- CGl

DEPARTMENT OF COMPUTER GRAPHICS AND INTERACTION

TRIANGULATIONS

PETR FELKEL

FEL CTU PRAGUE
felkel@fel.cvut.cz
https://cw.felk.cvut.cz/doku.php/courses/a4m39vqg/start

Based on [Berg] and [Mount]

Version from 21.11.2021

Talk overview

= Polygon triangulation
— Monotone polygon triangulation
— Monotonization of non-monotone polygon |

= Delaunay triangulation (DT) of points
— Input: set of 2D points
— Properties
— Incremental Algorithm

— Relation of DT in 2D and lower envelope (CH) in 3D
and
relation of VD in 2D to upper envelope in 3D

- : —t—
+++++
-~ -+~ -4
—~ DCGI Felkel: Computational geometry
(2/95)

Polygon triangulation problem

= Triangulation (in general)
= subdividing a spatial domain into simplices

= Application
— decomposition of complex shapes into simpler shapes
— art gallery problem (how many cameras and where)

= We will discuss %
— Triangulation of a simple polygon \
— without demand on triangle shapes

= Complexity of polygon triangulation

— O(n) alg. exists [Chazelle91], but it is too complicated

. ~—= practical algorithms run in O(n log n) @
-~ Felkel: Computational geometry
DCGI Fs

Terminology

Simple polygon y \:i :

= region enclosed by a closed polygonal chain that
does not intersect itself

Visible points

= two points on the boundary are visible if the
interior of the line segment joining them lies
entirely in the interior of the polygon

Diagonal

= line segment joining any pair of visible vertices

- : -t
e oS =~ ==
- -+ -4 E
—~ D C GI Felkel: Computational geometry
(4 /95) :

Terminology

= A polygonal chain C is strictly monotone with
respect to line L, if any line orthogonal to L
intersects C in at most one point

= A chain C is monotone with respect to line L, if any
line orthogonal to L intersects C in at most one Y
connected component (point, line se_qment,...y‘

= Polygon P is monotone with respect to line L, if its
boundary (bnd(P), dP) can be split into two chains,
each of which is monotone with respect to L

- —:_ —
+++++ -
—~ D C GI Felkel: Computational geometry
(5/95) a

Terminology

= Horizontally monotone polygon
= monotone with respect to x-axis
— Can be tested in O(n)
— Find leftmost and rightmost point in O(n)
— Split boundary to upper and lower chain

— Walk left to right, verlfylng that x-coord are non-
decreasing

e X—monotone polygon Mourt]
-~ -+~ -4
- DCGI Felkel: Computational geometry
(6/95) _ Lo g |

Terminology

= Every simple polygon can be triangulated

= Simple polygon with n vertices consists of
— exactly n — 2 triangles
— exactly n — 3 diagonals

— Each diagonal is added once
= 0(n) sweep line algorithm exist

Proof by induction

ANNVAY

n = 3 = 0diagonal n = 4 = 1 diagonal n:=n+1 =>n 4+ 1- 3 diagonals

L E n-3 n + 1 = 7 = 4 diagonals)
- -+ -4
-~ Felkel: Computational geometry

Simple polygon triangulation

= Simple polygon can be triangulated in 2 steps:
1. Partition the polygon into x-monotone pieces
[2. Triangulate all monotone pieces]

(we will discuss the steps in the reversed order)

- : -
+++++
- -+ -4
—~ DCGI Felkel: Computational geometry
(8795)

x- monotone polygon triangulation principle

= Sweep left to right - in O(n) steps

= [riangulate everything you can by adding
diagonals between visible points (eft from the sweep line)

I I I I I 1 |
I I I I 1 1 1 1

I I I I 1 1

I I I I I .

1 1 1 1 1
I I I 1 [I 1 I I | 1 1
I I I | [1 1 | I I 1 1
— [Mount]
+++++
-~ -+ -4 r
e D C GI Felkel: Computational geometry

(9/95)

Event queue

Sweep line event queue
= x-sorted vertices of the polygon

Construction — 0(n)

= Find min x and max x

= EXxtract lower and upper chain (vetween min and max x)
Both are sorted in increasing order of their x-coords

= Merge chains in 0(n) keeping lower/upper flag

- : -
e oS =~ ==
- -+ -4 E
—~ D C GI Felkel: Computational geometry
(10/ 95) a

Regions on the left from the sweep line

a) triangulated — points were visible — DONE

by untriangulated — points were not visible
— characterized by an invariant
(= a condition that is true after each step)

UNTRIANGULATED

t _
- - -+ I [Mount]
+++++
-~ -+ -+ F
e D C GI Felkel: Computational geometry .
(11/95) :

