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Talk overview

= Polygon triangulation
— Monotone polygon triangulation
— Monotonization of non-monotone polygon |

= Delaunay triangulation (DT) of points
— Input: set of 2D points
— Properties
— Incremental Algorithm

— Relation of DT in 2D and lower envelope (CH) in 3D
and
relation of VD in 2D to upper envelope in 3D
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Polygon triangulation problem

= Triangulation (in general)
= subdividing a spatial domain into simplices

= Application
— decomposition of complex shapes into simpler shapes
— art gallery problem (how many cameras and where)

= We will discuss %
— Triangulation of a simple polygon \
— without demand on triangle shapes

= Complexity of polygon triangulation

— O(n) alg. exists [Chazelle91], but it is too complicated

. ~—= practical algorithms run in O(n log n) @
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Terminology

Simple polygon y \:i :

= region enclosed by a closed polygonal chain that
does not intersect itself

Visible points

= two points on the boundary are visible if the
interior of the line segment joining them lies
entirely in the interior of the polygon

Diagonal

= line segment joining any pair of visible vertices
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Terminology

= A polygonal chain C is strictly monotone with
respect to line L, if any line orthogonal to L
intersects C in at most one point

= A chain C is monotone with respect to line L, if any
line orthogonal to L intersects C in at most one Y
connected component (point, line se_qment,...y‘

= Polygon P is monotone with respect to line L, if its
boundary (bnd(P), dP) can be split into two chains,
each of which is monotone with respect to L
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Terminology

= Horizontally monotone polygon
= monotone with respect to x-axis
— Can be tested in O(n)
— Find leftmost and rightmost point in O(n)
— Split boundary to upper and lower chain

— Walk left to right, verlfylng that x-coord are non-
decreasing

e X—monotone polygon Mourt]
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Terminology

= Every simple polygon can be triangulated

= Simple polygon with n vertices consists of
— exactly n — 2 triangles
— exactly n — 3 diagonals

— Each diagonal is added once
= 0(n) sweep line algorithm exist

Proof by induction

ANNVAY

n = 3 = 0diagonal n = 4 = 1 diagonal n:=n+1 =>n 4+ 1- 3 diagonals

L E n-3 n + 1 = 7 = 4 diagonals)
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Simple polygon triangulation

= Simple polygon can be triangulated in 2 steps:
1. Partition the polygon into x-monotone pieces
[2. Triangulate all monotone pieces ]

(we will discuss the steps in the reversed order)
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x- monotone polygon triangulation principle

= Sweep left to right - in O(n) steps

= [riangulate everything you can by adding
diagonals between visible points (eft from the sweep line)

I I I I I 1 |
I I I I 1 1 1 1

I I I I 1 1

I I I I I .

1 1 1 1 1
I I I 1 [ I 1 I I | 1 1
I I I | [ 1 1 | I I 1 1
— [Mount]
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Event queue

Sweep line event queue
= x-sorted vertices of the polygon

Construction — 0(n)

= Find min x and max x

= EXxtract lower and upper chain (vetween min and max x)
Both are sorted in increasing order of their x-coords

= Merge chains in 0(n) keeping lower/upper flag
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Regions on the left from the sweep line

a) triangulated — points were visible — DONE

by untriangulated — points were not visible
— characterized by an invariant
(= a condition that is true after each step)

UNTRIANGULATED

t _
- - -+ I [Mount]
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Reflex vertex and reflex chain

Untriangulated region is bounded by a reflex chain

= a sequence of reflex vertices along the
not-triangulated part of the polygon Reflex vertex

interior angle >

- In the alg. Is stored in stack

UNTRIANGULATED

Single edge

- - -+ u = reflex chain start point [Mount]
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Main invariant of untriangulated region left from SL

[ starts from 1, first vertex is v;

= Letv;, i>2Dbe the vertex just being processed

= The untriangulated region left of v; consists of
two x-monotone chains (upper and lower)
each containing at least one edge

l

Vitk
CASE 2b

I [Mount]

