boundary and hole cycles, immediately to the left of hole),

5. for each connected component in G do

6. C < the unique outer boundary cycle

7. f < the face bounded by the cycle C.

8. Create a face record for f

9 OuterComponent(f) < some half-edge of C,

10. InnerComponents(f) < list of pointers to one half-edge e in each hole @
11, IncidentFace(e) < f for all half-edges bounding cycle C and the holes

12. Label each face of 0(S;, S,) with the names of the faces of §; and S, containing it

Felkel: Computational geometry

(DASIC]| (37/96) | o o ﬂ @’U@J

Map overlay algorithm

MapOverlay(5¢,S5,)
Input: Two planar subdivisions S; and S, stored in DCEL // complexity n

Output: The overlay of S; and S, stored in DCEL D

1. Copy both DCELs for of S; and S, into DCEL D // O(n) J/ 08" logn + klogn)

2. Use plane sweep to compute intersections of edges from S; and S, — _
Update vertex and edge records in D when the event involves edges of 6&5&???1‘?%1;0”)
Store the half-edge to the left of the event point at the vertex in D

3. Traverse D (depth-first search) to determine the boundary cycles

4. Construct the graph G (boundary and hole cycles, immediately to the left of hole),

5. for each connected component in G do

6. C < the unique outer boundary cycle

7. f < the face bounded by the cycle C.

8. Create a face record for f

9 OuterComponent(f) < some half-edge of C,

10. InnerComponents(f) < list of pointers to one half-edge e in each hole @
11, IncidentFace(e) < f for all half-edges bounding cycle C and the holes

12. Label each face of 0(S;, S,) with the names of the faces of §; and S, containing it

Felkel: Computational geometry

(DASIC]| (37/96) | o o ﬂ @’U@J

Map overlay algorithm

MapOverlay(5¢,S5,)
Input: Two planar subdivisions S; and S, stored in DCEL // complexity n

Output: The overlay of S; and S, stored in DCEL D

1. Copy both DCELSs for of S; anq S, into.DCEL D /I 0O(n) J/ 08" logn + klogn)

2. Use plane sweep to compute intersections of edges from S; and S, — _
Update vertex and edge records in D when the event involves edges of 6&5&???1‘?%1;0”)
Store the half-edge to the left of the event point at the vertex in D

5. Traverse D (depth-first search) to determine the boundary cycles // O(n)

4. Construct the graph G (boundary and hole cycles, immediately to the left of hole),

5. for each connected component in G do

6. C < the unique outer boundary cycle

7. f < the face bounded by the cycle C.

8. Create a face record for f

9 OuterComponent(f) < some half-edge of C,

10. InnerComponents(f) < list of pointers to one half-edge e in each hole @
11, IncidentFace(e) < f for all half-edges bounding cycle C and the holes

12. Label each face of 0(S;, S,) with the names of the faces of §; and S, containing it

Felkel: Computational geometry

(DASIC]| (37/96) | o o ﬂ @’U@J

Map overlay algorithm

MapOverlay(5¢,S5,)
Input: Two planar subdivisions S; and S, stored in DCEL // complexity n

Output: The overlay of S; and S, stored in DCEL D

1. Copy both DCELSs for of S; anq S, into.DCEL D /I 0O(n) J/ 08" logn + klogn)

2. Use plane sweep to compute intersections of edges from S; and S, — _
Update vertex and edge records in D when the event involves edges of 6&5&???1‘?%1;0”)
Store the half-edge to the left of the event point at the vertex in D

5. Traverse D (depth-first search) to determine the boundary cycles // O(n)

4. Construct the graph G (boundary and hole cycles, immediately to the left of hole),

5. for each connected component in G do n

6. C < the unique outer boundary cycle

7. f < the face bounded by the cycle C.

8. Create a face record for f /1 0(k)

9 OuterComponent(f) < some half-edge of C,

10. InnerComponents(f) < list of pointers to one half-edge e in each hole @
11, IncidentFace(e) < f for all half-edges bounding cycleg C and the holes

2. Label each face of 0(S;, S,) with the names of the faces of S; and S, containing it

Felkel: Computational geometry

(DASIC]| (37/96) | o o ﬂ @’U@J

Map overlay algorithm

MapOverlay(5¢,S5,)
Input: Two planar subdivisions S; and S, stored in DCEL // complexity n

Output: The overlay of S; and S, stored in DCEL D

1. Copy both DCELSs for of S; anq S, into.DCEL D /I 0O(n) J/ 08" logn + klogn)

2. Use plane sweep to compute intersections of edges from S; and S, — _
Update vertex and edge records in D when the event involves edges of 6&5&???1‘?%1;0”)
Store the half-edge to the left of the event point at the vertex in D

5. Traverse D (depth-first search) to determine the boundary cycles // O(n)

4. Construct the graph G (boundary and hole cycles, immediately to the left of hole),

5. for each connected component in G do n

6. C < the unique outer boundary cycle

7. f < the face bounded by the cycle C.

8. Create a face record for f /1 0(k)

9 OuterComponent(f) < some half-edge of C,

10. InnerComponents(f) < list of pointers to one half-edge e in each hole @
11, IncidentFace(e) < f for all half-edges bounding cycleg C and the holes

2. Label each face of 0(S;, S,) with the names of the faces of S; and S, containing it

Felkel: Computational geome

(DAL] o715 ?O(n logﬁ + klogn) v @J@J

Running time

The overlay of two planar subdivisions with total
complexity n can be constructed in
O(nlogn + klogn)

where k = complexity of the overlay (=intersections)

++++;f e £
= ol DCGI Felkel: Computational geometry P& T

(38796) .

Axis parallel rectangles
iIntersection

T X
s _ A
e D C GI Felkel: Com(zl:jt;osr;al geometry | | _ \

Intersection of axis parallel rectangles

= Given the collection of n isothetic rectangles,
report all intersecting parts

A

e Alternate sides

 Overap belong to two
r, i

pencils of lines
(trsy pfimek)

(often used with

Iy

k points in infinity
 Inclusion \ 3 _
P = axis parallel)
I 2D => 2 pencils
My ry

[
»

_Answer: (rq, 1) (ry, rg) (ry, rg) (ra, ra) (r3, rs) (f3, ro) (r s) (7, rg)

[?]
+++++ A
e . (e
e DCGI Felkel: Com(zuotjt;osr;al geometl-'y _ | + \

Brute force intersection

Brute force algorithm
Input: set S of axis parallel rectangles
Output: pairs of intersected rectangles

1. For every pair (1;,17) of rectangles € S,i # j
2. if (r; N7, # @) then
3. report (r;,1;)

Analysis
Preprocessing: None.

Query: 0(N?) (’;’) =" e o).

Storage: O(N)

—_
—_

-4 ——
* A o~ ==
-~ -

DCGI

Plane sweep intersection algorithm

= Vertical sweep line moves from left to right

= Stops at every x-coordinate of a rectangle
(either at its left side or at its right side). @O O

= active rectangles — a set
= rectangles currently intersecting the sweep line
— left side event of a rectangle [] — start
=> the rectangle is added to the active set.

— right side 1 —end
=> the rectangle is deleted from the active set.