Reflex vertex and reflex chain

Untriangulated region is bounded by a reflex chain

= a sequence of reflex vertices along the
not-triangulated part of the polygon Reflex vertex

interior angle >

- In the alg. Is stored in stack

UNTRIANGULATED

Single edge

- - -+ u = reflex chain start point [Mount]
+++++
>~ -+ -+ 4
- D C GI Felkel: Computational geometry .
(127 95) _

Main invariant of untriangulated region left from SL

[starts from 1, first vertex is v;

= Letv;, i>2Dbe the vertex just being processed

= The untriangulated region left of v; consists of
two x-monotone chains (upper and lower)
each containing at least one edge

l

Vitk
CASE 2b

I [Mount]

= If the chain from v; to u has more than one edge

— these edges form a reflex chain O
— the other chain consist of single edge

from u to vertex v; ., right of v;

- —:— -t
e oS =~ ==
-~ -+ -4 3
-~ D C GI Felkel: Computational geometry

(13/95)

The remaining regions are triangulated

= Elsewhere, it would have been triangulated in this
step

CASE 1 CASE 2a

Vitk

Ui

- —:_ -
+++++
-~ -+ -4 ,
-~ D C GI Felkel: Computational geometry .
(14 /95) _ |

Triangulation algorithm

Data structures
Event queue with merged upper and lower chain

Status
- Current vertex v; (sweep line position i)
- Reflex vertices chain in the stack ;gz’ 2 Vi-1
- Upper/lower chain flag A
all vertices except u are from the same chain >
u is from the opposite chain (bottom of stack)
v; =7

Orientation test
— reflex(TOS, SOS, v;)

- : -t
o S o~ == ——
- -+ -4
-~ DCGI Felkel: Computational geometry

(15 / 95)

Monotone polygon triangulation algorithm

| | 11 12
i i i Reflex chain
| | | 12
: o : : 10
u L : :
A M L 7
| | | | 1 1 1 13
I I I I u'e I I [I I I I u 9)
| | | | Ilu | | | | | | |

Case 2b — point v; on the same chain as reflex Would do the same from 13

Piushepdint v; to the reflex chain stack
Leave the last visible. Add v; to reflex chain stack — push(v;)

- [Mount]
+++++
- -+ -4
—~ DCGI Felkel: Computational geometry
(16 /1 95)

Monotone polygon triangulation algorithm

Case 1: v;lies on the opposite chain than v,
Test reflex(TOS, SOS, v;)

|
|
|
|
|
|
: TOS| 6 |v;_4
|
| 0S| 5
u : 4
|
: ul 2 u
|

= Left vertex of the last added opposite diagonal is u
= Vertices between u and v; are waiting in the stack

— [Mount]
+++++
-~ -+ -4 F
-~ D C GI Felkel: Computational geometry .
(17 /95) _

Tr | aln g u I a.t| ONn cases fO I Vi (vertex being just processed)

Case 1: v, lies on the opposite chain than v,
— Add diagonals from next(u) to v, , (empty the stack-pop)
— Set u = v,_,. Last diagonal (invariant) is v, ,Vv,
— push u = v, ;and v; to stack

yrincrhAan~nAd [Mount]
“ AT TVl T lu\lu
Felkel: Computational geometry
(18 /95)

Tr | aln g u I a.t| ONn cases fO I Vi (vertex being just processed)

Case 2a: v;is on the same chain as v,

— walk back, adding diagonals joining v; to prior vertices
until the angle becomes > 180° or u is reached — pop

— push v; to stack

Vi1

Case 2a |

u unchanged

- : -
+++++
o~ o —f— fivtoamt]
—~ DCGI Felkel: Computational geometry
(19/95)

Tr | aln g u I at| ONn cases fOF Vi (vertex being just processed)

Case 2b: v;is on the same chain as v,
— push v; to stack

fivtoumt]
Felkel: Computational geometry
(20 /95) s

Analysis

Polygon with n vertices has n — 3 diagonals
= 0(n) total time

Algorithm
sorted list of vertices through merging - 0(n)
stack operations — max n times 0(1) -0(n)
orientation test - v; and top two entries
- 0(1) per diagonal -0(n)

(add diagonal or push)

- : -t
e oS =~ ==
- -+ -4 E
—~ D C GI Felkel: Computational geometry
(21 /95) :

Simple polygon triangulation

= Simple polygon can be triangulated in 2 steps:
1. Partition the polygon into x-monotone pieces]
2. Triangulate all monotone pieces J

(we discuss the steps in the reversed order)

- : -
+++++
- -+ -4
—~ DCGI Felkel: Computational geometry
(221 95)

1. Polygon subdivision into monotone pieces

= X-monotonicity breaks the polygon in vertices with
edges directed both Ieft or bOth rlght (inner angle > 180°)

= [he monotone polygon:s parEtS are separated by
the splitting diagonals (joining vertex and helper)

<< <7

[Mount]

Splitting diagonals

- Monotone decomposition %
-~ -+~ -4
-~ Felkel: Computational geometry
DCGI (23195) | R

Sweep line algorithm

Polygon Olélt

Sweep from left to right interioris —_ Kée
Add diagonals (from split to merge vertipcre%ﬁ)) ~~~~~ \./<

helper h(e) in A

In split vertex
= Add diagonal as we reach it

In merge vertex
= [ake a note about v into helper(e)
= Will be connected later

e [Mount]
e oS =~ ==
-~ -+ -+ F
- D C GI Felkel: Computational geometry .