= If the chain from v; to u has more than one edge

— these edges form a reflex chain O
— the other chain consist of single edge

from u to vertex v; ., right of v;
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The remaining regions are triangulated

= Elsewhere, it would have been triangulated in this
step

CASE 1 CASE 2a

Vitk

Ui
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+++++
-~ -+ -4 ,
-~ D C GI Felkel: Computational geometry .
(14 /95) _ |



Triangulation algorithm

Data structures
Event queue with merged upper and lower chain

Status
- Current vertex v; (sweep line position i)
- Reflex vertices chain in the stack ;gz’ 2 Vi-1
- Upper/lower chain flag A
all vertices except u are from the same chain >
u is from the opposite chain (bottom of stack)
v; =7

Orientation test
— reflex(TOS, SOS, v;)
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Monotone polygon triangulation algorithm

| | 11 12
i i i Reflex chain
| | | 12
: o : : 10
u L : :
A M L 7
| | | | 1 1 1 13
I I I I u'e I I [ I I I I u 9)
| | | | Ilu | | | | | | |

Case 2b — point v; on the same chain as reflex Would do the same from 13

Piushepdint v; to the reflex chain stack
Leave the last visible. Add v; to reflex chain stack — push(v;)

- [Mount]
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Monotone polygon triangulation algorithm

Case 1: v;lies on the opposite chain than v,
Test reflex(TOS, SOS, v;)

|
|
|
|
|
|
: TOS| 6 |v;_4
|
| 0S| 5
u : 4
|
: ul 2 u
|

= Left vertex of the last added opposite diagonal is u
= Vertices between u and v; are waiting in the stack

— [Mount]
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Tr | aln g u I a.t| ONn cases fO I Vi (vertex being just processed)

Case 1: v, lies on the opposite chain than v,
— Add diagonals from next(u) to v, , (empty the stack-pop)
— Set u = v,_,. Last diagonal (invariant) is v, ,Vv,
— push u = v, ;and v; to stack

yrincrhAan~nAd [Mount]
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Tr | aln g u I a.t| ONn cases fO I Vi (vertex being just processed)

Case 2a: v;is on the same chain as v,

— walk back, adding diagonals joining v; to prior vertices
until the angle becomes > 180° or u is reached — pop

— push v; to stack

Vi1

Case 2a |

u unchanged

- : -
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Tr | aln g u I at| ONn cases fOF Vi (vertex being just processed)

Case 2b: v;is on the same chain as v,
— push v; to stack

fivtoumt]
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Analysis

Polygon with n vertices has n — 3 diagonals
= 0(n) total time

Algorithm
sorted list of vertices through merging - 0(n)
stack operations — max n times 0(1) -0(n)
orientation test - v; and top two entries
- 0(1) per diagonal -0(n)

(add diagonal or push)

- : -t
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Simple polygon triangulation

= Simple polygon can be triangulated in 2 steps:
1. Partition the polygon into x-monotone pieces]
2. Triangulate all monotone pieces J

(we discuss the steps in the reversed order)
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1. Polygon subdivision into monotone pieces

= X-monotonicity breaks the polygon in vertices with
edges directed both Ieft or bOth rlght (inner angle > 180°)

= [he monotone polygon:s parEtS are separated by
the splitting diagonals (joining vertex and helper)

<< <7

[Mount]

Splitting diagonals

- Monotone decomposition %
-~ -+~ -4
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Sweep line algorithm

Polygon Olélt

Sweep from left to right interioris —_ Kée
Add diagonals (from split to merge vertipcre%ﬁ)) ~~~~~ \./<

helper h(e) in A

In split vertex
= Add diagonal as we reach it

In merge vertex
= [ake a note about v into helper(e)
= Will be connected later

e [Mount]
e oS =~ ==
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Data structures for subdivision

s Events
— Endpoints of edges, known from the beginning
— Can be stored in sorted list — no priority queue