= [he active set used to detect rectangle intersection

+++++ A
- -+ - : Q?“ Q o
e DCGI Felkel: Com(zl;tjt;osr;al geometl-'y _ | + \

Example rectangles and sweep line

Ay ->
not active
rectangle
active
rectangle
—> s 3 X
B sweep line

+++++ [Drtina]

-~ DCGI Felkel: Computational geometry
(43 /96)

Interval tree as sweep line status structure

= Vertical sweep-line => only y-coordinates along it

= The status tree is drawn horizontal - turn 90° right
as if the sweep line (y-axis) is horizontal

yI_

>

not active
ectangle
E— active I
actanglel
r B
1l
» X
y
sweep liNe gy L R

- —:_ -
+++++
> -~ -+
—~ DCGI Felkel: Computational geometry
(44 / 96)

Intersection test — between pair of intervals

= Giventwo intervals | = [y,, y,Jand I' =[y';, y'5]
the condition | n I" is equivalent to one of these

mutually exclusive conditions: 1st variant
y.’1 y.’z
a) yi <V i<y, — s
Y1 Yo
OR
y y y,‘l y’2
b)y 1 =yi=vy ° f ’
Y Yo
Intervals along the sweep line a) b) b)
L | [T [] I I I |

+++_/—_/— _—’I_— -+ Interseé:ion (fork) /@‘&?% :
Felkel: Computational met A
” DCGI B SRR A ik

Intersection test — between pair of intervals

= Giventwo intervals | = [y,, y,Jand I' =[y';, y'5]
the condition | n I' is equivalent to both of these

conditions simultaneously: ond variant
y.’1 y.’z
\
1 , < e o
)V =Y, V. | v, |
Y 1 Y5
‘ ' o }
AND .
, Y Y2
2)y1=VY ', ’ f ? .
Intervals along the sweep line y1 y2
2) 1,2) 1,2) 1,2) 1)
S [Tl el [l |] £
P Intersection (fork) /(‘(H% :
Felkel: Computational geomet 3
~ DCGI ww SO LR

(46/96)

Static interval tree — stores all end point y;

= Letv=y,,., bethe median of end-points of segments

= S, :segments of S that are completely to the left of y,,,.q4
= Sneq: S€gments of S that contain y,;,.4

= S, :segments of S that are completely to the right of y,,,.4

Smed

Ymed

S o o~ == =

—~ DCGI Felkel: Computational geometry
(47 196)

Static interval tree — Example

-!S J_ <—
53 : S9
o4
=
-.S N
S5 0
Smed 57

Left ends — ascending —>
Right ends — descending <—

Sr

Interval tree on
So and s~

-+ -+ -+ - |
, [Vigneron] -

ot DCGI Felkel: Computational geometry _
(487 96) L

Interval tree on
Sz and sx

Static interval tree [Edelsbrunner80]

= Stores intervals along y sweep
line -7

= 3 kinds of information /’
- end points

- incident
intervals

- active nodg

I
5 6

1 2 3 4 5 6

- o —f—
A e o - ® ®
> = [Kukral]
DCGI Felkel: Computational geometry
(49 / 96)

Primary structure — static tree for endpoints

Static — known
from beginning

v = midpoint of all
segment endpoints -

H(v) = value (y-coord) of v ./’

I\
5 6

Secondary lists of incident interval end-pts.

ML(v) — left endpoints of interval containing v Dynamic

(sorted ascending) -7 T

MR(v) — right endpoints ~ /
7
/
\
‘2,4\ 0,5

(descending)
M L(v) MR(v)

1 2 3 4 5

> ++: —l_'—_ — @ -0
>~ e == [Kukral]
—~ DCGI Felkel: Computational geometry
(51/96)

5T6N
6

}
®

Active nodes — intersected by the sweep line

Subset of all nodes currently LPTR Dynamic

iIntersected by the sweep line Active node

(nodes with intervals) 4
// \ RPTR
\

. /
Active node 2 /
¢—o —o

/o 2,4 6,5

Active node

1 2 3 4 5 6

> -+ 4 [Kukral]

—/— DCGI Felkel: Computational geometry :>
(52 /96)

Entries in the event queue

*———o

. (Xi Y, Vir» t)
(x1,1, 3, left)
(x,,2,4, left)
(x3,1, 3, right)
(x4,2,4,right)

Y’
Static nodes in the SL status tree

1,2,3,4

L Fr m
* ++ i Felkel: Computational geometry / %@g -
DCGI (53/96) : | _)

Query = sweep and report intersections

Rectangleintersections(S)
Input: Set S of rectangles
Output: Intersected rectangle pairs

1. Preprocess(S) // create the interval tree T (for y-coords)
// and event queue Q (for x-coords)

2. while (Q #9@)do

3. Get next entry (x;, y;; yir, t) from Q It €{left| rf%ht}

4. if (t=left) //leftedge [] L0

5. a) QuerylInterval (y;; y;r,root(T)) // report intersections

6. b) Insertinterval (y;, y;r,root(T)) //insert new interval

7. else // right edge []

8. c) Deletelnterval (y;; y;g, root(T))

» . . .
- o~ -
S o o~ == =

Preprocessing

Preprocess(S)
Input: Set S of rectangles
Output: Primary structure of the interval tree T and the event queue Q

1. T =PrimaryTree(S) // Construct the static primary structure
/[of the interval tree -> sweep line STATUS T

2. Il Init event queue Q with vertical rectangle edges in ascending order ~x
I/ Put the left edges with the same x ahead of right ones

3. fori=1ton

4. insert((xiL,yiL, Vir, left), Q) // left edges of i-th rectangle

d. insert((xiR,yiL, yiR,right), Q) // right edges

. . . .
-’ - -

s A =~ ==

> -~ -4] i

Interval tree — primary structure construction

PrimaryTree(S) // only the y-tree structure, without intervals
Input: Set S of rectangles

Output: Primary structure of an interval tree T

1. §, = Sort endpoints of all segments in S according to y-coordinate
2. T=B3ST(S,)

3. return T

BST(S,)

if(|S,|=0)return null

yMed = median of S, // the smaller item for even S,.size
L = endpoints p, < yMed

R = endpoints p, > yMed

t = new IntervalTreeNode(yMed)

t.left =BST(L)

t.right = BST(R)

return t

- -~ -4 | -:
” DCGI P & 2 N Hra /E%

N>R WD

Interval tree — search the intersections

Querylnterval (b, e, T)
Input: Interval of the edge and current tree T

Output: Report the rectangles that intersect [b, e] Hg) et for oot

New interval being

1. if(T= null)return _ /
2. i=0;if(b <H(v) <e) // forks at this node b | v ©
3. while {MRLoN T == b} && (i < Count(Vv)) // Repor’t aII intervals inM
4, Reportintersection; i++
5. Querylinterval(b,e,T.LPTR)= // jump to actlve' o e I erva bene
6. Queryinterval(b,e, T.RPTR)e— // node below ! l
7. elseif (H(v) < b <e) //search RIGHT (<) | A
8. while (MR(v).[i]] >= b) && (i < Count(v)) |
0. Reportintersection; i++ p—ooRSle GCrossB
10. Querylinterval(b,e, T.RPTR) @ CrOssesAB.C
11. else //'b<e =< H(v)//search LEFT(-g>) Crossesc
12. while (ML(V)[l] <= e) .Crosses nothin$
13. Reportintersection; i++ (stored mtervats — e
14 = Querylnterval(b,e, T.LPTR) °'2ctive rectapgles v :
“ DCGI = \[rJDW' o lerrr o).

Interval tree - interval insertion

Insertinterval (b, e, T)
Input: Interval [b,e] and interval tree T
Output: T after insertion of the interval

New interval
1 oy = rOOt(T) H(V) being inserted
2. while(v!=null) //find the fork node @ /
3. i if (H(v)<b<e) | ; ;
4, v =v.right // continue right |
5. elseif (b<e<H(WV)) : .
6. v = v.left // continue left |
7. else /[b<H(v) <e //insertinterval . pa— .
8. set v node to active ¢ 1
9. | connect LPTR resp. RPTR to its parent (active node above)
10. ¢ insert [b,e] into list ML(v) — sorted in ascending order of b’s
11. insert [b,e] into list MR(v) — sorted in descending order of e’s
12. break
13. endwhile

14, return T %
” DCGI . RS s

Example 1

Felkel: Computational geometry

(59 / 96)

Ao

Example 1 — static tree on endpoints

H(v) — value of node v

v

\ 4

A
\ 4

A £ [Drtina]
-+ -
DC GI Felkel: Computational geometry
(607 96)

Interval insertion [1,3] a) Query Interval &

Search MR(Vv) or ML(v): «—— b <H(v) <e

1<(2<3

MR(V) is empty

No active sons, stop

1

] Active rectangle
O Current node
‘ Active node

7 DCGI

[Drtina]
Felkel: Computational geometry
(61796)

Interval insertion [1,3] Db) Insert Interval &

b<H(v)=<e
o ?1<(2<37

| X

] Active rectangle) 4
O Current node

@ Active node [ertine] %
S o Felkel: Computational geometry

Interval insertion [1,3] Db) Insert Interval &

® 1 5@5 3 fork
=> to lists

| X

D Active rectangle
O Current node

@ Active node [ertine] %
o o Felkel: Computational geometry

Interval insertion [2,4] a) Query Interval

Search MR(v) only: -« H(v) <b<e
MR(W)[1] = 3 = 27 @) <2<4
=> |ntersection

] Active rectangle
O Current node

‘ Active node [Drtina] %
o o Felkel: Computational geometry
DCGI A

Interval insertion [2,4] Db) Insert Interval &

] Active rectangle
O Current node
‘ Active node

7 DCGI

b<H()=<e

2=<(2)=4 fork
=> {o lists

[Drtina]
Felkel: Computational geometry
(6517 96)

Interval delete [1,3]]

] Active rectangle
O Current node

@ Active node [ertine] @
o o Felkel: Computational geometry

Interval delete [1,3]

] Active rectangle
O Current node

‘ Active node

7 DCGI

Felkel: Computational geometry

(67 / 96)

Interval delete [2,4]]

D Active rectangle
O Current node

@ Active node [ertine] %
S o Felkel: Computational geometry

A
\ 4

Interval delete [2,4]]

=
N
w
N

A
\ 4

A

[
»

-/-++ _/—_,:_ _—;__—'_ - [Drtina] /@‘%&?)\.

