” DCGI

DEPARTMENT OF COMPUTER GRAPHICS AND INTERACTION

VORONOI DIAGRAM
PART I

PETR FELKEL

FEL CTU PRAGUE
felkel@fel.cvut.cz
https://cw.felk.cvut.cz/doku.php/courses/adm39vqg/start

Based on [Berg], [Reiberg] and [Nandy]

Version from 10.11.2022

https://cw.felk.cvut.cz/doku.php/courses/a4m39vg/start

Talk overview

= |Incremental construction

= \Voronol diagram of line segments
= VD of order k
s Farthest-point VD

- : -t
+++++
+* o~ -
-~ DCGI Felkel: Computational geometry
(2157)

Summary of the VD terms

= Site = input point, line segment, ...

= Cell = area belonging to the site,
In VD, locus of points nearest to the site

= Edge, arc = part of Voronoi diagram
(border between cells)

= Vertex = Iintersection of VD edges

- : —
+++++
+* o~ -
-~ DCGI Felkel: Computational geometry
(3/57)

Summary of the VD terms

._— Edge (Arc)

Vertex
o

Site (given point) /

Region belonging to
the site is cell
(in VD, around the site)

-
> S~ 4~ 4
-+ -+ =+
-~ DC I Felkel: Computational geometry
G (4157)

Incremental construction

-
+++++
-+~ -+
-~ DC I Felkel: Computational geometry
G (5/57)

Incremental construction — bounded cell

- : -t
+++++
+* o~ -
-~ DCGI Felkel: Computational geometry
(6/57)

Incremental construction —unbounded cell

—+
-~ DC I Felkel: Computational geometry %
G (7157)

Incremental construction algorithm

InsertPoint(S, Vor(S),y) ... Yy =anew site
Input: Point set S, its Voronoi diagram, and inserted point y&S

Output: VD after insertion of y

1. Find the site x in which cell point y falls, ...O(log n)

2. Detect the intersections {a,b} of bisector L(x,y) with cell x boundary
____ =>create the first edge e = ab on the border of site x ...0(n)

3. site z = neighbor site across the border with intersectionb ...O(1)

4. Set start intersection point p = b, set new intersection ¢ = undef
5. while(exists(p) and c@ a) //trace the bisectors from b in one direction
a. Detect intersection c of L(y,z) with border of cell z
b. Report Voronoi edge pc }...O(nz)
_______ C. p=c,z=neighbor site across border with intersec. c
5. if(c@a)then // open site — trace the bisectors from a in other direction
a. p=a
b. Similarly as in steps 3,4,5 with a

_ =~ 0(n?) worst-case, O(n) expected time for some distributions %

> o~

7 DCGI

L+ 4+

Voronol diagram of
line segments

-
+++++
-+~ -+
-~ DC I Felkel: Computational geometry
G (20/57)

Voronoi diagram of line segments

Input: S ={s,, ..., S} = set of n disjoint line segments (sites)
VD: line segments
parabolic arcs

Type 1

Type 3

Distance measured
perpendicularly to the
line segment interior

- [Berg]
>~ o~ o~ —— —+
+* o~ -
-~ DCGI Felkel: Computational geometry
+
(11/57)

Fo+ + +

VD of line segments with bounding box

BBOX
=>
standard
DCEL
(\ \\“*-\
\
[Berg]

—_
=
+* o~ -
-~ DCGI Felkel: Computational geometry
(12 /57)

VD of 2 line-segments in detall

VD consists of line segments and parabolic arcs
— Line segment — bisector of end-pointsy or of

— Parabolic arc — of point and interiore of a line segment

Distance from point-to-object (line segment) is measured to the closest
point on the object (perpendicularly to the object silhouette)

. L Type 1
Bisector of two disjoint

line segments has <7 parts

Type 3

Input line segments

|
-+ =~ =~ 4+
+* o~ -
DCGI Felkel: Computational geometry
(13/57)

4+

VD In greater detalls

Bisector of two
line segment interiors

(in intersection of perpendicular slabs only)

—
—_

-+
= = = =
-~ -

Type 3

[Reiberg]

Bisector of (end-)point and
line segment interior

B

DCGI Felkel: Computational geometry

feat

VD of points and line segments examples

2 points Point & segment 2 line segments

Type 1 Type 1

- - -+ Type 3 Type 3 %
+++++
- + —+
e o Felkel: Computational geometry

Voronoi diagram of line segments

= Has more complex bisectors of line segments
— VD contains line segments and parabolic arcs

= Still 0(n) combinatorial complexity

= Assumptions on the input line segments:
— non-crossing

— strictly disjoint end-points (slightly shorten the segm.)