(24/95)

: [Mount]

Data structures for subdivision

s Events
— Endpoints of edges, known from the beginning
— Can be stored in sorted list — no priority queue

= Sweep status
— List of edges intersecting the sweep line (top to bottom)
— Stored in O(log n) time dictionary (such as balanced tree)

= Event processing

— Six event types based on local structure of edges around
vertex v

- : —t—
+++++
- -+ -4
-~ DCGI Felkel: Computational geometry
(251795)

Adding a diagonal

Find edges e, & e, (above and below v) the SL status

Use the rightmost visible vertex from edge e,

Segment from v to left point of e,
E%K IS not a diagonal

P v = current vertex
. € .
: (sweep line stop)

e sweep line [Moun %
-~ -+ -4 4
-~ Felkel: Computational geometry
DCGI @ros) DA N

Helper — definition

helper(e,)
= the rightmost vertically visible processed vertex u - on or
below edge e, on polygonal chain between edges e, & e,

IS visible to every point along the sweep line between e, & e,

o vertices visible from e,

—a e u = helper(e,)

Y :@ the rightmost of o

all these vertices
see ou = helper(e,)

o v = current vertex
b (sweep line stop)

T T sweep line Mount]
-~ -+ -4 F
-~ Felkel: Computational geometry .
DCGI eriey . F &

Helper variants

helper(e,)
Is defined only for edges intersected by the sweep line

Previous

helper h(e) \

_helper(e1) -start point of the edge itself

- SECTCITTE helper(esl) rightmost vertically visible

processed vertex
between edges €3, e4

h e |p er (e 5) - Start point of the edge below

-~ = [Mount]
e oS =~ ==
-+ -+~ -4
D C GI Felkel: Computational geometry
(28 /1 95) s

Fix-up function

Fix-up(v, e)
Gets vertex v and edge e above or incident to v
If(helper(e) is merge vertex)
add diagonal from v to helper(e)

P FiX—_UP(U, 6) """""" .
Upper Lower

- : —t—
+++++
- -+ -4
—~ DCGI Felkel: Computational geometry
(297 95)

Six event types of vertex v

splits the polygon

>180°,
1. Split vertex i< s SR

white

— Find edge ¢ above v (along the SL),)K<
connect v with helper(e) by diagonal ,,’:,r,‘jgf’h“(;/, Vie™

— Add 2 new edges starting in v into SL status
mark lower of them as e’

— Set new helper(e) = helper(e’) = v
¥>180°"
2. Merge vertex >- B

— Find two edges incident with v in SL status
— Delete both from SL status, the lower is €’
— Let e iIs edge immediately above v

— Make helper(e) = v

+5== Eix-up(v, e) and Fix-up(v, e’) @
Felkel: Computational geometry
DCGI (30/95) _ _ _

: [Mount]

Six event types of vertex v

3. Start vertex '6 <180°

— Both incident edges lie right from v
— But interior angle <180°

— Insert both edges to SL status

— Set helper(upper edge) = v

4. End vertex ?21-800

— Both incident edges lie left from v,
e is the upper. Fix-up(v, e)

— Delete both edges from SL status
— No helper set — we are out of the polygon

- : —t—
+++++
-~ -+~ -4
—~ DCGI Felkel: Computational geometry
(31/95)

Six event types of vertex v

5. Upper chain-vertex — i ™

— one side is to the left, one side to the right, — o —
interior is below, Fix-up(v, e) in

— replace the left edge with the right edge
in the SL status

— Make v helper of the new (upper) edge

6. Lower chain-vertex __in ~
— one side is to the left, one side to the right, e) -

Interior Is above in

— replace the left edge with the right edge L
in the SL status

~— Make v helper of the edge e above, Fix-up(v, e) Mourg

+
+++++
-~ -+~ -4
—~ DCGI Felkel: Computational geometry
(32/95)

Polygon subdivision complexity

= Simple polygon with n vertices can be partitioned
into x-monotone polygons in
- O(nlogn) time sort
- O(nlogn) time (n steps of SL, logn search each)
- O(n) storage

= Complete simple polygon triangulation
- 0(nlogn) time for partitioning into monotone polygons
— 0(n) time for triangulation
- O(n) storage