DC GI Felkel: Computational geometry \‘sl
(69/96) :

Example 2

Felkel: Computational geometry

(70 / 96)

R

Query = sweep and report intersections

Rectanglelntersections(S) /[this is a copy of the slide before
Input: Set S of rectangles // just to remember the algorithm
Output: Intersected rectangle pairs

1. Preprocess(S) // create the interval tree T (for y-coords)
// and event queue Q (for x-coords)

2. while (Q #9@)do

3. Get next entry (x;, y;; yir, t) from Q It €{left] rf%ht}

4. if (t=left) /lleftedge [LU

5. a) Querylinterval (y;;, y;r,root(T)) // report intersections

6. b) Insertinterval (y;, y;r,root(T)) //insert new interval

7. else // right edge []

8. c) Deletelnterval (y;; y;g, root(T))

. . . .
-’ - -

S o o~ == =

- + = 4

Example 2 — tree created by PrimaryTree(S)

A
A 4
A
A\ 4
A
A\ 4
A
A 4

A 4

A

- _
- Felkel: Computational geometry [Drtina] / \‘Jg
DCGI (721 96) | | ' "

Example 2 — tree created by PrimaryTree(S)

A
Q
A 4
A
o
Q.
—

A\ 4
A

A\ 4
A
A 4

t
v

S o o~ == =

7'}
(D

»

> 25
% 3 45 _ [Drtina] ("\%(H()\.
-~ DCGI Felkel: Computational geometry | | ‘ _ _

(721 96)

Example 2 — tree created by PrimaryTree(S)

(@

A
Q
A 4
A
o
Q.
—

A\ 4
A

A\ 4
A
A 4

t
v

S o o~ == =

7'}
(D

»

> 25
% 3 45 _ [Drtina] ("\%(H()\.
-~ DCGI Felkel: Computational geometry | | ‘ _ _

(721 96)

Example 2 — tree created by PrimaryTree(S)

(@

A
A 4
A
A\ 4
A
A\ 4
A
A 4

A 4

A

- _
- Felkel: Computational geometry [Drtina] / \‘Jg
DCGI (721 96) | | ' "

Example 2 — tree created by PrimaryTree(S)

(@

A
A 4
A
A\ 4
A
A\ 4
A
A 4

A 4

A

FFE- R
-~ -+ -
- Felkel: Computational geometry [Drtina] / \‘Jg
DCGI (721 96) | | ' "

Example 2 — tree created by PrimaryTree(S)

A\ 4
A

A\ 4
A
A 4

t
v

S o o~ == =

1 ADy
* ++ i Felkel: Computational geometry [Brtin] / %(a)g
DCGI (721796) : _ | .

7'}
(D

Example 2 — tree created by PrimaryTree(S)

A
A 4
A
A\ 4
A
A\ 4
A
A 4

A 4

A

- _
- Felkel: Computational geometry [Drtina] / \‘Jg
DCGI (721 96) | | ' "

Example 2 — tree created by PrimaryTree(S)

A\ 4
A

A\ 4
A
A 4

t
v

S o o~ == =

1 ADy
* ++ i Felkel: Computational geometry [Brtin] / %(a)g
DCGI (721796) : _ | .

7'}
(D

Example 2 — tree created by PrimaryTree(S)

A\ 4
A

A\ 4
A
A 4

t
v

S o o~ == =

1 ADy
* ++ i Felkel: Computational geometry [Brtin] / %(a)g
DCGI (721796) : _ | .

7'}
(D

Example 2 — tree created by PrimaryTree(S)

A
A 4
A
A\ 4
A
A\ 4
A
A 4

A 4

A

- _
- Felkel: Computational geometry [Drtina] / \‘Jg
DCGI (721 96) | | ' "

Example 2 — tree created by PrimaryTree(S)

A
Q
A 4
A
o
Q.
—

A\ 4
A

A\ 4
A
A 4

t
v

S o o~ == =

1 ADy
* ++ i Felkel: Computational geometry [Brtin] / %(a)g
DCGI (721796) : _ | .

7'}
(D

Example 2 — tree created by PrimaryTree(S)

A
Q
A 4
A
o
Q.
—

A\ 4
A

A\ 4
A
A 4

t
v

S o o~ == =

1 ADy
* ++ i Felkel: Computational geometry [Brtin] / %(a)g
DCGI (721796) : _ | .

7'}
(D

Example 2 — tree created by PrimaryTree(S)

A
Q
A 4
A
o
Q.
—

A\ 4
A

A\ 4
A
A 4

t
v

S o o~ == =

1 ADy
* ++ i Felkel: Computational geometry [Brtin] / %(a)g
DCGI (721796) : _ | .

7'}
(D

Example 2 — tree created by PrimaryTree(S)

5 6 7 8
X
< a > C >ie d >ie f >
< b >
= ++5I —+ < e > G =£) <
% I 55 _ _ [Drtina] (‘%(H()‘
-~ DCGI Felkel: Computational geometry | \ _

(721 96)

Example 2 — tree created by PrimaryTree(S)

5 6 7 8
X
< a > C >ie d >ie f >
< b >
= ++5I —+ < e > G =£) <
% I 55 _ _ [Drtina] (‘%(H()‘
-~ DCGI Felkel: Computational geometry | \ _

(721 96)

Example 2 — tree created by PrimaryTree(S)

5 6 7 8
X
< a > C >ie d >ie f >
< b >
= ++5I —+ < e > G =£) <
% I 55 _ _ [Drtina] (‘%(H()‘
-~ DCGI Felkel: Computational geometry | \ _

(721 96)

Example 2 — tree created by PrimaryTree(S)

5 6 7 8
X
< a > C >ie d >ie f >
< b >
= ++5I —+ < e > G =£) <
% I 55 _ _ [Drtina] (‘%(H()‘
-~ DCGI Felkel: Computational geometry | \ _

(721 96)

Example 2 — tree created by PrimaryTree(S)

A
Q
A 4
A
o
Q.
—

A\ 4
A

A\ 4
A
A 4

t
v

S o o~ == =

1 ADy
* ++ i Felkel: Computational geometry [Brtin] / %(a)g
DCGI (721796) : _ | .

7'}
(D

Example 2 — tree created by PrimaryTree(S)

A
Q
A 4
A
o
Q.
—

A\ 4
A

A\ 4
A
A 4

t
v

S o o~ == =

1 ADy
* ++ i Felkel: Computational geometry [Brtin] / %(a)g
DCGI (721796) : _ | .

7'}
(D

Example 2 — tree created by PrimaryTree(S)

5 6 7 8
X
< a > C >ie d >ie f >
< b >
= ++5I —+ < e > G =£) <
% I 55 _ _ [Drtina] (‘%(H()‘
-~ DCGI Felkel: Computational geometry | \ _

(721 96)

Example 2 — tree created by PrimaryTree(S)

5 6 7 8
X
< a > C >ie d >ie f >
< b >
= ++5I —+ < e > G =£) <
% I 55 _ _ [Drtina] (‘%(H()‘
-~ DCGI Felkel: Computational geometry | \ _

(721 96)

Example 2 — tree created by PrimaryTree(S)

6 7 8 J
0 X
< a > ¢ > d > f >
- = + < € > 5
SAE el (s
- Felkel: Computational geometry [Drtina] \‘sl
DCGI (721 96) | o &

Example 2 — tree created by PrimaryTree(S)