If(we allow touching segments)

. \ Shared endpoints cause complication:

The whole region is equally close
to two line segments

-
+++++
-+~ -+
-~ DC I Felkel: Computational geometry
G (16 /57)

Fortune’s algorithm
for line segments

-
+++++
-+ -+ =+
-~ DC I Felkel: Computational geometry
G (18 /57)

Shape of beach line for line segments

Beach line = points with distance to the closest site above
sweep line | equal to the distance to |

Beach line contains
— parabolic arcs when closest to a site end-point

— straight line segments when closest to a site interior
(or just the part of the site interior above | if the site s intersects |)

P (This is the shape of the beach line) %
Felkel: Computational geometry
DCGI (19/ 57)

Beach line breakpoints types site = line segment

Breakpoint p on the beach line is equidistant from |
and equidistant and closest to:

ons 1. twO SIte end-points => p traces a VD line segment

2. two site interiors => p traces a VD line segment
3. end-point and interior => p traces a VD parabolic arc
4. one site end-point => p traces a line segment

(border of the slab
perpendicular to the site)

5. site interior intersects => p = intersection, traces
the scan line | the input line segment

Cases 4 and 5 involve only one site and therefore do
~not form a Voronoi diagram edge (are used by alg.onlg

o’ A o~ == =

-~ DC I Felkel: Computational geometry
G (20/57)

Breakpoints types - what they trace on VD

Parabolic arc on the Traced VD parabolic arc

beach line

[Berg]

= 1,2 trace a Voronoi line segment (part of VD edge) oraw
= 3 traces a Voronol parabolic arc (part of VD edge) oraw

= 4,5trace aline segment (used only by the algorithm) wove
— 4 limits the slab perpendicular to the line segment
— b5 traces the intersection of input segment with a sweep line

A (This Is the shape of the traced VD arcs) %
e o Felkel: Computational geometry
DCGI (21/57)

Site event — sweep line reaches an endpoint
4

. At upper endpoint of & \'

/,/ dangling //_/-
— Arc above is split into two 11 S e o
{ beach line *. 1 (lor3 2
— four new arcs are created 4 ¢ (1 0r 3 oreven

depending on

4-5,5-4 "
mutual positions)

(2 segments + 2 parabolas) --

o .
— Breakpoints for two segments
are of type 4-5-4

— Breakpoints for parabolas
depend on the surrounding
sites

* Type 1 for two end-points
* Type 3 for endpoint and interior
* etc...

-
+++++
-+~ -+
-~ DC I Felkel: Computational geometry
G (22 157)

./‘/‘ 1

sweep line

Site event — sweep line reaches an endpoint

Il. At lower endpoint of &

— Intersection with interior
(breakpoint of type 5)

— IS replaced by two breakpoints
(of type 4)
with parabolic arc between them

-
+++++
-+~ -+
-~ DC I Felkel: Computational geometry
G (23157)

Circle event — lower point of circle of 3 sites

= [Two breakpoints meet (on the beach-line)

= Solution depends on their type

— Any of first three types (1,2,0r 3) meet (circle event)
— 3 sites involved — VVoronoi vertex created

— Type 4 (segment interiors) with something else
— two sites involved — breakpoint changes its type

— Voronol vertex not created
(Voronoi edge may change its shape)

— Type 5 (on segment) with something else
— never happens for disjoint segments
(meet with type 4 happens before)

-
+++++
-+~ -+
-~ DC I Felkel: Computational geometry
G (24 157)

Breakpoints types - what they trace on VD

Parabolic arc on the Traced VD parabolic arc

beach line

[Berg]

= 1,2 trace a Voronoi line segment (part of VD edge) oraw
= 3 traces a Voronol parabolic arc (part of VD edge) oraw

= 4,5trace aline segment (used only by the algorithm) wove
— 4 limits the slab perpendicular to the line segment
— b5 traces the intersection of input segment with a sweep line

A (This Is the shape of the traced VD arcs) %
e o Felkel: Computational geometry
DCGI (25 /1 57)

Motion planning
example

-
+++++
-+~ -+
-~ DC I Felkel: Computational geometry
G (26 /1 57)

Motion planning example - retraction ruseninran

Find path for a circular robot of radius r from gg;4r¢ 10 qena

[Berg]

—_
=
-+ - +
-~ DCGI Felkel: Computational geometry
- +
(27 157)