-
S A o - =
> -~ -
—~ DC I Felkel: Computational geometry
(; (33/95)

Ty

Delone triangulation

(Delaunay - de Launay)

Felkel: Computational geometr y
(34 /95)

feit

Dual graph G for a Voronoi diagram

Graph G: Node for each Voronoi-diagram site p ~ VD cell V(p)

Arc connects neighboring sites (cells
(arc for every Voronoi edge)

e DCGI Felkel: Computational geometry / C
(35795)

Delone graph DG(P) [Gopuc Hukonaesuy JernoHe]

= straight line embedding of G VD cell V(p)
(straight-line dual of Voronoi diagram) / _ _
o ; site (point) p
= Node for cell V(p) is site p / = DG node

= Arc (DG edge)
connecting cells

V(p) and V(q)
IS the segment pq

_,-—.-—4
-
’ -
--
-
-

- —:— -
+++++ [Berg]
-+~ -+ - 4
- D C GI Felkel: Computational geometry .
(36 / 95))

Delaunay graph and Delaunay triangulation

= Delone graph DG(P) has convex polygonal faces
(with number of vertices =23, equal
to the degree of Voronoi vertex)

— Triangulate faces with more vertices
DG(P) sites not in general position
such triangulation is not unique

= Delone triangulation DT(P)
= Delone graph for sites in
general position

— No four sites on a circle

— Faces are triangles (Voronoi vertices have degree = 3)

- -=DT is unique
>~ -+ -+
- Felkel: Computational geometry
DCGI (37 /95) | o Rt

Delone triangulation properties 1/2

Circumcircle property @

= [he circumcircle of any triangle in DT is empty (no sites)
Proof: It's center is the Voronoi vertex

= Three points a,b,c are vertices of the same face of DG(P)
Iff circle through a,b,c contains no point of P in its interior

Empty circle property and legal edge @

= [wo points a,b form an edge of DG(P) — it is a legal edge
Iff 4 closed disc with a,b on its boundary that contains
no other point of P in its interior ... disc minimal diameter = dist(a,b)

Closest pair property
= The closest pair of points in P are neighbors in DT(P)

- —:_ —
+++++ -
—~ D C GI Felkel: Computational geometry
(38 /95) | a

Delone triangulation properties

212

= DT edges do not intersect

= Triangulation T is legal, iff T is a Delone triangulation

(i.e., if it does not contain illegal edges)

= Edge in DT that was legal before
may become illegal if one
of the triangles incident to it

changes |
Non-convex quad has only one diagonal
= In convex quadrilateral abcd

(abcd do not lie on common circle)
exactly one of ac, bd

IS an illegal edge

and the other edge is legal
= principle of edge flip operation

-~ =~
e i P R

. DC I Felkel: Compgtationallgeometry 8 & & e ..
‘; (39/95)

Edge flip operation

Edge fIip flips illegal edge — legal edge
= a local operation, that increases the angle vector

= Given two adjacent triangles Aabc and Acda such that
their union forms a convex quadrilateral, the edge flip
operation replaces the diagonal ac with bd.

- —:_ —
A o == — [Berg] '
-~ D C GI Felkel: Computational geometry
(40/95) :

Delone triangulation

= Let T be a triangulation with m triangles (and 3m angles)
= Angle-vector

= non-decreasing ordered sequence (a,, a,, ... , 05.)
inner angles of triangles, a. < o, for 1<}

= |In the plane, Delaunay triangulation has the
lexicographically largest angle sequence
— It maximizes the minimal angle (the first angle in angle-vector)
— It maximizes the second minimal angle, ...
— It maximizes all angles
— It is an angle sequence optimal triangulation

- —:_ —
> S o~ == —
-~ -] i
D C GI Felkel: Computational geometry
(41/95) _

Delone triangulation

= It maximizes the minimal angle

— The smallest angle in the DT is at least as large as the
smallest angle in any other triangulation.

= Minimum spanning tree is a subset of DT min. kostra

= However, the Delaunay triangulation
— does not necessarily minimize the maximum angle.
— does not necessarily minimize the length of the edges.