A

A 4
A
A\ 4
A

»

A

Ll

Felkel: Computational geometry

(721 96)

[Drtina]

A\ 4
A
A 4

R

Example 2 — tree created by PrimaryTree(S)

A
A 4
A
A\ 4
A

\
}
i
A

»

S o o~ == =

Ll

—~ DCGI Felkel: Computational geometry
(72 /96)

[Drtina]

A\ 4
A
A 4

Example 2 — tree created by PrimaryTree(S)

A

A 4
A
A\ 4
A

A 4

»

A

Ll

Felkel: Computational geometry

(721 96)

[Drtina]

A\ 4
A
A 4

R

Example 2 — tree created by PrimaryTree(S)

A

A 4
A
A\ 4
A

A 4

»

A

Ll

Felkel: Computational geometry

(721 96)

[Drtina]

A\ 4
A
A 4

R

Example 2 — tree created by PrimaryTree(S)

A
A 4
A
A\ 4
A

\
}
i
A

»

S o o~ == =

Ll

—~ DCGI Felkel: Computational geometry
(72 /96)

[Drtina]

A\ 4
A
A 4

Example 2 — tree created by PrimaryTree(S)

A

A 4
A
A\ 4
A

A 4

»

A

Ll

Felkel: Computational geometry

(721 96)

[Drtina]

A\ 4
A
A 4

R

Example 2 — tree created by PrimaryTree(S)

A

A 4
A
A\ 4
A

A 4

»

A

Ll

Felkel: Computational geometry

(721 96)

[Drtina]

A\ 4
A
A 4

R

Example 2 — tree created by PrimaryTree(S)

A

A 4
A
A\ 4
A

A 4

»

A

Ll

Felkel: Computational geometry

(721 96)

[Drtina]

A\ 4
A
A 4

R

Example 2 — tree created by PrimaryTree(S)

A
A 4
A
A\ 4
A
A\ 4
A
A 4

A 4

}
t

7'y
(D

3 [Drtina]
DC GI Felkel: Computational geometry
(721 96)

Example 2 — tree created by PrimaryTree(S)

A

A 4
A
A\ 4
A

A 4

»

A

Ll

Felkel: Computational geometry

(721 96)

[Drtina]

A\ 4
A

A 4

Example 2 — tree created by PrimaryTree(S)

Felkel: Computational geometry

(721 96)

0) 1 2 3 4 5 6 7 8
< a > c >t d >t >
Rl b »
< € >
[Drtina]

Example 2 — tree created by PrimaryTree(S)

Q
A 4
A
o
Q.
—

A
A\ 4
A

A\ 4
A
A 4

t
v

\
!
+++
Ty
.|.
D

3 [Drtina]
DC GI Felkel: Computational geometry
(721 96)

Example 2 — slightly unbalanced tree

A

A 4
A
A\ 4
A

A 4

A

»
Ll

Felkel: Computational geometry

(731 96)

[Drtina]

A\ 4
A
A 4

R

nsert [2,3] — empty =>b) Insert Interval

b<H(v) <e

Insert the new interval to secondary lists

A\ 4
A
A 4

A
A 4
A
A\ 4
A

] Active rectangle

A

O Current node b

A 4

A

‘ Active node

—~ DCGI Felkel: Computational geometry
(74 / 96)

€ >
[Drtlna] %

nsert [2,3] — empty =>b) Insert Interval

b<H(v) <e

Insert the new interval to secondary lists

A\ 4
A
A 4

A
A 4
A
A\ 4
A

D Active rectangle

A

O Current node b

A 4

A

‘ Active node

—~ DCGI Felkel: Computational geometry
(74 / 96)

€ >
[Drtlna] %

nsert [2,3] — empty =>b) Insert Interval

b<H(v) <e

Insert the new interval to secondary lists

A\ 4
A
A 4

A
A 4
A
A\ 4
A

] Active rectangle

A

O Current node b

A 4

A

‘ Active node

—~ DCGI Felkel: Computational geometry
(74 / 96)

€ >
[Drtlna] %

nsert [2,3] — empty =>b) Insert Interval b < H(v) <e

Insert the new interval to secondary lists 72 < @ < 37

A
A 4
A
A\ 4
A
A\ 4
A
A 4

D Active rectangle
O Current node b
‘ Active node

€ >
. [Drtina]
». DC I Felkel: Computational geometry - ; :
‘ ; (741 96)

A
A 4

A

nsert [2,3] — empty =>b) Insert Interval b < H(v) <e

Insert the new interval to secondary lists 72 < @ < 37

fork node => active
=> to lists

A
A 4
A
A\ 4
A
A\ 4
A
A 4

] Active rectangle
O Current node b

. k o ‘

‘ Active node P R
73 Felkel: Computational geometry [Drtina]

DCGI (747 96) | . I

A
A 4

nsert [2,3] — empty =>b) Insert Interval b < H(v) <e

Insert the new interval to secondary lists 72 < @ < 37

fork node => active
=> to lists

A
A 4
A
A\ 4
A
A\ 4
A
A 4

D Active rectangle
O Current node b

. k o ‘

‘ Active node P R
73 Felkel: Computational geometry [Drtina]

DCGI (747 96) | . I

A
A 4

nsert [2,3] — empty =>b) Insert Interval b < H(v) <e

Insert the new interval to secondary lists 72 < @ < 37

fork node => active
=> to lists

A
A 4
A
A\ 4
A
A\ 4
A
A 4

] Active rectangle
O Current node b

. k o ‘

‘ Active node P R
73 Felkel: Computational geometry [Drtina]

DCGI (747 96) | . I

A
A 4

nsert [2,3] — empty =>b) Insert Interval b < H(v) <e

Insert the new interval to secondary lists 72 < @ < 37

fork node => active

=> to lists

A
A 4
A
A\ 4
A
A\ 4
A
A 4

D Active rectangle
O Current node b
‘ Active node

. [Drtina]
- DC I Felkel: Computational geometry - ' '
(; (741 96)

A
A 4

A
(D

nsert [3,7] a) Query Interval H(v) <b <e

for (all in MR(v)) test MR(V)[i] >= 3
o => report intersection c
go right, nil, stop

X

A
A 4
A
A 4
A
A\ 4
A
A 4

] Active rectangle
O Current node b

@ Active node e >
Es Felkel: Computational geometry [Drtina]
DCGI RS

A
A 4

A

nsert [3,7] a) Query Interval H(v) <b <e

for (all in MR(v)) test MR(V)[i] >= 3
o => report intersection c
go right, nil, stop

X

A
A 4
A
A 4
A
A\ 4
A
A 4

] Active rectangle
O Current node b

@ Active node e >
Es Felkel: Computational geometry [Drtina]
DCGI RS

A
A 4

A

nsert [3,7] a) Query Interval H(v) <b <e

for (all in MR(v)) test MR(V)[i] >= 3
o => report intersection c
et I go right, nil, stop

X

] Active rectangle
O Current node b

@ Active node e >
Es Felkel: Computational geometry [Drtina]
DC GI (751 96) | . I

A
A 4
A
A 4
A

A\ 4
A
A 4

A
A 4

A

nsert [3,7] a) Query Interval H(v) <b <e

for (all in MR(v)) test MR(V)[i] >= 3 ?@s 3<77?
o => report intersection c
T IR go right, nil, stop

X

] Active rectangle
O Current node b

@ Active node e >
Es Felkel: Computational geometry [Drtina]
DC GI (751 96) | . I

A
A 4
A
A 4
A

A\ 4
A
A 4

A
A 4

A

nsert [3,7] b) Insert Interval b<H(®) <e

Insert the new interval to secondary lists 337

A
\ 4
A
A 4
A
A\ 4
A
A 4

] Active rectangle
O Current node b
‘ Active node

—~ DCGI Felkel: Computational geometry
(76 / 96)

A
A 4

A

»
Ll

[Drtina]

nsert [3,7] b) Insert Interval b<H(®) <e

Insert the new interval to secondary lists 337

o—0

fork node

=> to lists

A
\ 4
A
A 4
A
A\ 4
A
A 4

] Active rectangle
O Current node b
‘ Active node

—~ DCGI Felkel: Computational geometry
(76 / 96)