+ 4+ + + 4+ 4+ o+ o+ o+

Motion planning example - retraction ruseninran

Find path for a circular robot of radius r from g.t4+ t0 Geng

= Create Voronoi diagram of line segments,
take it as a graph

s Project ggqr+ aNd gppg 10 Pgpgre and P, 4z0n the VD

= Remove segments with distance to sites smaller than
radius r of a robot

= Depth first search if path from Py .+ t0 P,,,4 €XIStS
= Report path Astart Pstart --- path .+ Pend Qena

= O(nlog n) time using O(n) storage

- : —
+++++
+* o~ -
-~ DCGI Felkel: Computational geometry
(28 /157)

Higher order VD

-
+++++
-+~ -+
-~ DC I Felkel: Computational geometry
G (29/57)

Order-2 Voronol diagram (nearest to two sites)

Cell V(p;, pj): the set of points

of the plane closer
to each of p; and p;

than to any other site

V(1,2)

Property
The order-2 VVoronoi

regions are convex V(1,3)

V(3,4)

V(1,4)

- e [Nandy]
> S~ o~ 4~ 4
-+ -+ -+
DCGI Felkel: Computational geometry
(30/57)

Construction of V(3,5) = V(5,3)

[Nandy] + 4

Intersection of all halfplanes o S
|4 35 — 3,x)N| |h(5x)

excepth(35)andh(53) ()‘l() (5, %)

- = + + + 4 r+x¢5+++++x¢8+%+
7 DCGI - T WS

Order-2 Voronol edges

edge : set of centers of

. . /§ \ \
circles passing through /o \
2 sites s and t and ' V(5,7)
containing site p %
=> Cp(S,t) . ,7 , ‘
(Edge splits the cell for p) Ye L L.
°6

Question
Which are the regions
on both sides of cp(s,t) ?

=> cells V(p,s) and V(p,t)

—_

- [Nandy]
>
DCGI Felkel: Computational geometry
(32/57)

14
.|.

vertex : center of a circle
passing through at least
3 sites Q and containing
either site p or nothing

= Up(Q) or uy(Q U p)
s (2,3,7), Up(3,6,7,5)

(circle circumscribed to Q)

DCGI Felkel: Computational geometry
(33/57)

Order-2 Voronol vertex u,(Q)

27 N\ V(5,7)

vertex : center of a circle
passing through at least
3 sites Q and containing

either| site p|or nothing

Case u,(Q)
Usg (2,3,7)

Cell 5 is inside for all
Incident edges:
C5(2,3)
C5(2,7)
C5(3,7)
=> 5 is inside for the circle

with center in VVoronoi vertex
S o Felkel: Computational geometry
DCGI (34/57)

Order-2 Voronol vertex u,(Q U p)

vertex : center of a circle V(5,7)
passing through at least °2 e~ _5
3 sites and containing V(3,52 = (3‘;)\
either site p or [nothing] I' R S L)
| : |
Case ux(QUDpD) 3 o
u§(3,5,6,7) ..V(3’6)‘\ a c?(?,g)g '5'/6 &
1 VA) 76 V(6,7
Cell 5 is not inside -—
for all incident edges:
CS (3;7) °4
C6(3,7)
(3(5,6)
C,(5,6)

:>+5;is+on circle with center in Voronoi vertex

- A o~ =
-+~ -+
-~ DC I Felkel: Computational geometry
G (35/57)

Order-k Voronoi Diagram

Single step V, = Viiq
The order-k diagram can be constructed from the order-(k — 1) diagram
In O0(knlogn) time

Globally
k—1

2 O(inlogn) = 0(k?nlogn)
i=1

FromV; - I,
The order-k diagram can be iteratively constructed in 0(k?nlogn) time
from the pointset of size n

- e [Preparata]
> S o~ =
+* o~ -
DCGI Felkel: Computational geometry
(381/57)

Order n-1 VD
(Farthest-point Voronoi diagram)

-
+++++
-+ -+ =+
-~ DC I Felkel: Computational geometry
G (39/57)

°4 V.13?
V_105)

Farthest-point Voronol diagram

V.(p) cell
= set of points in the
plane farther from p;
than from any other
site

Vor_(P) diagram

= partition of the plane
formed by the farthest
point VVoronoi regions,
their edges, and
vertices

V_105) V.12

[Nandy]

o+ + +
Felkel: Computational geometry
+ + + + + +
(41157)
+r 4+ 4+ + 4+ + 4+ + + 4+

Farthest-point Voronoi region (cell)