= Sweep status
— List of edges intersecting the sweep line (top to bottom)
— Stored in O(log n) time dictionary (such as balanced tree)

= Event processing

— Six event types based on local structure of edges around
vertex v

- : —t—
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Adding a diagonal

Find edges e, & e, (above and below v) the SL status

Use the rightmost visible vertex from edge e,

Segment from v to left point of e,
E%K IS not a diagonal

P v = current vertex
. € .
: (sweep line stop)

e sweep line [Moun %
-~ -+ -4 4
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Helper — definition

helper(e,)
= the rightmost vertically visible processed vertex u - on or
below edge e, on polygonal chain between edges e, & e,

IS visible to every point along the sweep line between e, & e,

o vertices visible from e,

—a e u = helper(e,)

Y :@ the rightmost of o

all these vertices
see ou = helper(e,)

o v = current vertex
b (sweep line stop)

T T sweep line Mount]
-~ -+ -4 F
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Helper variants

helper(e,)
Is defined only for edges intersected by the sweep line

Previous

helper h(e) \

_helper(e1) -start point of the edge itself

- SECTCITTE helper(esl) rightmost vertically visible

processed vertex
between edges €3, e4

h e |p er ( e 5) - Start point of the edge below

-~ = [Mount]
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Fix-up function

Fix-up(v, e)
Gets vertex v and edge e above or incident to v
If( helper(e) is merge vertex)
add diagonal from v to helper(e)

P FiX—_UP(U, 6) """""" .
Upper Lower

- : —t—
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Six event types of vertex v

splits the polygon

>180°,
1. Split vertex i< s SR

white

— Find edge ¢ above v (along the SL), )K<
connect v with helper(e) by diagonal ,,’:,r,‘jgf’h“(;/, Vie™

— Add 2 new edges starting in v into SL status
mark lower of them as e’

— Set new helper(e) = helper(e’) = v
¥>180°"
2. Merge vertex >- B

— Find two edges incident with v in SL status
— Delete both from SL status, the lower is €’
— Let e iIs edge immediately above v

— Make helper(e) = v

+5== Eix-up(v, e) and Fix-up(v, e’) @
Felkel: Computational geometry
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Six event types of vertex v

3. Start vertex '6 <180°

— Both incident edges lie right from v
— But interior angle <180°

— Insert both edges to SL status

— Set helper(upper edge) = v

4. End vertex ?21-800

— Both incident edges lie left from v,
e is the upper. Fix-up(v, e)

— Delete both edges from SL status
— No helper set — we are out of the polygon

- : —t—
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Six event types of vertex v

5. Upper chain-vertex — i ™

— one side is to the left, one side to the right, — o —
interior is below, Fix-up(v, e) in

— replace the left edge with the right edge
in the SL status

— Make v helper of the new (upper) edge

6. Lower chain-vertex __in ~
— one side is to the left, one side to the right, e) -

Interior Is above in

— replace the left edge with the right edge L
in the SL status

~— Make v helper of the edge e above, Fix-up(v, e) Mourg

+
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Polygon subdivision complexity

= Simple polygon with n vertices can be partitioned
into x-monotone polygons in
- O(nlogn) time sort
- O(nlogn) time  (n steps of SL, logn search each)
- O(n) storage

= Complete simple polygon triangulation
- 0(nlogn) time for partitioning into monotone polygons
— 0(n) time for triangulation
- O(n) storage

-
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Ty

Delone triangulation

(Delaunay - de Launay)

Felkel: Computational geometr y
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Dual graph G for a Voronoi diagram

Graph G: Node for each Voronoi-diagram site p ~ VD cell V(p)

Arc connects neighboring sites (cells
(arc for every Voronoi edge)

e DCGI Felkel: Computational geometry / C
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Delone graph DG(P) [Gopuc Hukonaesuy JernoHe]