- : -
+++++
- -+ -4
—~ DCGI Felkel: Computational geometry
(42 /95)

DT and minimal weight triangulation

32 points on unit circle + center, i shown Connect every 2, 4, 8 + center

(a)

Delone triangulation Minimum weight triangulation
(minimum sum of edge lengths)

Total weight close to 2w + 32 Total weight far less than 8m 4+ 4 > 4x around

. 2m+32=38 > 29 =8m+4

- [Devadoss]
o S o~ == ——
- -+ -4
DCGI Felkel: Computational geometry
(43 /95)

Thales’s theorem (zssssc

Respective Central Angle Theorem
5o

LY
L)
-
] -
n
-
)

= Let C = circle,

[=line intersecting C in points
a,b

p,q,7,s = points on the same

side of [
p,gon C,risin, s is out

Then for the angles holds:
Iarb > dapb = Xagb > Xasb

http: //www.mathopenref.com/arccentr alangletheorem.html

- : -t
e oS =~ ==
- -+ -4
D C GI Felkel: Computational geometry
(44 /1 95) :

Edge flip of iIllegal edge and angle vector

= The minimum angle increases after the edge flip

of illegal edge ac > bd

|bd| < |ac| Pap = Hab Poc = Hbc Peq = ch

=> After limited number of edge flips
— Terminate with lexicographically maximum triangulation

. -— It satisfies the empty circle condition => Delauney@

e o = —— —

-~ DCGI Felkel: Computational geometry
(45/95)

T4y

Incremental DT algorithm

Incremental algorithm principle

1. Create a large triangle containing all points
(to avoid problems with unbounded cells)

— must be larger than the largest circle through 3 points
— will be discarded at the end

2. Insert the points in random order
— Find triangle with inserted point p

— Add edges to its vertices
(these new edges are correct)

— Check correctness of the old edges (triangles)
“around p” and legalize (flip) potentially illegal edges

3. Discard the large triangle and incident edges

- -~ 4
S A o - =
> -~ -
—~ Dc I Felkel: Computational geometry
(; (47 /95)

Incremental algorithm in detall

B>

DelaunayTriangulation(P)
Input: Set P of n points in the plane
Output: A Delaunay triangulation T of P

[Berg]

Let p_,, p_,, po form a triangle large enough to contain P
Initialize T as the triangulation consisting a single triangle p_,p_;pp p_;
Compute random permutation p4, p,, ..., p, of P\ {p,}
forr=1to ndo

TI'=Insert(p,, T)
Discard p_4, p_, with all incident edges from T
return T

NoOOahkkowDd -~

- + 4 ;
* DCGH R R A 5

Incremental algorithm — insertion of a point

Insert(p, T)

Input: Point p being inserted into triangulation T
Output: Correct Delaunay triangulation after insertion of p
1. Find a triangle abc € T containing p

2. 1f plies in the interior of abc then

3. Insert edges pa, pb, pc into triangulation T /

C

(splitting abc into 3 triangles pab, pbc, pca)
LegalizeEdge(p, ab, T)
LegalizeEdge(p, bc, T) a
LegalizeEdge(p, ca, T) B T
else // p lies on the edge of abc, say ac, point d is right from edge ac
Remove ac and insert edges pa, pb, pc, pd into triangulation T
(splitting abc and abd into 4 triangles pab, pbc, pca, pda)
9. LegalizeEdge(p, ab, T)

10. LegalizeEdge(p, bc, T) \

11. LegalizeEdge(p, cd, T) o, [Beral
12. LegalizeEdge(p, da, T) . %
13. return T IS o ':

©NO oA

Incremental algorithm — edge legalization

LegalizeEdge(p, ab, T)
Input: Edge ab being checked after insertion of point p to triangulation T
Output: Delaunay triangulation of p UT

1. if(abis edge on the exterior face) return

2. let d be the vertex to the right of edge ab

3. if(inCircle(p, a, b, d)) // disin the circle around pab => d is illegal
4. Flip edge ab for pd

5 LegalizeEdge(p, ad, T)
6 LegalizeEdge(p, db, T) b

Insertion of p may make edges ab, bc & ca illegal
(circle around pab will contain point d)

After edge flip, the edge pd will be legal
(the circumcircles of the resulting triangles
pdb, and pad will bee empty)

We must check and possibly flip edges ad, db P [
C

(We must check and possibly flip edges bc & ca

_of the-triangle abc - lines 5,6 in Insert(p, T)) Inserted point p %
“ DCGI - ;-

Correctness of edge flip of illegal edge

= Assume point p isin C (it violates DT criteria for adb)
= adb was a triangle of DT => C was an empty circle

= Create circle C’ trough point p, C' isinscribedto C, C' c C
=> ("’ is also an empty circle (a,b & C)
[=> new edge pd is also a Delone edge

-mTEw
-
- -
-

~._ d Contradiction
\ edge ab cannot be
Delone edge

-
.
PR
- -
- ’
b ; :
.
s
.
¢
’ 4

- - =
e oS =~ ==
-~ -+ -+ F
D C GI Felkel: Computational geometry .
(51795) >

DT- point insert and mesh legalization

Delaunay triangulation — other point insert

insert p
check pab

mmm | egalize now

— Legalize later

Legal edge

- [Mount]
+++++
- -+ -4
—~ DCGI Felkel: Computational geometry
(53 /95)