Computed as intersection
of halfplanes, but we take
“other sides” of bisectors

Construction of V_(7)
Vi) = Ne=1 R, %), y # x

Property 3
The farthest point VVoronoi
regions are convex
and unbounded

-+

-~ -~
. 22T + + 4+ 4+ o+ 4+ o+ o+ [Nandy]
- - 7+ o+ F 4+ o+ F o+ + + o+ o+ o+ o+ + o+ o+ o+ o+
- Felkel: Computational geometry
DCGI + 4+ 4+ o+ F F + o+ o+ o+ + o+ F o+ o+ o+ 4+ o+ o+ o+ o+
(42 157)
F o+ 4+ 4+ 4+ 4+ 4+ 4+ o+ o+ 4+ o+ o+ o4+ Y Y O+ F o+ o+ o+ 4+ o+ o+ o+ o+

+ 4+ + 4+

+ + + +

+ 4+ + + 4+ o+ o+ o+ o+ o

Farthest-point Voronol region

Properties:

= Only vertices of the convex hull have their cells in farthest
Voronol diagram

= The farthest point 2
Voronol regions
are unbounded

= The farthest point 3°
Voronol edges and
vertices form a tree 6
(in the graph sense)

4 V1)

2 [Nandy]
+++++
+* o~ -
-~ DCGI Felkel: Computational geometry
(43/57)

Farthest point Voronol edges and vertices

edge : set of points equidistant vertex : point equidistant from
from 2 sites and closer to at least 3 sites and closer to
all the other sites all the other sites

- — Enclosing circle
> S~ o~ 4~ 4
= 7+ Nandy]
DCGI Felkel: Computational geometry [y
(44157)

Application of Vor ,(P) : Smallest enclosing circle

= Construct Vor_,(P) and find minimal circle with
center in Vor_(P) vertices or on edges

- : -4
+++++ [Nandy]
-+ -+ =+
-~ DC I Felkel: Computational geometry
G (47 157)

Farthest-point Voronoil diagrams example

Roundness of manufactured objects
= |nput: set of measured points in 2D

u Output W|dth Of the Sma”eSt W|dth annUIUS mezikruzi s nejmensi Sifkou
(region between two concentric circles C; .., and C_)

Three cases to test — one will win:

++::;aL3 In — 1 out b) 1 point in — 3 out c)2|n— out
Felkel: Computational geometry
DCGI (48157)

Smallest width annulus — cases with 3 pts

a) C,,.or cONtains at least 3 points

Center Is the vertex of normal VVoronoi P
diagram (15t order VD)

The remaining point on C_ ., In O(n) for
eaCh Vertex - not the largest (inscribed) empty circle - as discussed on seminar

as we must test all VD vertices in combination with point on C outer [Berg]

- 0m) 3in—-1 out

b) C, e CONtains at least 3 points

= Center is the vertex of the
farthest Voronoi diagram

= The remaining point on C; ., IN

O(n) ~ not the smallest enclosing circle - as discussed'on seminar
as we must test all vertices in combination with point on Cinner

=~ 0(n?
Felkel: Computational geometry
+
(49/57)

+ + + + 4+

Smallest width annulus — case with 2+2 pts

c) Ciner @nd C_ ., CONtain 2 points each

= Generate vertices of overlay of Voronoi ()
and farthest-point Voronoi (- - -) diagrams
=> O(n?) candidates for centers
(we need only vertices,
not the complete overlay)

= annulus computed in O(1)
from center and 4 points
(same for all 3 cases)

o O(n2)

- =~ - [Berg]
+++++
+* o~ -
-~ DCGI Felkel: Computational geometry
(50/57)

S

mallest width annulus

Smallest-Width-Annulus
Input: Set P of n points in the plane
Output: Smallest width annulus center and radii r and R (roundness)

1.

2.

Compute
and farthest-point Voronoi diagram Vor_(P) of P
For each vertex of (r) determine the farthest point (R) from P

=> O(n) sets of four points defining candidate annuli — case a)
For each vertex of Vor_,(P) (R) determine the closest point (r) from P
=> O(n) sets of four points defining candidate annuli — case b)
For every pair of edges and Vor_,(P) test if they intersect
=> another set of four points defining candidate annulus —c) ;

O(n log n)
For all candidates of all three types 2. 0(n?)
chose the smallest-width annulus 3. 0O(n?)
4. 0O(n?)
5. 0(n?)

n2) time using O(n) storage

e et

Fo+ + +

Order n-1 VD construction

-
+++++
-+~ -+
-~ DC I Felkel: Computational geometry
G (52157)

Modified DCEL for farthest-point Voronoi d

= Half-infinite edges -> we adapt DCEL

= Half-edges with origin in infinity
— Special vertex-like record for origin in infinity
— Store direction instead of coordinates
— Next(e) or Prev(e) pointers undefined

= For each inserted site p; o

— store a pointer to the most
CCW half-infinite half-edge Pigq- =~ "
of its cell in DCEL

-
+++++
-+ -+ =+
-~ DC I Felkel: Computational geometry
G (53/57)

O
cell of p;

ldea of the algorithm

1. Create the convex hull
and number the CH points randomly

2. Remove the points starting in the last of this
random order and store cw(p;) and ccw(p;) points
at the time of removal.