= straight line embedding of G VD cell V(p)
(straight-line dual of Voronoi diagram) / _ _
o ; site (point) p
= Node for cell V(p) is site p / = DG node

= Arc (DG edge)
connecting cells

V(p) and V(q)
IS the segment pq

_,-—.-—4
-
’ -
--
-
-
---
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Delaunay graph and Delaunay triangulation

= Delone graph DG(P) has convex polygonal faces
(with number of vertices =23, equal
to the degree of Voronoi vertex)

— Triangulate faces with more vertices
DG(P) sites not in general position
such triangulation is not unique

= Delone triangulation DT(P)
= Delone graph for sites in
general position

— No four sites on a circle

— Faces are triangles (Voronoi vertices have degree = 3)

- -=DT is unique
>~ -+ -+
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Delone triangulation properties 1/2

Circumcircle property @

= [he circumcircle of any triangle in DT is empty (no sites)
Proof: It's center is the Voronoi vertex

= Three points a,b,c are vertices of the same face of DG(P)
Iff circle through a,b,c contains no point of P in its interior

Empty circle property and legal edge @

= [wo points a,b form an edge of DG(P) — it is a legal edge
Iff 4 closed disc with a,b on its boundary that contains
no other point of P in its interior ... disc minimal diameter = dist(a,b)

Closest pair property
= The closest pair of points in P are neighbors in DT(P)

- —:_ —
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Delone triangulation properties

212

= DT edges do not intersect

= Triangulation T is legal, iff T is a Delone triangulation

(i.e., if it does not contain illegal edges)

= Edge in DT that was legal before
may become illegal if one
of the triangles incident to it

changes |
Non-convex quad has only one diagonal
= In convex quadrilateral abcd

(abcd do not lie on common circle)
exactly one of ac, bd

IS an illegal edge

and the other edge is legal
= principle of edge flip operation

-~ =~
e i P R
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Edge flip operation

Edge fIip flips illegal edge — legal edge
= a local operation, that increases the angle vector

= Given two adjacent triangles Aabc and Acda such that
their union forms a convex quadrilateral, the edge flip
operation replaces the diagonal ac with bd.

- —:_ —
A o == — [Berg] '
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Delone triangulation

= Let T be a triangulation with m triangles (and 3m angles)
= Angle-vector

= non-decreasing ordered sequence (a,, a,, ... , 05.)
inner angles of triangles, a. < o, for 1<}

= |In the plane, Delaunay triangulation has the
lexicographically largest angle sequence
— It maximizes the minimal angle (the first angle in angle-vector)
— It maximizes the second minimal angle, ...
— It maximizes all angles
— It is an angle sequence optimal triangulation

- —:_ —
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Delone triangulation

= It maximizes the minimal angle

— The smallest angle in the DT is at least as large as the
smallest angle in any other triangulation.

= Minimum spanning tree is a subset of DT min. kostra

= However, the Delaunay triangulation
— does not necessarily minimize the maximum angle.
— does not necessarily minimize the length of the edges.

- : -
+++++
- -+ -4
—~ DCGI Felkel: Computational geometry
(42 /95)



DT and minimal weight triangulation

32 points on unit circle + center, i shown Connect every 2, 4, 8 + center

(a)

Delone triangulation Minimum weight triangulation
(minimum sum of edge lengths)

Total weight close to 2w + 32 Total weight far less than 8m 4+ 4 > 4x around

. 2m+32=38 > 29 =8m+4

- [Devadoss]
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Thales’s theorem (zssssc

Respective Central Angle Theorem
5o

LY
L)
-
] -
n
-
)

= Let C = circle,

[ =line intersecting C in points
a,b

p,q,7,s = points on the same

side of [
p,gon C,risin, s is out

Then for the angles holds:
Iarb > dapb = Xagb > Xasb

http: //www.mathopenref.com/arccentr alangletheorem.html
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Edge flip of iIllegal edge and angle vector

