

VORONOI DIAGRAM

PETR FELKEL

FEL CTU PRAGUE

felkel@fel.cvut.cz

https://cw.fel.cvut.cz/wiki/courses/cg/

Based on [Berg] and [Mount]

Version from 30.10.2019

Talk overview

Definition and examples

Applications

Algorithms in 2D

-D&C O(n log n)

Sweep line O(n log n)

- One of the most important structure in Comp. geom.
- Encodes proximity information What is close to what?
- Standard VD this lecture
 - Set of points nDim
 - Euclidean space & metric
- Generalizations
 - Set of line segments or curves
 - Different metrics
 - Higher order VD's (furthest point)

Voronoi cell (for points in plane)

- Let $P = \{p_1, p_2, ..., p_n\}$ be a set of points (sites) in dDim space ... 2D space (plane) here
- Voronoi cell $V(p_i)$ is open!
 - = set of points q closer to p_i than to any other site:

$$V(p_i) = \{q, \|p_i q\| < \|p_j q\|, \forall j \neq i\}, \text{ where } \|pq\| \text{ is the Euclidean distance between } p \text{ and } q$$

= intersection of open halfplanes

$$V(p_i) = \bigcap_{j \neq i} h(p_i, p_j)$$

 $h(p_i, p_j)$ = open halfplane -

Voronoi diagram (in plane)

Voronoi diagram Vor(P) of points P = what is left of the plane after removing all the open Voronoi cells Edge = collection of line segments (possibly unbounded) Vertex Region around Site (given point) the site is cel VoroGlide demo Felkel: Computational geometr

Voronoi diagram examples

Halflines (for non-collinear CH points)

2 points 1 point 3 points Cell The whole plain for 1 point Halfplane or strip for collinear points Convex (possibly unbounded) polygon Edges of VD || lines for collinear points

Felkel: Computational geometry

Voronoi diagram examples

Vertex with O(n) incident edges From total $|n_e| \le 3n - 6$ Cell with O(n) vertices From total $|n_v| \le 2n-5$

<= 42 + + +

17 <= 29

Voronoi diagram examples

Voronoi diagram (in plane)

= planar graph

- Subdivides plane into n cells (n = num. of input sites |P|)
- Edge = locus of equidistant pairs of points (cells)
 - = part of the bisector of these points
- Vertex = center of the circle defined by ≥ 3 points
 - => vertices have degree ≥ 3
- Number of vertices $n_v \le 2n 5 => O(n)$
- Number of edges $n_e \le 3n 6 => O(n)$ (only O(n) from $O(n^2)$ intersections of bisectors)
- In higher dimensions complexity from O(n) up to $O(n^{\lfloor d/2 \rfloor})$
- Unbounded cells belong to sites (points) on convex hull

Voronoi diagram O(n) complexity derivation

••• For *n* collinear sites: $n_v = 0 \le 2n - 5$

$$n_v = 0 \leq 2n - 5$$

 $n_e = (n - 1) \leq 3n - 6$ both hold

For *n* non-collinear sites:

- Add extra VD vertex ν in infinity $m_{\nu} = n_n + 1$
- Apply Euler's formula: $m_v-m_e+m_f=2$ Obtain $(n_v+1)-n_e+n=2 \begin{cases} n_e=n_v+n-1\\ n_v=n_e-n+1 \end{cases}$
- Every VD edge has 2 vertices Sum of vertex degrees = $2n_e$
- Every VD vertex has degree ≥ 3 Sum of vertex degrees = $3m_v = 3(n_v + 1)$
- Together $2n_e \ge 3(n_v + 1)$

$$2n_e \ge 3(n_v + 1)$$
 $2n_e \ge 3(n_v + 1)$ $2n_e \ge 3(n_e - n + 1 + 1)$ $2n_e \ge 3n_e - 3n + 6$ $2n_e \le 2n - 5$ $2n_e \le 3n_e - 3n + 6$

Voronoi diagram and convex hull

Delaunay triangulation

point set triangulation (straight line dual to VD)

maximize the minimal angle (tends to equiangularity)