Delaunay triangulation — other point insert

flip(ab)

ch?_s:_ls_pa_d I,
A mmm | egalize now
— Legalize later
C V/ Legal edge

[Mount]
- -+ -+
-~ DCGI Felkel: Computational geometry
(54 / 95)

Delaunay triangulation — other point insert

- -
'ﬂ -‘

mmm | egalize now
— Legalize later

Legal edge

[Mount]
-~ DCGI Felkel: Computational geometry |
(55795)

Delaunay triangulation — other point insert

éflip(db)

mmm | egalize now

— Legalize later

Legal edge

s S o~ == —

[Mount]
-~ -+~ -4
-~ DCGI Felkel: Computational geometry
(56 / 95)

Delaunay triangulation — other point insert

mmm | egalize now
— Legalize later

Legal edge

s S o~ == —

[Mount]
-~ -+~ -4
—~ DCGI Felkel: Computational geometry
(57 /95)

Delaunay triangulation — other point insert

mmm | egalize now
— Legalize later

Legal edge

[Mount]
-~ DCGI Felkel: Computational geometry |
(58 /95)

Delaunay triangulation — other point insert

flip(bc)

mmm | egalize now
— Legalize later

Legal edge

- [Mount]
+++++
-~ -+~ -4
—~ DCGI Felkel: Computational geometry
(59/95)

Delaunay triangulation — other point insert

mmm | egalize now
— Legalize later

Legal edge

[Mount]
-~ DCGI Felkel: Computational geometry |
(60/95)

Delaunay triangulation — other point insert

mmm | egalize now

— Legalize later

Legal edge

\
\
~
- [Mount]
—~ DCGI Felkel: Computational geometry
(61/95)

Correctness of the algorithm

= Every new edge (created due to insertion of p)
— Is incident to p
— must be legal
=> no need to test them

= Edge can only become illegal if one of its incident
triangle changes
—[Algorithm tests any edge that may become illegal]
=> the algorithm is correct

= Every edge flip makes the angle-vector larger
=> algorithm can never get into infinite loop |

- —/_-I_ —t—
+++++
- -~ -1
—~ DCGI Felkel: Computational geometry
(62 /95)

Point location data structure

= For finding a triangle abc T containing p
— Leaves for active (current) triangles
— Internal nodes for destroyed triangles
— Links to new triangles

= Search p: start in root (initial triangle)
— In each inner node of T
* Check all children (max three)
* Descend to child containing p

e o = —— —

—~ Dc I Felkel: Computational geometry
(; (63 /95)

Point location data structure, .

/

A
N\
N\

Simplified '

- it should also contain the root node
of the large triangle

New point p,. inserted to tr. 1

- O [Berg]
+++++
-~ -+~ -4
-~ DCGI Felkel: Computational geometry
(64 /95)

Point location data structure

wia ()
Pj

N Y

- Y [Berg]
>~ o~ =~ = -
D C GI Felkel: Computational geometry .
(65 / 95) a

Point location data structure

Pk
\ 2 nodes (triangles)=> new 2 nodes
- V [Berg]
> o~ o~ ——
D C GI Felkel: Computational geometry .
(66 / 95) a

Point location data structure

o (@) (@) &

INCircle test

= a,b,c are counterclockwise in the plane

s lest if dlies to the left of the oriented circle
through a,b,c
a, a, a+a’

& Y

> | 19

inCircle(a, b, ¢, d) = det br by b% 532,
B Oy e

d, d, d5+ d%

Felkel: Computational geometry

(68/95)

Creation of the initial triangle

P2 e

Idea: For given points set P:
= Initial triangle p_,p_,p,

— Must contain all points of P

— Must not be (none of its pomts)
in any circle defined
by non-collinear points of P

= |, =horizontal line above P T Mount]
= [,=horizontal line below P
= p_,=lieson/_, as far left that p_, lies outside every circle

= p_,=lieson/_, as farright that p_, lies outside every circle
defined by 3 non-collinear points of P

Replaced by symbolical tests with this triangle
=> p_, and p_, always out

- : -t
+++++
-~ -+ -+
- D C GI Felkel: Computational geometry .
(69/95) _

Complexity of incremental DT algorithm

= Delaunay triangulation of a pointset P in the plane
can be computed in

- O(nlogn) expected time
— using O(n) storage

= For detalls see [Berg, Section 9.4]
ldea

— expected number of created triangles is 9n + 1

— expected search O(logn) in the search structure
done n times for n inserted points

- : -
+++++
- -+ -4
—~ DCGI Felkel: Computational geometry
(70/95)

Delaunay triangulations and Convex hulls

= Delaunay triangulation in R? can be computed
as part of the convex hull in R*" (lower CH)

= 2D: Connection is the paraboloid: Z= X" + y*

lower
Compute convex hull. Project hull faces back to plane.