= The minimum angle increases after the edge flip

of illegal edge ac > bd

|bd| < |ac| Pap = Hab Poc = Hbc Peq = ch

=> After limited number of edge flips
— Terminate with lexicographically maximum triangulation

. -— It satisfies the empty circle condition => Delauney@

e o = —— —
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Incremental DT algorithm




Incremental algorithm principle

1. Create a large triangle containing all points
(to avoid problems with unbounded cells)

— must be larger than the largest circle through 3 points
— will be discarded at the end

2. Insert the points in random order
— Find triangle with inserted point p

— Add edges to its vertices
(these new edges are correct)

— Check correctness of the old edges (triangles)
“around p” and legalize (flip) potentially illegal edges

3. Discard the large triangle and incident edges

- -~ 4
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Incremental algorithm in detall

B>

DelaunayTriangulation(P)
Input:  Set P of n points in the plane
Output: A Delaunay triangulation T of P

[Berg]

Let p_,, p_,, po form a triangle large enough to contain P
Initialize T as the triangulation consisting a single triangle p_,p_;pp p_;
Compute random permutation p4, p,, ..., p, of P\ {p,}
forr=1to ndo

TI'=Insert(p,, T)
Discard p_4, p_, with all incident edges from T
return T

NoOOahkkowDd -~

- + 4 ;
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Incremental algorithm — insertion of a point

Insert(p, T)

Input:  Point p being inserted into triangulation T
Output: Correct Delaunay triangulation after insertion of p
1. Find a triangle abc € T containing p

2. 1f plies in the interior of abc then

3. Insert edges pa, pb, pc into triangulation T /

C

(splitting abc into 3 triangles pab, pbc, pca )
LegalizeEdge( p, ab, T)
LegalizeEdge( p, bc, T) a
LegalizeEdge( p, ca, T) B T
else // p lies on the edge of abc, say ac, point d is right from edge ac
Remove ac and insert edges pa, pb, pc, pd into triangulation T
(splitting abc and abd into 4 triangles pab, pbc, pca, pda )
9. LegalizeEdge( p, ab, T)

10.  LegalizeEdge( p, bc, T) \

11.  LegalizeEdge( p, cd, T) o, [Beral
12.  LegalizeEdge( p, da, T) . %
13. return T IS o ':
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Incremental algorithm — edge legalization

LegalizeEdge( p, ab, T)
Input:  Edge ab being checked after insertion of point p to triangulation T
Output:  Delaunay triangulation of p UT

1. if( abis edge on the exterior face ) return

2. let d be the vertex to the right of edge ab

3. if(inCircle( p, a, b, d)) // disin the circle around pab => d is illegal
4. Flip edge ab for pd

5 LegalizeEdge( p, ad, T)
6 LegalizeEdge( p, db, T) b

Insertion of p may make edges ab, bc & ca illegal
(circle around pab will contain point d )

After edge flip, the edge pd will be legal
(the circumcircles of the resulting triangles
pdb, and pad will bee empty)

We must check and possibly flip edges ad, db P [
C

(We must check and possibly flip edges bc & ca

_of the-triangle abc - lines 5,6 in Insert(p, T ) ) Inserted point p %
“  DCGI - ;-




Correctness of edge flip of illegal edge

= Assume point p isin C (it violates DT criteria for adb)
= adb was a triangle of DT => C was an empty circle

= Create circle C’ trough point p, C' isinscribedto C, C' c C
=> ("’ is also an empty circle (a,b & C)
[=> new edge pd is also a Delone edge

-mTEw
-
- -
-

~._ d Contradiction
\ edge ab cannot be
Delone edge

-
.
PR
- -
- ’
b ; :
.
s
.
¢
’ 4
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DT- point insert and mesh legalization




Delaunay triangulation — other point insert

insert p
check pab

mmm | egalize now

— Legalize later

Legal edge

- [Mount]
+++++
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Delaunay triangulation — other point insert

flip(ab)

ch?_s:_ls_pa_d I,
A mmm | egalize now
— Legalize later
C V/ Legal edge

[Mount]
- -+ -+
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Delaunay triangulation — other point insert