Edges, vertices and largest empty circles

Largest empty circle $C_P(q)$ with center in

1. In VD vertex q: has 3 or more sites on its boundary

2. On VD edge: contains exactly 2 sites on its

Some applications

- Nearest neighbor queries in Vor(P) of points P
 - Point q ∈ P ... search sites across the edges around the cell q
 - Point q ∉ P ... point location queries see Lecture 2 (the cell where point q falls)
- Facility location (shop or power plant)
 - Largest empty circle (better in Manhattan metric VD)
- Neighbors and Interpolation
 - Interpolate with the nearest neighbor,
 in 3D: surface reconstruction from points
- Art

Voronoi Art

Voronoi Art

Algorithms in 2D

Fortune's Sweep lineO(n log n)

Divide and Conquer method

- Split points based on xcoord into L and R
- 2. Recursion on L and R1-3 points => return>3 points => recursion
- 3. Merge VD_L and VD_R
 - monotone chain
 - trim intersected edges
 - Add new edges from the chain

O(n log n)

Divide and Conquer method

- Split points based on xcoord into L and R
- 2. Recursion on L and R1-3 points => return>3 points => recursion
- 3. Merge VD_L and VD_R
 - monotone chain
 - trim intersected edges
 - Add new edges from the chain

O(n log n)

Felkel: Computational geometry

Divide and Conquer method

- Split points based on xcoord into L and R
- 2. Recursion on L and R1-3 points => return>3 points => recursion
- Merge VD_L and VD_R
 - monotone chain
 - trim intersected edges
 - Add new edges from the chain

O(n log n)

Felkel: Computational geometry

Divide and Conquer method

- Split points based on xcoord into L and R
- 2. Recursion on L and R1-3 points => return>3 points => recursion
- 3. Merge VD_L and VD_R
 - monotone chain
 - trim intersected edges
 - Add new edges from the chain

O(n log n)

Felkel: Computational geometry

(21/48)

Divide and Conquer method

- Split points based on xcoord into L and R
- 2. Recursion on L and R1-3 points => return>3 points => recursion
- Merge VD_L and VD_R
 - monotone chain
 - trim intersected edges
 - Add new edges from the chain

O(n log n)

Felkel: Computational geometry

(22 / 48)

Divide and Conquer method

- 3. Merge VD_L and VD_R
 - monotone chain

>3 points => recursion

- trim intersected edges
- Add new edges from the chain

O(n log n)

Felkel: Computational geometry

Monotone chain search in O(n),

- Avoid repeated rescanning of cell edges
- Start in the last tested edge of the cell (each edge tested ~once)
- In the left cell l_i continue CW, in the right cell r_i go CCW
- Image shows CW search on cell l_0 and CCW on cells r_i :

Divide and Conquer method complexity

- Initial sort $O(n \log n)$
- $O(\log n)$ recursion levels
 - O(n) each merge (chain search, trim, add edges to VD)
- Altogether $O(n \log n)$

Fortune's sweep line algorithm – idea in 3D

Cones in sites
Scanning plane π Both slanted 45°

Projection of the intersection to xy:

- Cone x plane => parabolic arcs
- Cone x cone => edges of VD

Fortune's sweep line algorithm

Differs from "typical" sweep line algorithm

DONE TODO

 Unprocessed sites ahead from sweep line may generate Voronoi vertex behind the sweep line

Fortune's sweep line algorithm idea

- Subdivide the halfplane above the sweep line linto 2 regions
 - 1. Points closer to some site above than to sweep line *l* (solved part)
 - 2. Points closer to sweep line *l* than any point above (unsolved part can be changed by sites below *l*)
- Border between these 2 regions is a beach line

Sweep line and beach line

- Straight sweep line l
 - Separates processed and unprocessed sites (points)
- Beach line (Looks like waves rolling up on a beach)
 - Separates solved and unsolved regions above sweep line (separates sites above l that can be changed from sites that cannot be changed by sites below l)
 - x-monotonic curve made of parabolic arcs
 - Follows the sweep line
 - Prevents us from missing unanticipated events until the sweep line encounters the corresponding site

Beach line

- Every site p_i above l defines a complete parabola
- Beach line is the function, that passes through the lowest points of all the parabolas (lower envelope)

Break point (bod zlomu)

- = Intersection of two arcs on the beach line
- Equidistant to 2 sites and sweep line l
- Lies on Voronoi edge of the final diagram

Notes

Beach line is x-monotone

= every vertical line intersects it in exactly ONE point

Along the beach line

Parabolic arcs are ordered

Breakpoints are ordered

Breakpoints

trace the Voronoi edges

compute their position on the fly from neighboring arcs

Events

What event types exist?