3. Include the points back and compute V_,

Pe Pe
Ps 2974 Ps
Da s’ Ps P3 Ps
P2 D2 Ps P3 P2
P1 P1
P4 P4

- : -t
+++++
+* o~ -
-~ DCGI Felkel: Computational geometry
(54 /157)
+

Farthest-point Voronoi d. construction

Farthest-pointVoronoi O(nlogn) expected time in 0(n) storage
Input: Set of points P in plane
Output: Farthest-point VD Vor_,(P)
1. Compute convex hull of P
2. Put points in CH(P) of P in random order py, ..., py,
3. Remove py, ..., p, from the cyclic order (around the CH).
When removing p;, store the neighbors: cw(p;) and ccw(p;) at the time
of removal. (This is done to know the neighbors needed in step 6.)
4. Compute Vor_,({p1,p2,p3}) as init
5. for i=4 tohdo
6. Add site p; to Vor_,({p1,p2, ---, Pi—1}) between site cw(p;) and ccw(p;)
7 - start at most CCW edge of the cell ccw(p;)
8 - continue CW to find intersection with bisector(ccw(p;), p;)
9. - trace borders of Voronoi cell p; in CCW order, add.edges
10. - remove invalid edges inside of Voronoi cell p;

+:+
s A o ==
-+ -+
DCGI .

Fo+ + +

¥

Farthest-point Voronoi d. construction

Insertion of site p;
Start with site ccw(p;)
and ccw edge of its cell

CW search of intersection

cell of
cew(pi)

-+ = ’DCGI Felkel: Computational geometry %
+
(56 / 57)

+ + + + 4+

Farthest-point Voronoi d. construction

@i After insertion of site p,

cw(pi)

cell of p;

- : —
+++++
+* o~ -
-~ DCGI Felkel: Computational geometry
(57 /157)

References

[Berg]

Mark de Berq, Otfried Cheong, Marc van Kreveld, Mark Overmars:

Computational Geometry: Algorithms and Applications, Springer-
Verlag, 3rd rev. ed. 2008. 386 pages, 370 fig. ISBN: 978-3-540-

77973-5, Chapter 7, http://www.cs.uu.nl/geobook/

[Preparata] Preperata, F.P., Shamos, M.l.: Computational Geometry. An

[Reiberg]

[Nandy]

Introduction. Berlin, Springer-Verlag,1985. Chapters 5 and 6

Reiberg, J: Implementierung Geometrischer Algoritmen.

Berechnung von Voronoi Diagrammen fuer Liniensegmente.
http://www.reiberg.net/project/voronoi/avortrag.ps.qz

Subhas C. Nandy: Voronoi Diagram — presentation. Advanced
Computing and Microelectronics Unit. Indian Statistical Institute.
Kolkata 700108 http://cs.rkmvu.ac.in/~sghosh/subhas-lecture.pdf

http://www.cgal.org/Manual/3.1/doc html/cgal manual/Segment
Voronoi diagram 2/Chapter main.html

http://www.personal.kent.edu/~rmuhamma/Compgeometry/
MyCG/Voronoi/Fortune/fortune.htm a http://www.liefke.com/hartmut/cis677/

DCGI Felkel: Computational geometry %
+
(58 /57)

-

—+

. 4+ 4+ + 4+ 4+ o+ o+ o+ 4

http://www.win.tue.nl/~mdberg/
http://tclab.kaist.ac.kr/~otfried/
http://www.cs.uu.nl/staff/marc.html
http://www.cs.uu.nl/staff/markov.html
http://www.cs.uu.nl/geobook/
http://www.reiberg.net/project/voronoi/avortrag.ps.gz
http://cs.rkmvu.ac.in/~sghosh/subhas-lecture.pdf
http://www.cgal.org/Manual/3.1/doc_html/cgal_manual/Segment%0b_Voronoi_diagram_2/Chapter_main.html
http://www.personal.kent.edu/~rmuhamma/Compgeometry/%0bMyCG/Voronoi/Fortune/fortune.htm
http://www.liefke.com/hartmut/cis677/