- -
'ﬂ -‘

mmm | egalize now
— Legalize later

Legal edge

[Mount]
-~ DCGI Felkel: Computational geometry |
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Delaunay triangulation — other point insert

éflip(db)

mmm | egalize now

— Legalize later

Legal edge

s S o~ == —

[Mount]
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Delaunay triangulation — other point insert

mmm | egalize now
— Legalize later

Legal edge

s S o~ == —

[Mount]
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Delaunay triangulation — other point insert

mmm | egalize now
— Legalize later

Legal edge

[Mount]
-~ DCGI Felkel: Computational geometry |
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Delaunay triangulation — other point insert

flip(bc)

mmm | egalize now
— Legalize later

Legal edge

- [Mount]
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Delaunay triangulation — other point insert

mmm | egalize now
— Legalize later

Legal edge

[Mount]
-~ DCGI Felkel: Computational geometry |
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Delaunay triangulation — other point insert

mmm | egalize now

— Legalize later

Legal edge

\
\
~
- [Mount]
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Correctness of the algorithm

= Every new edge (created due to insertion of p)
— Is incident to p
— must be legal
=> no need to test them

= Edge can only become illegal if one of its incident
triangle changes
—[Algorithm tests any edge that may become illegal ]
=> the algorithm is correct

= Every edge flip makes the angle-vector larger
=> algorithm can never get into infinite loop |

- —/_-I_ —t—
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Point location data structure

= For finding a triangle abc T containing p
— Leaves for active (current) triangles
— Internal nodes for destroyed triangles
— Links to new triangles

= Search p: start in root (initial triangle)
— In each inner node of T
* Check all children (max three)
* Descend to child containing p

e o = —— —

—~ Dc I Felkel: Computational geometry
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Point location data structure, .

/

A
N\
N\

Simplified '

- it should also contain the root node
of the large triangle

New point p,. inserted to tr. 1

- O [Berg]
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Point location data structure

wia ()
Pj

N Y

- Y [Berg]
>~ o~ =~ = -
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Point location data structure

Pk
\ 2 nodes (triangles )=> new 2 nodes
- V [Berg]
> o~ o~ ——
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Point location data structure

o (@) (@) &




INCircle test

= a,b,c are counterclockwise in the plane

s lest if dlies to the left of the oriented circle
through a,b,c
a, a, a+a’

& Y

> | 19

inCircle(a, b, ¢, d) = det br by b% 532,
B Oy e

d, d, d5+ d%

Felkel: Computational geometry
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Creation of the initial triangle

P2 e

Idea: For given points set P:
= Initial triangle p_,p_,p,

— Must contain all points of P

— Must not be (none of its pomts)
in any circle defined
by non-collinear points of P

= |, =horizontal line above P T Mount]
= [ ,=horizontal line below P
= p_,=lieson/_, as far left that p_, lies outside every circle

= p_,=lieson/_, as farright that p_, lies outside every circle
defined by 3 non-collinear points of P

Replaced by symbolical tests with this triangle
=> p_, and p_, always out

- : -t
+++++
-~ -+ -+
- D C GI Felkel: Computational geometry .
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Complexity of incremental DT algorithm

= Delaunay triangulation of a pointset P in the plane
can be computed in

- O(nlogn) expected time
— using O(n) storage

= For detalls see [Berg, Section 9.4]
ldea

— expected number of created triangles is 9n + 1

— expected search O(logn) in the search structure
done n times for n inserted points

- : -
+++++
- -+ -4
—~ DCGI Felkel: Computational geometry
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Delaunay triangulations and Convex hulls

= Delaunay triangulation in R? can be computed
as part of the convex hull in R*" (lower CH)

= 2D: Connection is the paraboloid: Z= X" + y*

lower
Compute convex hull. Project hull faces back to plane.