A
A 4

A

»
Ll

[Drtina]

nsert [0,2] a) Query Interval b <e < H(V)

for (all in ML(v)) test ML(Vv).[i] <2 ?70<2 s@
o => report intersection c
SR EEEEEE 1 9o left, nil, stop

v
o
=
N
w
AN
ol
o
~
(@)

A
A 4
A
A 4
A
A\ 4
A
A 4

] Active rectangle
O Current node b
‘ Active node

€ >
3 [Drtina]
o DCGI Felkel: Computational geometry | _
(77 196)

A
A 4

A

nsert [0,2] a) Query Interval b <e < H(V)

for (all in ML(v)) test ML(Vv).[i] <2 ?70<2 s@
o => report intersection c
SR EEEEEE 1 9o left, nil, stop

v
o
=
N
w
AN
ol
o
~
(@)

A
A 4
A
A 4
A
A\ 4
A
A 4

] Active rectangle
O Current node b
‘ Active node

€ >
3 [Drtina]
o DCGI Felkel: Computational geometry | _
(77 196)

A
A 4

A

nsert [0,2] b) Insert Interval 1/2 b <e <H(V)
Y1 20<2<3p
? => insert left
8 -
7 -
6 -
5 -
4 .-
2 -
1 --
g 0 1 2 3 4 5 6 7 8
0 X
] Active rectangle “ e e d ol >
O Current node < b >
‘ Active node 4 £ >
[Drtina]

7 DCGI

Felkel: Computational geometry

(78 96)

nsert [0,2] b) Insert Interval 2/2 b<H(®) <e
v Insert the new interval to secondary lists 70127
? of the left son e .
_ LPTR =S
8 oo link to parent | — fork node act!ve
yau - j // \\ a => to lists
i é—eo *—e
6T ! 2,3 73
e (1, 7
4 - —
(0)0 2(2) (a) (s,
1 e . E
> 0] 1 2 3 4 5 6 7 8
0 X
] Active rectangle “ a4 e e d ol >
O Current node < b >
‘ Active node 4 . >
[Drtina]

7 DCGI

Felkel: Computational geometry

(791 96)

nsert [1,95] a)uery Interval 1/2

b <H(v) <e

] Active rectangle
O Current node
‘ Active node

7 DCGI

for (all in MR(v))

go left -> 1
go right - nil /

|

/

/
/
/

e
2,3

9 a
'

3

0 2(2) (&) (e
g 0) 1 2 3 4 5 6 7 8
< >t C > d ol >
< b >
< € >
[Drtina]

Felkel: Computational geometry

(807 96)

nsert [1,95] a)uery Interval 1/2

b <H(v) <e

] Active rectangle
O Current node
‘ Active node

7 DCGI

for (all in MR(v))

go left -> 1
go right - nil /

|

/

/ \
/ \
/

e
2,3

Hi:m a
!

7,3

0 2(2) (&) (e
g 0) 1 2 3 4 5 6 7 8
< >t C > d ol >
< b >
< € >
[Drtina]

Felkel: Computational geometry

(807 96)

nsert [1 ,5] a) Query Interval 1/2 b <H(V) <e

for (all in MR(v))

go left -> 1 //
go right - nil |

@2 (@ (s

v
o
=
N
w
IN
Ul
o
~
e¢)

A
A 4
A
A 4
A
A 4
A
A 4

] Active rectangle
O Current node b
‘ Active node

—~ DCGI Felkel: Computational geometry
(80 /96)

A
A 4

A

»
Ll

[Drtina]

nsert [1 ,5] a) Query Interval 1/2 b <H(V) <e

for (all in MR(v)) ?71<(3x57
o => report intersection ¢,d o
go left->1 |
go right - nil / /
'-/' —e 9 a

v
o
=
N
W
N
ul
o
~
00

A
A 4
4

A 4
A
A 4
A
A 4

] Active rectangle
O Current node b
‘ Active node

—~ DCGI Felkel: Computational geometry
(80 /96)

A
A 4

A

»
Ll

[Drtina]

nsert [1 ,5] a) Query Interval 1/2 b <H(V) <e

for (all in MR(v)) ?71<(3x57
o => report intersection ¢,d o
go left->1

go right - nil |

@2 (@ (&

v
o
=
N
W
N
ul
o
~
00

A
A 4
A
A 4
A
A 4
A
A 4

] Active rectangle
O Current node b
‘ Active node

—~ DCGI Felkel: Computational geometry
(80 /96)

A
A 4

A

»
Ll

[Drtina]

nsert [1,95] a)uery Interval 2/2

for (all in MR(v)) test MR(V)[i] =1
=> report intersection 'é'“'

] Active rectangle

O Current node
‘ Active node

+

DCGI

go right, nil, stp/p

> 0) 1 2 3 4 5 6 7 8
< >t C > d ol f >
< b >
< € >
[Drtina]

Felkel: Computational geometry

(81/96)

RE

nsert [1 ,5] a) Query Interval 2/2 H(v) <b<e

for (all in MR(v)) test MR(V)[i] =1 ?@s 1<57?
o => report intersection 'é'“' o
go right, nil, stpp —
RS O
i 2,3 7,3

[\

- _ /A
/ \
/ \
--}- /
C ©@r @ (6

v
o
=
N
w
AN
ol
o
~
(@)

A
A 4
A
A 4
A
A 4
A
A 4

] Active rectangle
O Current node b

@ Active node e >
Es Felkel: Computational geometry [Drtina]
DCGI A

A
A 4

A

nsert [1,5] b) insert Interval b < H(v) <e
v Insert the new interval to secondary lists ?71 57
® ./'/" B
8 - '_/' e

4 // \\
3T = I ;o
(0)0 2(2) (a) (e
a
g [
g 0 1 2 3 4 S 6 7 8
0
] Active rectangle « a4 e e d ol >
O Current node < b >
: B e .
‘ Active node L _
[Drtina]

7 DCGI

Felkel: Computational geometry

(82796)

nsert [7,8] a)Query Interval H(v) <b <e

for (all in MR(v)) test MR(V).[i] =7
=> report intersection.d

S :l go right, nil, stop

v
o
=
N
w
IN
Ul
o
~
e¢)

X

] Active rectangle
O Current node < b
‘ Active node

e >
3 [Drtina]
- DCGI Felkel: Computational geometry
(83 /96)

A
A 4
A
A 4
A
\ 4

A

4

A 4

A

nsert [7,8] a)Query Interval H(v) <b <e

for (all in MR(v)) test MR(V).[i] =7
=> report intersection.d

S f_l go right, nil, stop

v
o
=
N
w
IN
Ul
o
~
e¢)

X

] Active rectangle
O Current node < b
‘ Active node

e >
3 [Drtina]
- DCGI Felkel: Computational geometry
(83 /96)

A
A 4
A
A 4
A
\ 4

A

4

A 4

A

nsert [7,8] a)Query Interval H(v) <b <e

for (all in MR(v)) test MR(V).[i] =7
=> report intersection.d

S f_l go right, nil, stop

v
o
=
N
w
IN
Ul
o
~
e¢)

X

] Active rectangle
O Current node < b
‘ Active node

€ >
. [Drtina]
—/— DCGI Felkel: Computational geometry
(83/96)

A
A 4
A
A 4
A
\ 4

A

4

A 4

A

nsert [7,8] a)Query Interval H(v) <b <e

for (all in MR(v)) test MR(V).[i] =7 ?@s 7<87?
=> report intersection.d

S f_l go right, nil, stop

v
o
=
N
w
IN
Ul
o
~
e¢)

X

] Active rectangle
O Current node < b
‘ Active node

€ >
. [Drtina]
—/— DCGI Felkel: Computational geometry
(83/96)

A
A 4
A
A 4
A
\ 4

A

4

A 4

A

nsert [7,8] b) Insert Interval b<H(®) <e

v
o
=
N
w
AN
ol
o
~
(@)

0 X

A
A 4
A
A 4
A
17
v

] Active rectangle
O Current node < b
‘ Active node

—~ DCGI Felkel: Computational geometry
(84 /96)

A 4

A

»
Ll

[Drtina]

nsert [7,8] b) Insert Interval b<H(®) <e

v
o
=
N
w
AN
ol
o
~
(@)

0 X

A
A 4
A
A 4
A
17
v

] Active rectangle
O Current node < b
‘ Active node

—~ DCGI Felkel: Computational geometry
(84 /96)