- : -t
e oS =~ ==
-~ -+~ -4
-~ D C GI Felkel: Computational geometry
(74 1 95) . a

Vertical projection of points to paraboloid

= Vertical projection of 2D point to paraboloid in 3D

(%, y) = (X, y, X" +y°)
= Lower convex hull — forms Delone triangulation
= portion of CH visible from 2 = —o0

points —
on
paraboloid

d 7N\ | /\

(all on CH) - bottom view . gouel % |
- - - [l | L -) - L el -}~ -|-
-~ Felkel: Computational geometry : s B .

DCGI bt o bk &R) o]

Relation between CH and DT

Delaunay condition (2D)
Points p,q,r € S form a Delone triangle iff the
circumcircle of p,q,r is empty (contains no point)

Convex hull condition (3D)
Points p’,q’,r’ € S’ form a face of CH(S’) iff the
plane passing through p’,q’,r’ is supporting S’
— all other points lie to one side of the plane

— plane passing through p’,q’,r’ is
a supporting hyperplane of the convex hull CH(S’)

-
> A o~ =
—~ C I Felkel: Computational geometry
D G (76 / 95) _

Relation between CH and DT

[Rourke]

4 distinct points p, g, 1, s in the plane, and

p’,q’, v, s’ be their projections onto the paraboloid z = x? + y?
The point s lies within the circumcircle of pgr iff s’ lies on the
lower side of the secant plane passing through p’, q’, r’

- Paint s’cannot belong to CH, as the secant plane must-be a

- =~ -

Sg-gpﬁ rﬁ-n g p I a S Felkel: Computational geometry
DCGI (77 /1 95)

Tangent and secant planes

2D cross section of the paraboloid

Secant plane

Tangent plane

i Circle in xy plane with radius ¢t

- : —t—
+++++
- -+ -4
—~ DCGI Felkel: Computational geometry
(781 95)

L)

Tangent plane to paraboloid

Non-vertical tangent plane through (a, b, a* + b*%)
Paraboloid z = x%+y?

Derivation at this point N ZZ / \
/ /

Evaluates to2a and 2b~

} / 2 2 | 1.2
Plane: z=2ax +2by+7v° Yy = —(a® + b*)
Z)(A |4 /

' \

point a® + b%* = 2a.a +2b.b +y

= Tangent plane through point{a, b, a® + b*)

P e =

z = 2ax + 2by — (a® + b?)

-+ —+—

o [Mount]
-+~ -+
DCGI Felkel: Computational geometry
(791795)

Plane intersecting the paraboloid (secant piane)

= Non-vertical tangent plane through (a, b, a® + b?)
z = 2ax + 2by — (a? + b?)

= Shift this plane t* upwards —> secant plane
intersects the paraboloid in an ellipse in 3D
z = 2ax + 2by — (a? + b?)+t?

= Eliminate z (project to 2D) z = x°+y?

x%+y? = 2ax + 2by — (a? + b?)+t?

= This is a circle projected to 2D with center (@, b):
(_x - a)z + (y — b)z — t2 andradiust

= ++::—_ — [Mount]
-+ -+~ -4
—~ DCGI Felkel: Computational geometry
(80 /95) _

Secant plane defined by three points

DT in2D - CH in 3D

= ++: —_:—_ — [Mount]
- -+ -+
—~ DCGI Felkel: Computational geometry
(81/95)

Test InCircle — meaning in 3D

= Points p,q,r are counterclockwise in the plane

= Jest, if slies in the circumcircle of ApQr isequaito

= test, weather s’ lies within a lower half space of the
plane passing through p’,q’,r’ (3D)

= test, if quadruple p’,q’,r’,s’is positively oriented (3D)
= test, if s lies to the left of the oriented circle through pgr

(2D)
De Dy p§+p§,
in(p,q,r,s) = det gx gy 73 N g’% .| >0.
L Y T Yy -
_ A B
TN T T

[Mount]
-~ -+ -+ F
e D C GI Felkel: Computational geometry .
(82 /95) a8

Delaunay triangulation and inCircle test

= DT splits each quadrangle by one of its two diagonals @_

= For a valid diagonal, the fourth point is not inCircle
=> the fourth point is right from the oriented circumcircle (outside)
=> inCircle(....) < 0 for CCW orientation
= inCircle(,S) = inCircle(P,R,S,Q) = — inCircle(P,Q,S,R) = — inCircle(S,Q,R,P)
inCircle(...) >0 inCircle(...) <0

= R S Q
Valid diagonal

f

,R
7/

' ; |

(83/95)

INCircle test detail

Point P moves right toward point R ®_
We test position of R in relation to oriented circle (P.Q,S)

inCircle(P,Q,S,R) <0 inCircle(P,Q,S,R) =0 inCircle(P,Q,S,R) >0
R is right (out) R is on the circle R is left (in)
diagonal QS is valid both QS and PR are valid QS is invalid
Invalid diagonal Valid diagonal

- : -t
e oS =~ ==
- -+ -4
DCGI Felkel: Computational geometry
(84 /1 95)

INCircle test detail

Circle of infinite diameter The circle flipped its orientation @_

CCW<->CW Cw

S

R .