Events

There are two types of events:

- Site events (SE)
 - When the sweep line passes over a new site p_i ,
 - new arc is added to the beach line
 - new edge fragment added to the VD.
 - All SEs known from the beginning (sites sorted by y)

Colors:

Beach line

Voronoi diagram -VD

- Voronoi vertex event ([Berg] calls a circle event)
 - When the parabolic arc shrinks to zero and disappears, new Voronoi vertex is created.
 - Created dynamically by the algorithm
 for triples or more neighbors on the beach line
 (triples changed by both types of events)

Site event

Generated when the sweep line passes over a site p_i

- New parabolic arc created, it starts as a vertical ray from p_i to the beach line
- As the sweep line sweeps on, the arc grows wider
- The entry $\langle ..., p_j, ... \rangle$ on the sweep line status is replaced by the triple $\langle ..., p_j, p_i, p_j, ... \rangle$
- Dangling future VD edge created on the bisector (p_i, p_j)

Voronoi vertex event (circle event)

Generated when *l* passes the lowest point of a circle

- Sites p_i , p_i , p_k appear consecutively on the beach line
- Circumcircle lies partially below the sweep line (Voronoi vertex has not yet been generated)
- This circumcircle contains no point below the sweep line (no future point will block the creation of the vertex)
- Vertex & bisector (p_i, p_k) created, (p_i, p_j) & (p_i, p_k) finished
- One parabolic arc removed from the beach line

Data structures

- 1. (Partial) Voronoi diagram
- Beach line data structure T
- 3. Event queue Q
- 1. VD edges arise during: site event circle event?
- 2. VD vertices arise during: site event circle event?
- 3. Site events known from the beginning: yes no?
- 4. Circle events known from the beginning: yes no?

1. (Partial) Voronoi diagram data structure

Any PSLG data structure, e.g. DCEL (planar stright line graph)

- Stores the VD during the construction
- Contain unbounded edges

dangling edges during the construction (managed by

the beach line DS) and

 edges of unbounded cells at the end

=> create a bounding box

2. Beach line tree data structure T – status

- Used to locate the arc directly above a new site
- E.g. Binary tree T

 p_i – possibly multiple times

- Leaves ordered arcs along the beach line (x-monotone)
 - T stores only the sites p_i in leaves, T does not store the parabolas
- Inner tree nodes breakpoints as ordered pairs $\langle p_i, p_k \rangle$
 - p_i , p_k are neighboring sites
 - Breakpoint position computed on the fly from p_i , p_k and y-coord of the sweep line
- Pointers to other two DS
 - In leaves pointer to event queue, point to node when arc disappears via Voronoi vertex event – if it exists
 - In inner nodes pointer to (dangling) half-edge in DCEL of VD, that is being traced out by the break point

Max 2n -1 arcs on the beach line

New site splits just one arc

2. Beach line tree T

3. Event queue Q

- Priority queue, ordered by y-coordinate
- For site event
 - stores the site itself
 - known from the beginning
- For Voronoi vertex event (circle event)
 - stores the lowest point of the circle
 - stores also pointer to the leaf in tree T
 (represents the parabolic arc that will disappear)
 - created by both events, when triples of points become neighbors (possible max three triples for a site)
 - $-\overline{p_i}, \overline{p_j}, \overline{p_k}, p_l, p_m$ insert of p_k can create up to 3 triples and delete up to 2 triples (p_i, p_j, p_l) and $(p_j, p_l, p_m)_m$

Fortune's algorithm

FortuneVoronoi(P)

Input: A set of point sites $P = \{p_1, p_2, ..., p_n\}$ in the plane

Output: Voronoi diagram Vor(P) inside a bounding box in a DCEL struct.