A 4

A

»
Ll

[Drtina]

nsert [7,8] b) Insert Interval b<H(®) <e

v
o
=
N
w
AN
ol
o
~
(@)

0 X

A
A 4
A
A 4
A
17
v

] Active rectangle
O Current node < b
‘ Active node

€ >
. [Drtina]
—~ DCGI Felkel: Computational geometry
(84 /96)

A 4

A

nsert [7,8] b) insert interval b <

HOLEIONNONENO
a_

v
o
=
N
w
N
Ul
o

X

] Active rectangle

A
A 4
A
A 4
A

A 4

O Current node < b
‘ Active node

A 4

e >

Ll

A

[Drtina]

—~ DCGI Felkel: Computational geometry
(84 /96)

nsert [7,8] b) insert interval b <

HOLEIONNOENO
a_

v
o
=
N
w
N
Ul
o

X

] Active rectangle

A
A 4
A
A 4
A

A 4

O Current node < b
‘ Active node

A 4

e >

Ll

A

[Drtina]

—~ DCGI Felkel: Computational geometry
(84 /96)

nsert [7,8] b) insert interval b <

@2 (@ (s
a_

v
o
=
N
w
N
Ul
o

X

] Active rectangle

A
A 4
A
A 4
A

A 4

O Current node < b
‘ Active node

A 4

e >

Ll

A

[Drtina]

—~ DCGI Felkel: Computational geometry
(84 /96)

nsert [7,8] v) insert Interval b < H(v) <e
Y rght<=°?3)</7<87?
® //’ ----- \. _______ Tl_ght_<_= <7<8?
8 - ! = <
7 - '/'/ // \\\ \'_
'-’ —eo—o o—0—o \
6 - i 1,2,3 7,53 '
3 O
4 N // \\
3T Z I ;o
0 2(2) (4 (s,
a
g [
g 0 2 3 4 S 6 7

0 X

] Active rectangle < e ale d g

O Current node < b >

: . e .
‘ Active node L _
[Drtina]

7 DCGI

Felkel: Computational geometry

(84 7/ 96)

nsert [7,8] b) Insert Interval b <H(V) <e

Insert the new interval to secondary lists right <= <7<8?
link to parent '

v
o
=
N
w
IN
Ul
o
~
e¢)

0 X

] Active rectangle
O Current node < b
‘ Active node

€ >
. [Drtina]
—/— DCGI Felkel: Computational geometry
(84 /96)

A
A 4
A
A 4
A
}V
v

A 4

A

oo

=

N W »~ 01 OO ~

Delete [3, 7] Delete Interval b < H(v) <e
| Delete the interval [3,7] from secondary lists 73787

/
/

/ / \

/ / \\
I o’/—o *~—eo
i
' 1,2 5,3

] Active rectangle
O Current node
‘ Active node

7 DCGI

g 0) 1 2 3 4 S 6 7 8
X
<t a i 2 - d > f —
’ b ‘
< e' >
[Drtina]

Felkel: Computational geometry

(85/96)

nsert [4,06] a)Query Interval

Y
] S
7] '/_/ /// \\\ e \ |
! é—e :
° e f 1,2 -
5 (1 7
4 - t \
/// \\\ // \\\
3 - / \
7 8
NOLRIONNORNG
a
g [
g 0 2 3 4 S 6 7
0 X
)
] Active rectangle < e le d >l
(O current node b .
: . e)
‘ Active node L _
[Drtina]

7 DCGI

Felkel: Computational geometry

(86 /96)

nsert [4,06] a)Query Interval

Y
fl S
7] '/_/ /// \\\ e \ |
! é—e :
° e f 1,2 -
5 (1 7
4 - t \
/// \\\ // \\\
3 - / \
7 8
@) @ @
a
g [
g 0 2 3 4 S 6 7
0 X
)
] Active rectangle < e le d >l
(O current node b .
: . e)
‘ Active node L _
[Drtina]

7 DCGI

Felkel: Computational geometry

(86 /96)

nsert [4,06] a)Query Interval

Y
] s |
/ / \ \
7 - / J/ \\ a ,
,’ «—e v \
5 (1 7
4 - !
! /// \\\ ;
3- ;o
7 8
@) @ @
a
g [
g 0) 1 2 3 4 S 6 7
0 X
)
] Active rectangle < a e le d >l
O Current node < b >
: . e)
‘ Active node L _
[Drtina]

7 DCGI

Felkel: Computational geometry

(86 /96)

nsert [4,6] a) Query Interval H(v) <b <e

8 - K Rt
5 (1,
4- // \\
3_ . l/ \\
7 8
HOLEIONNORNG
a
g [
g 0) 1 2 3 4 5 6
X
)
] Active rectangle < a SRR d >

O Current node < b

A 4

A

»
>

‘ Active node

—~ DCGI Felkel: Computational geometry
(86 /96)

[Drtina]

nsert [4,6] a) Query Interval H(v) <b <e

OLIONNONRON

v
o
=
N
w
IN
Ul
o
~
e¢)

X

A
A 4
A
A\ 4
A
A\ 4
A

)
] Active rectangle
O Current node < b
‘ Active node

€ B>
3 [Drtina]
o DCGI Felkel: Computational geometry | _
(86 /96)

A 4

A

nsert [4,6] a) Query Interval H(v) <b <e
Yl @s 4 <67
o I / e ‘\'\-_
f // J/ \\ \.\
L — /A% N
'-’ “—e \
o1 1]e f 1,2 "
. (1 7
4 TR / \\
3 - /] \ !
c 7 8
2 | (0)0 2(2) (a) (s
a
g [
g 0) 1 2 3 4 S 6 7
0 X
)
] Active rectangle < a4 SPEESENNS d b
O Current node < b >
: b e ,
‘ Active node L _
[Drtina]

7 DCGI

Felkel: Computational geometry

(86 /96)

nsert [4,6] a) Query Interval H(v) <b <e

C HOLEIONNOBNO
a
g 0) 1 2 3 4 5 6 7 8
X
)
] Active rectangle “ a4 e d i

O Current node < b
‘ Active node

—~ DCGI Felkel: Computational geometry
(86 /96)

A 4

A

»
>

[Drtina]

nsert [4,6] a) Query Interval H(v) <b <e

4 <67
""""""""""" f:| ya
I./' .//_. \ b e .\.\-
. e i 1, 2 !
C OO ENOENO
a
g 0) 1 2 3 4) 6 7 8
X
)
] Active rectangle < a4 el d s

O Current node < b
‘ Active node

—~ DCGI Felkel: Computational geometry
(86 /96)

A 4

A

»
>

[Drtina]

oo

=

N W B 01 OO N

nsert [4,06] a)Query Interval

)
] Active rectangle
O Current node
‘ Active node

7 DCGI

g 0 2 3 4 S 6 7
X
< P> C >« d P«
b ‘
< e' >
[Drtina]

Felkel: Computational geometry

(86 /96)

nsert [4,6] a) Query Interval H(V) <b <e
Y @s 4 <67
for (all in ML(v)) test ML(Vv).[i] = 6 ''''' e """""""""" 4 < 6
8 - :l => no intersection , |

. L e BN
> (1 7
4 - — Jam
3 // \\ / \
7 8
@0z @ @
a
g [
g 0 1 2 3 4 5 6 7
0 X
)
] Active rectangle < a e le d >l
O Current node < b >
: . e)
‘ Active node L _
[Drtina]

7 DCGI

Felkel: Computational geometry

(86 /96)

oo

=

N W B 01 OO N

nsert [4,6] b) insert interval

)
] Active rectangle
O Current node
‘ Active node

7 DCGI

Insert the new interval to secondary lists

./ ‘\'_

/ N,

: N
! N

/ / \

/ / \
I o’/—o *~—eo
i
' 1,2 5,3

g 0 2 3 4 5 6 7
X
< > C > d P«
’ b ;
< e' =
[Drtina]

Felkel: Computational geometry

(87 1 96)

oo

=

N W B 01 OO N

nsert [4,6] b) insert interval

)
] Active rectangle
O Current node
‘ Active node

7 DCGI

Insert the new interval to secondary lists

./ ‘\'_

/ N,

: N
! N

/ / \

/ / \
I o’/—o *~—eo
i
’ 1,2 5,3

g 0 2 3 4 S 6 7
X
< > C >« d P«
’ b ‘
< e' =
[Drtina]