= Q
inCircle(P,Q,S,R) >0 inCircle(P,Q,S,R) >0
R is left R is left
QS is invalid QS is invalid

Invalid diagonal Valid diagonal

- : o ..M e b E R T el B
e oS =~ ==
-~ -+ -4
D C GI Felkel: Computational geometry .
(85/95) _

An the Voronoi diagram?

= VD and DT are dual structures

= Points and lines in the plane
are dual to
points and planes in 3D space

= VD of points in the plane
can be transformed to
intersection of halfspaces in 3D space

e o = —— —

—~ D C GI Felkel: Computational geometry

(88/95)

Voronoi diagram as upper envelope in R9+1

= Foreach point p= (a, b) a tangent plane H(p) to the
paraboloid is z = 2ax + 2by — (a® + b?)

= H7(p)is the set of points above this tangent plane
Ht*(p) ={(x,y,2) | z = 2ax + 2by — (a* + b?)

—

- > = VD of points in the plane can be
— computed as intersection of

halfspaces H™ (p;)in 3D

= [his intersection of halfspaces
= unbounded convex polyhedron
2D point L ep = upper envelope of halfspaces _

1\4—/ VD edge +()
+-‘ I‘III = H pl % l
-~ Felkel: Computational geometry .
DCGI @) B

projected
point

intersection 7
|

Upper envelope of planes (2o cross section)

p] = projected

3D points

p; = 2D points
D3 S

; ; ._
q* Pl P2 D>

(Lower envelope R O T

[Mountl 4 4 F +* 4 '+ F + F $ '3 4 %

-~ D C GI | R ._ | F_elke_l;: Cémpétati&ﬁnaligeihetb/ F
(91 95) '
. + H H H 4 -4 -4 4= i -4 .i. _I_ a;.. .

T R T 1.

T
+ 4 + + 4+ + -
+

i + 4+ |4
+ +
+ | +
| +
+ | +
14
% &= = *
% -i-

Projection to 2D

= Upper envelope of
tangent hyperplanes
(through sites
projected upwards to
the cone)

= Projected to 2D gives
Voronoi diagram

> S =~ 4~

- C G Felkel: Computational geometry oun
i " N - " . + - + - -pr — - -t J _!.
L i | i i | . | 1 | L 4 i | 4 4 4 4 X 2 + +

Voronol diagram as upper envelope in 3D

a
] -
. it
- —:_ -
+++++ [Fukuda]

-+ -+ -+ i ,
e D C GI Felkel: Computational geometry .
(93 / 95))

Derivation of projected Voronol edge

= 2points: p = (a,b) and q = (¢,d) in the plane
2 tangent planes z = 2ax + 2by — (a® + b?)
to paraboloid z=2cx+2dy— (c*+d*) /(=)

= Intersect the planes, project onto xy (eliminate z)
x(2a — 2¢) + y(2b — 2d) = (a? — ¢?)+(b%* — d?)

= This line passes through midpoint between p and

(2b — 2d) = (a® — c®)+(b? — d?)
3

a+c b+d

T(ZG—ZC) ; 2

= |t is perpendicular bisector with slope
- —(Cl i C)/(b W d) [Mount]

e o = —— —

—~ DCGI Felkel: Computational geometry

(94 / 95)

References

[Berg] Mark de Berg, Otfried Cheong, Marc van Kreveld, Mark Overmars:
Computational Geometry: Algorithms and Applications, Springer-
Verlag, 3rd rev. ed. 2008. 386 pages, 370 fig. ISBN: 978-3-540-
77973-5, Chapters 3 and 9, http://www.cs.uu.nl/geocbook/

[Mount] Mount, D.: Computational Geometry Lecture Notes for Fall 2016,
University of Maryland, Lectures 6, 12, 13, 16, and 22.
http://www.cs.umd.edu/class/fall2016/cmsc754/Lects/cmsc754-fall16-lects.pdf

[Rourke] Joseph O'Rourke: .. Computational Geometry in C, Cambridge
University Press, 1993, ISBN 0-521- 44592-2
http://maven.smith.edu/~orourke/books/compgeom.html

[Fukuda] Komei Fukuda: Frequently Asked Questions in Polyhedral
Computation. Version June 18, 2004
http://www.ifor.math.ethz.ch/~fukuda/polyfag/polyfag.html

> S o~ =~ — J i
D C GI Felkel: Computational geometry
} { : - 4 H 4 ke 4 4 - . . -+ _!.
(95/95) ; T o o .