- : -t
e oS =~ ==
-~ -+~ -4
-~ D C GI Felkel: Computational geometry
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Vertical projection of points to paraboloid

= Vertical projection of 2D point to paraboloid in 3D

(%, y) = (X, y, X" +y°)
= Lower convex hull — forms Delone triangulation
= portion of CH visible from 2 = —o0

points —
on
paraboloid

d 7N\ | /\

(all on CH) - bottom view . gouel % |
- - - [l | L - ) - L el -}~ -|-
-~ Felkel: Computational geometry : s B .
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Relation between CH and DT

Delaunay condition (2D)
Points p,q,r € S form a Delone triangle iff the
circumcircle of p,q,r is empty (contains no point)

Convex hull condition (3D)
Points p’,q’,r’ € S’ form a face of CH(S’) iff the
plane passing through p’,q’,r’ is supporting S’
— all other points lie to one side of the plane

— plane passing through p’,q’,r’ is
a supporting hyperplane of the convex hull CH(S’)

-
> A o~ =
—~ C I Felkel: Computational geometry
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Relation between CH and DT

[Rourke]

4 distinct points p, g, 1, s in the plane, and

p’,q’, v, s’ be their projections onto the paraboloid z = x? + y?
The point s lies within the circumcircle of pgr iff s’ lies on the
lower side of the secant plane passing through p’, q’, r’

- Paint s’cannot belong to CH, as the secant plane must-be a

- =~ -

Sg-gpﬁ rﬁ-n g p I a S Felkel: Computational geometry
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Tangent and secant planes

2D cross section of the paraboloid

Secant plane

Tangent plane

i Circle in xy plane with radius ¢t

- : —t—
+++++
- -+ -4
—~ DCGI Felkel: Computational geometry
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Tangent plane to paraboloid

Non-vertical tangent plane through (a, b, a* + b*%)
Paraboloid z = x%+y?

Derivation at this point N ZZ / \
/ /

Evaluates to2a and 2b~

} / 2 2 | 1.2
Plane: z=2ax +2by+7v° Yy = —(a® + b*)
Z )(A |4 /

' \

point a® + b%* = 2a.a +2b.b +y

= Tangent plane through point{a, b, a® + b*)

P e =

z = 2ax + 2by — (a® + b?)

-+ —+—

o [Mount]
-+~ -+
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Plane intersecting the paraboloid (secant piane)

= Non-vertical tangent plane through (a, b, a® + b?)
z = 2ax + 2by — (a? + b?)

= Shift this plane t* upwards —> secant plane
intersects the paraboloid in an ellipse in 3D
z = 2ax + 2by — (a? + b?)+t?

= Eliminate z (project to 2D) z = x°+y?

x%+y? = 2ax + 2by — (a? + b?)+t?

= This is a circle projected to 2D with center (@, b):
(_x - a)z + (y — b)z — t2 andradiust

= ++::—_ — [Mount]
-+ -+~ -4
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Secant plane defined by three points

DT in2D - CH in 3D

= ++: —_:—_ — [Mount]
- -+ -+
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Test InCircle — meaning in 3D

= Points p,q,r are counterclockwise in the plane

= Jest, if slies in the circumcircle of ApQr isequaito

= test, weather s’ lies within a lower half space of the
plane passing through p’,q’,r’ (3D)

= test, if quadruple p’,q’,r’,s’is positively oriented (3D)
= test, if s lies to the left of the oriented circle through pgr

(2D)
De Dy p§+p§,
in(p,q,r,s) = det gx gy 73 N g’% .| >0.
L Y T Yy -
_ A B
TN T T

[Mount]
-~ -+ -+ F
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Delaunay triangulation and inCircle test

= DT splits each quadrangle by one of its two diagonals @_

= For a valid diagonal, the fourth point is not inCircle
=> the fourth point is right from the oriented circumcircle (outside)
=> inCircle(....) < 0 for CCW orientation
= inCircle( ,S) = inCircle(P,R,S,Q) = — inCircle(P,Q,S,R) = — inCircle(S,Q,R,P)
inCircle(...) >0 inCircle(...) <0