Felkel: Computational geometry

(87 1 96)

nsert [4,06] b) insert Interval H(v) <b <e

Insert the new interval to secondary lists

/ ~.
: N
B / '\‘

______ / , \
'/ e
. o ' 1,2 9,3
e, / \
. / \
/ \
/ \
/ \

g 0) 1 2 3 4 5 6
X
)
] Active rectangle < a SRR d >

O Current node < b
‘ Active node

—~ DCGI Felkel: Computational geometry
(87 /96)

A 4

»
>

A

[Drtina]

nsert [4,06] b) insert Interval H(v) <b <e
v Insert the new interval to secondary lists : 4 <67
® /././4 -——-s_ _________________ __\\‘\-\
A T[]
o e ./ 12 53 ‘-
. (1 7
4 ------§f // \\ // \\
3 L, l/ \\ / \
C 7 8
(0)0 2(2) (a) (s
a
g [
g 0) 1 2 3 4 S 6 7 8
0 X
)
] Active rectangle “ a4 e d i
O Current node < b >
. e x 8 .
‘ Active node L _
[Drtina]

7 DCGI

Felkel: Computational geometry

(87 1 96)

nsert [4,6] b) insert interval

! j / // \ ™
______ '/' // \\ \

'.’ “—e —o 9 \
"""" f 1,2 9,3 '
N [\

- /A \
_ . ! \‘
c @o:@ @ @°
a
> 0 1 2 3 4 5 6 7 8
X
)
[] Active rectangle .2 e | D
O Current node < b >
| . € .
‘ Active node L _
[Drtina]

7 DCGI

Felkel: Computational geometry

(87 1 96)

nsert [4,06] b) insert Interval H(v) <b <e
v Insert the new interval to secondary lists : 4<67?
./,/" ''''' ‘- _________________ __\?\.4 < 6 r)
8- /'/. / \ .\.\‘ '
,-’ “—eo —o \
6 - | 1.2 5.3 O .
0 (1 SN <)
4 6
4 - // \\ \
3 T // \\ '
7 8
)0 2(2) fa) (s
a
g [.
g 0 1 2 3 4 5 6 8
0 X
)
] Active rectangle - a4 SPEELEENS d -
O Current node < b >
‘ Active node 1 : ~
[Drtina]

+

DCGI

Felkel: Computational geometry

(87 1 96)

nsert [4,6] b) insert interval

Insert the new interval to secondary lists

/
/

O Current node
‘ Active node

7 DCGI

)
] Active rectangle

X

v

,-"/ o’/—/o \5—0 9
" 1,2 5,3 ;o
-
00 2(2) (4 (8)7°
0) 1 2 3 4 5 6 4 8
< a > 2 > d > f >
. b R
e

A

»
>

Felkel: Computational geometry

(87 1 96)

[Drtina]

nsert [4,06] b) insert Interval H(v) <b <e
v Insert the new interval to secondary lists : 4<67?
O ’ ''''' "'—\-\.\ ?4 < :E_ 6 ?
8 N /'/. / \ .\A\'
7 - j ./'/ /// \\\ 9
,-’ “—eo —o
o ./ 12 53
n (1 :
4 - // \\
3 -+ ;o
7 8
)0 2(2) (a) (e,
g [_
g 0 1 2 3 4 5 6
0 X
)
] Active rectangle - a4 SPEELEENS d
O Current node < b >
‘ Active node 1 : ~
[Drtina]

7 DCGI

Felkel: Computational geometry

(87 1 96)

nsert [4,6] b) insert interval

Y Insert the new interval to secondary lists : 4<67?
o ’ '''' "'—-\-\.\ ?4 < :E_ 6 ?
o j /I/. 4 \ ™
7] '/.’ /// \\\ -
i/ e ~—eo 9 hN
6 /12 53 /[
5 - /
(1 s 6
4 N // \\
3 -+ P
7 8
(0)0 2(2) (a) (s
a
g [
g 0 1 2 3 4 5 6
0 X
)
] Active rectangle < a4 e ale d
O Current node < b >
. b e .
‘ Active node L _
[Drtina]

+

DCGI

Felkel: Computational geometry

(87 1 96)

Delete [1,5] pelete Interval b < H(v) <e
v Delete the interval [1,5] from secondary lists 71 57
) //./‘ ------- ..__\\.\.\ o
8 p / >~
yAR . :l / \ e ------- L
'-’ “—e —e \\‘
°T /12 53 /] -
1 G 4 6 0
4 N // \\ \
/ \ 7 8
(0)0 2(2) (a) (s,
g [
g 0 1 2 3 4 5 6 7 8
0 1 X
] Active rectangle < a4 SPEELEENS d > -
O Current node < b >
‘ Active node 3 - ~
[Drtina]

+

DCGI

Felkel: Computational geometry

(88796)

Delete [1,5] pelete Interval b < H(v) <e
v Delete the interval [1,5] from secondary lists 71 57
) //./‘ ------- ..__\\.\.\ o
8 p / >~
[] /'/./ //// \\\\ e ——————— “A\.\'\
6 ,-' 5 3 7 \
1 G 4 6 0
4 N // \\ \
/ \ 7 8
(0)0 2(2) (a) (s,
g [
g 0) 1 2 3 4 S 6 7 8
0 1 X
] Active rectangle < a4 SPEELEENS d > -
O Current node < b >
‘ Active node 3 - ~
[Drtina]

+

DCGI

Felkel: Computational geometry

(88796)

Delete [0,2] Delete Interval 1/2 b <e < H(V)

YA

A
A 4
A
A\ 4
A
A\ 4
y

] Active rectangle
O Current node b
‘ Active node

—~ DCGI Felkel: Computational geometry
(89/96)

A
A 4

»
>

A

[Drtina]

Delete [0,2] Delete Interval 1/2 b <e < H(V)

YA

A
A 4
A
A\ 4
A
A\ 4
y

D Active rectangle
O Current node b
‘ Active node

—~ DCGI Felkel: Computational geometry
(89/96)

A
A 4

»
>

A

[Drtina]

Delete [0,2] Delete Interval 1/2 b <e < H(V)

YA

A
A 4
A
A\ 4
A
A\ 4
y

] Active rectangle
O Current node b
‘ Active node

—~ DCGI Felkel: Computational geometry
(89/96)

A
A 4

»
>

A

[Drtina]

Delete [0,2] Delete Interval 2/2 b<H(®) <e

v Delete the interval [0,2] from secondary lists of node 1 ?0 s@s 27

_______ N
® % ~

/ N

/ e \'\

A
\ 4
A
A\ 4
A
A\ 4
y

D Active rectangle
O Current node b
‘ Active node

—~ DCGI Felkel: Computational geometry
(90 /96)

A
A 4

e .

A

[Drtina]

Delete [0,2] Delete Interval 2/2 b<H(®) <e

v Delete the interval [0,2] from secondary lists of node 1 ?0 s@s 27

_______ N
® % ~

/ N

/ e \'\

A
\ 4
A
A\ 4
A
A\ 4
y

] Active rectangle
O Current node b
‘ Active node

—~ DCGI Felkel: Computational geometry
(90 /96)

A
A 4

e .

A

[Drtina]

Delete [7,8] pelete Interval

b <H(v) <e

YA

D Active rectangle
O Current node
‘ Active node

7 DCGI

Search for and delete node with interval [7,8]

-
.
\.
\.
\

Felkel: Computational geometry

(91/96)

/
/// \\\ e ——————— BN
/ \ N
\ k
2 3 // \‘. :
0 4 6 G
/
/
2) (@ ("’
0) 1 2 3 4 5 6 4 8
) o C L d e R
. b ,
< € D>
[Drtina]

Delete [7,8] pelete Interval

b<H(v) <e

YA

] Active rectangle
O Current node
‘ Active node

7 DCGI

Search for and delete node with interval [7,8]

-
.
\.
\.
\

Felkel: Computational geometry

(91/96)

// \\ _______ _
// \ e ~
/ \ N
\ k
2 3 // \‘. :
0 4 6 G
!
!
2) (4) (&)7 7
0) 1 2 3 4) 6 7 8
’ Je C L, d Jo f
’ b ,
< € =
[Drtina]

Delete [7,8] pelete Interval

YA

D Active rectangle
O Current node
‘ Active node

7 DCGI

Search for and delete node with interval [7,8]

-
.
\.
\.
\

Felkel: Computational geometry

(91/96)

// \\ _______ _
// \ e ~
/ \ N
\ k
2 3 // \‘. :
0 4 6 G
!
!
2) (4) (&)7 7
0) 1 2 3 4) 6 7 8
’ Je C L, d Jo f
’ b ,
< € =
[Drtina]

YA

Delete [7,8] pelete Interval b < H(v) <e
Search for and delete node with interval [7,8] ?73<7<87?
7 <87

] Active rectangle
O Current node
‘ Active node

7 DCGI

———
-
.
\.
\.
\

Felkel: Computational geometry

(91796)

/
/// \\\ e ——————— BN
/ \ N
\ k
2 3 /ll \‘. ;
0 4 6 G
!
/
2) (@ (&
0) 1 2 3 4) 6 7 8
; Je C L d e ,
. b ,
< € D>
[Drtina]

Delete [7,8] pelete Interval b < H(v) <e

Y 1 search for and delete node with interval [7,8] ?73<7<87?
"\-\\ ?75<7<87?

g - ~ o ?2747)<87?