- 1. Init event queue Q with all site events
- 2. while (Q not empty) do
- 3. I consider the event with largest *y*-coordinate in Q (next in the queue)
- 4. **if**(event is a *site event* at site p_i)
- 5. **then** HandleSiteEvent(p_i)
- else HandleVoroVertexEvent(p_i), where p_i is the lowest point of the circle causing the event
- 7. remove the event from Q
- 8. Create a bbox and attach half-infinite edges in T to it in DCEL.
- Traverse the halfedges in DCEL and add cell records and pointers to and from them

Handle site event

HandleSiteEvent(p_i)

Input: event site p_i Output: updated DCEL

- 1. Search in T for arc α vertically above p_i . Let p_i be the corresponding site
- 2. Apply insert-and-split operation, inserting a new entry of p_i to the beach line T (new arc), thus replacing $\langle ..., p_i, ... \rangle$ with $\langle ..., p_i, p_i, p_i, ... \rangle$
- 3. Create a new (dangling) edge in the Voronoi diagram, which lies on the bisector between p_i and p_j
- 4. Neighbors on the beach line changed -> check the neighboring triples of arcs and insert or delete Voronoi vertex events (insert only if the circle intersects the sweep line and it is not present yet).
 Note: Newly created triple p_j, p_i, p_j cannot generate a circle event because it only involves two distinct sites.

Handle Voronoi vertex (circle) event

HandleVoroVertexEvent(p_i)

Input: event site p_j Output: updated DCEL

Let p_i , p_i , p_k be the sites that generated this event (from left to right).

- 1. Delete the entry p_j from the beach line (thus eliminating its arc α), i.e.: Replace a triple $\langle ..., p_i, p_i, p_k, ... \rangle$ with $\langle ..., p_i, p_k, ... \rangle$ in T.
- 2. Create a new vertex in the Voronoi diagram (at circumcenter of $\langle p_i, p_j, p_k \rangle$) and join the two Voronoi edges for the bisectors $\langle p_i, p_j \rangle$ and $\langle p_j, p_k \rangle$ to this vertex (dangling edges created in step 3 above).
- 3. Create a new (dangling) edge for the bisector between $\langle p_j, p_k \rangle$
- 4. Delete any Voronoi vertex events (max. three) from Q that arose from triples involving the arc α of p_j and generate (two) new events corresponding to consecutive triples involving p_i , and p_k .

Beach line modification

Q: Beach line contains: abcdef

After deleting of d, which triples vanish and which triples are added to the beach line?

Handling degeneracies

Algorithm handles degeneracies correctly

- 2 or more events with the same y
 - if x coords are different, process them in any order
 - if x coords are the same (cocircular sites)
 process them in any order,
 it creates duplicated vertices with
 zero-length edges,
 remove them in post processing step

- Site below a beach line breakpoint
- Creates circle event on the same position ______
 remove zero-length edges in post processing step

zero-length edge

References

[Berg] Mark de Berg, Otfried Cheong, Marc van Kreveld, Mark Overmars: Computational Geometry: Algorithms and Applications, Springer-Verlag, 3rd rev. ed. 2008. 386 pages, 370 fig. ISBN: 978-3-540-77973-5, Chapter 7, http://www.cs.uu.nl/geobook/ Mount, D.: Computational Geometry Lecture Notes for Fall 2016, [Mount] **University of Maryland, Lectures 11 and 16.** http://www.cs.umd.edu/class/fall2016/cmsc754/Lects/cmsc754-fall16-lects.pdf [Preparata] Preperata, F.P., Shamos, M.I.: Computational Geometry. An Introduction. Berlin, Springer-Verlag, 1985. Chapter 5 [VoroGlide] VoroGlide applet: http://www.pi6.fernuni-hagen.de/GeomLab/VoroGlide/ [Fortune] Fortune's algorithm applet: http://www.personal.kent.edu/~rmuhamma/Compgeom MyCG/Voronoi/Fortune/fortune.htm http://www.personal.kent.edu/~rmuhamma/Compo [Muhama] compgeom.html Felkel: Computational geometry