= R S Q
Valid diagonal

f

,R
7/

' ; |

(83/95)




INCircle test detail

Point P moves right toward point R ®_
We test position of R in relation to oriented circle (P.Q,S)

inCircle(P,Q,S,R) <0 inCircle(P,Q,S,R) =0 inCircle(P,Q,S,R) >0
R is right (out) R is on the circle R is left (in)
diagonal QS is valid both QS and PR are valid QS is invalid
Invalid diagonal Valid diagonal

- : -t
e oS =~ ==
- -+ -4
DCGI Felkel: Computational geometry
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INCircle test detail

Circle of infinite diameter  The circle flipped its orientation @_

CCW<->CW Cw

S

R .

= Q
inCircle(P,Q,S,R) >0 inCircle(P,Q,S,R) >0
R is left R is left
QS is invalid QS is invalid

Invalid diagonal Valid diagonal

- : o ..M e b E R T el B
e oS =~ ==
-~ -+ -4
D C GI Felkel: Computational geometry .
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An the Voronoi diagram?

= VD and DT are dual structures

= Points and lines in the plane
are dual to
points and planes in 3D space

= VD of points in the plane
can be transformed to
intersection of halfspaces in 3D space

e o = —— —

—~ D C GI Felkel: Computational geometry

(88/95)



Voronoi diagram as upper envelope in R9+1

= Foreach point p= (a, b) a tangent plane H(p) to the
paraboloid is z = 2ax + 2by — (a® + b?)

= H7(p)is the set of points above this tangent plane
Ht*(p) ={(x,y,2) | z = 2ax + 2by — (a* + b?)

—

- > = VD of points in the plane can be
— computed as intersection of

halfspaces H™ (p;)in 3D

= [his intersection of halfspaces
= unbounded convex polyhedron
2D point L ep = upper envelope of halfspaces _

1\4—/ VD edge +( )
+-‘ I‘III = H pl % l
-~ Felkel: Computational geometry .
DCGI @) B

projected
point

intersection 7
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Upper envelope of planes (2o cross section)

p] = projected

3D points

p; = 2D points
D3 S

; ; ._
q* Pl P2 D>

(Lower envelope R O T

[Mountl 4 4 F +* 4 '+ F + F $ '3 4 %

-~ D C GI | R ._ | F_elke_l;: Cémpétati&ﬁnaligeihetb/ F
(91 95) '
. + H H H 4 -4 -4 4= i -4 .i. _I_ a;.. .

T R T 1.

T
+ 4 + + 4+ + -
+

i + 4+ |4
+ +
+ | +
| +
+ | +
14
% &= = *
% -i-



Projection to 2D

= Upper envelope of
tangent hyperplanes
(through sites
projected upwards to
the cone)

= Projected to 2D gives
Voronoi diagram

> S =~ 4~

- C G Felkel: Computational geometry oun
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Voronol diagram as upper envelope in 3D

a
] -
. it
- —:_ -
+++++ [Fukuda]

-+ -+ -+ i ,
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Derivation of projected Voronol edge

= 2points: p = (a,b) and q = (¢,d) in the plane
2 tangent planes z = 2ax + 2by — (a® + b?)
to paraboloid z=2cx+2dy— (c*+d*) /(=)

= Intersect the planes, project onto xy (eliminate z)
x(2a — 2¢) + y(2b — 2d) = (a? — ¢?)+(b%* — d?)

= This line passes through midpoint between p and

(2b — 2d) = (a® — c®)+(b? — d?)
3

a+c b+d

T(ZG—ZC) ; 2

= |t is perpendicular bisector with slope
- —(Cl i C)/(b W d) [Mount]

e o = —— —

—~ DCGI Felkel: Computational geometry
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