RN\

6 T 2 3 \ \

A
\ 4
A
A\ 4
A
A\ 4
y

A 4

D Active rectangle
O Current node b
‘ Active node

—~ DCGI Felkel: Computational geometry
(91/96)

A
A 4

»
>

A

[Drtina]

Delete [7,8] pelete Interval

Y 1 search for and delete node with interval [7.8]

] Active rectangle
O Current node
‘ Active node

7 DCGI

-
-
\.
\.
\

Felkel: Computational geometry

(91796)

0 1 2 3 4 5 6 4 8
J a 1 c | d | -
. b R
< € >
[Drtina]

Delete [2,3] pelete Interval b < H(v) <e
Y 1 search for and delete node with interval [2,3] ?2 37
8 - ~
7 - //// \\\\ e
6" 2 3 ,/ \\\
> 0 4 6 0
4 .-
OENOENONENO
1 --
0 1 2 3 4 5 6 7 8
0 X
o
D Active rectangle « a DA d >l >
(O current node . b ,
‘ Active node 4 : >
[Drtina]

7 DCGI

Felkel: Computational geometry

(927 96)

Delete [2,3] pelete Interval b < H(v) <e
Y 1 search for and delete node with interval [2,3] ? 2 37
® -—_\'\.\. ——+o
7 - //// \\\\ e
6 - 2 3 \

0 X

] Active rectangle
O Current node
‘ Active node

7 DCGI

Felkel: Computational geometry

(927 96)

0) 1 2 3 4 5 6 7 8
¢ < a > < c >t d >t >
Rl b »
< € =
[Drtina]

Delete [2,3] pelete Interval

YA

0 X

D Active rectangle
O Current node
‘ Active node

Search for and delete node with interval [2,3]

———
-
.
\.
\.
\

7 DCGI

Felkel: Computational geometry

(92 / 96)

0) 1 2 3 4 5 6 7 8
¢ < a > < c >t d >t >
< b >
< € =
[Drtina]

YA

Delete [2,3] pelete Interval b < H(v) <e
Search for and delete node with interval [2,3] ?2 < 37
(1 + 6 (7

0 X

] Active rectangle
O Current node
‘ Active node

7 DCGI

Felkel: Computational geometry

(927 96)

0) 1 2 3 4 5 6 7 8
¢ < a > < c >t d >t >
Rl b »
< € =
[Drtina]

oo

=

Delete [2,3] pelete Interval

N W b~ 01 OO N

A

0

D Active rectangle
O Current node
‘ Active node

DCGI

Search for and delete node with interval [2,3]

———
-
.
\.
\.
\

X

A
A\ 4
A
A\ 4
A

A 4

A

»
>

Felkel: Computational geometry

[Drtina]

A\ 4

Delete [2,3] pelete Interval b < H(v) <e

A Search for and delete node with interval [2,3] . ?72<43<37?

N o—0

X

A
A\ 4
A
A\ 4
A
A\ 4
y

A 4

] Active rectangle
O Current node < b
‘ Active node

—~ DCGI Felkel: Computational geometry
(92 /96)

A 4

e .

A

[Drtina]

Delete [4,06] pelete Interval b < H(v) <e

Y 1 search for and delete node with interval [4,6] \

\.
! e b

X

A
\ 4
A
A\ 4
A
A\ 4
y

A 4

D Active rectangle
O Current node «)
‘ Active node

—~ DCGI Felkel: Computational geometry
(93 /96)

A 4

A

»
Ll

[Drtina]

Delete [4,06] pelete Interval b < H(v) <e

Y 1 search for and delete node with interval [4,6] . ?4 <6 7?

N o—0

X

A
\ 4
A
A\ 4
A
A\ 4
y

A 4

] Active rectangle
O Current node < b
‘ Active node

—~ DCGI Felkel: Computational geometry
(93 /96)

A 4

A

»
Ll

[Drtina]

Delete [4,06] pelete Interval b < H(v) <e

A

Search for and delete node with interval [4,6] . ?4 <6 7?

A
\ 4
A
A\ 4
A
A\ 4
A
A 4

D Active rectangle
O Current node < b
‘ Active node

—~ DCGI Felkel: Computational geometry
(93 /96)

A 4

A

»
Ll

[Drtina]

Delete [4,06] pelete Interval b < H(v) <e

Y 1 search for and delete node with interval [4,6] . ?4 s@)s 6 ?

X

A
\ 4
A
A\ 4
A
A\ 4
A
A 4

] Active rectangle
O Current node < b
‘ Active node

—~ DCGI Felkel: Computational geometry
(93 /96)

A 4

A

»
Ll

[Drtina]

Delete [4,06] pelete Interval b < H(v) <e

A

Search for and delete node with interval [4,6] ?4 <6 7?

A
\ 4
A
A\ 4
A
A\ 4
A
A 4

D Active rectangle
O Current node < b
‘ Active node

—~ DCGI Felkel: Computational geometry
(93 /96)

A 4

A

»
Ll

[Drtina]

oo

=

Empty tree

Search for and delete node with interval [4,6]

N W b~ 01 OO N

X

A
\ 4
A
A\ 4
A
A\ 4
A
A 4

] Active rectangle
O Current node < b
‘ Active node

—~ DCGI Felkel: Computational geometry
(94 / 96)

A 4

A

»
Ll

[Drtina]

Complexities of rectangle intersections

= nrectangles, s intersected pairs found

= O(nlog n) preprocessing time to separately sort
— X-coordinates of the rectangles for the plane sweep
— the y-coordinates for initializing the interval tree.

= The plane sweep itself takes O(n log n + s) time,
so the overall time is O(nlog n + s)

= O(n) space

= This time is optimal for a decision-tree algorithm
(i.e., one that only makes comparisons between
rectangle coordinates).

T X
e . (e
e DCGI Felkel: Com(p;l;tjt;osr;al geometl-'y _ | + \

References

[Berg]

[Mount]

[Rourke]

[Drtina]

[Kukral]

Mark de Berg, Otfried Cheong, Marc van Kreveld, Mark Overmars:
Computational Geometry: Algorithms and Applications, Springer-
Verlag, 3rd rev. ed. 2008. 386 pages, 370 fig. ISBN: 978-3-540-
77973-5, Chapters 3 and 9, http://www.cs.uu.nl/geobook/

Mount, D.: Computational Geometry Lecture Notes for Fall 2016,
University of Maryland, Lecture 5.
http://www.cs.umd.edu/class/fall2016/cmsc754/Lects/cmsc’54-fall16-lects.pdf
Joseph O'Rourke: .: Computational Geometry in C, Cambridge
University Press, 1993, ISBN 0-521- 44592-2
http://maven.smith.edu/~orourke/books/compgeom.html

Tomas Drtina: Intersection of rectangles. Semestral Assignment.
Computational Geometry course, FEL CTU Prague, 2006

Petr Kukral: Intersection of rectangles. Semestral Assignment.
Computational Geometry course, FEL CTU Prague, 2006

[Vigneron] Segment trees and interval trees, presentation, INRA, France,

http://w3.jouy.inra.fr/unites/miaj/public/vigneron/cs4235/slides.html

DC GI Felkel: Computational geometry = L i ar \
(96 / 96) | - /e I

