
DeWall: A Fast Divide & Conquer

Delaunay Triangulation Algorithm in E
d

P. Cignoniz, C. Montaniz, R. Scopigno?

z
I.E.I. { Consiglio Nazionale delle Ricerche, Via S. Maria 46, 56126 Pisa, ITALY

E-mail: fcignoni, montanig@iei.pi.cnr.it

?

CNUCE { Consiglio Nazionale delle Ricerche , Via S. Maria 36, 56126 Pisa, ITALY

E-mail: r.scopigno@cnuce.cnr.it

October 1, 1997

Abstract

The paper deals with Delaunay Triangulations (DT) in Ed space. This classic

computational geometry problem is studied from the point of view of the e�ciency,

extendibility to any dimensionality, and ease of implementation.

A new solution to DT is proposed, based on an original interpretation of the well-

known Divide and Conquer paradigm. One of the main characteristics of this new

algorithm is its generality: it can be simply extended to triangulate point sets in

any dimension. The technique adopted is very e�cient and presents a subquadratic

behaviour in real applications in E3, although its computational complexity does

not improve the theoretical bounds reported in the literature. An evaluation of the

performance on a number of datasets is reported, together with a comparison with

other DT algorithms.

Keywords: Delaunay triangulation, Divide & Conquer, Uniform Grids.

Correspondence address: R. Scopigno, CNUCE - C.N.R., v. S. Maria 36, 56126 Pisa, Phone:

+39 50 593304 , E-mail: r.scopigno@cnuce.cnr.it

Abbreviated article title: \DeWall: Fast D&C Delaunay Triangulation"

1

1 Introduction

Triangulation is one of the main topics in computational geometry and it is commonly used in a

large set of applications, such as computer graphics, scienti�c visualization, robotics, computer

vision and image synthesis, as well as in mathematical and natural science. Given a point set P ,

the Delaunay Triangulation (DT) is a particular triangulation, built on the points in P , which

satis�es the empty circum-circle property: the circum-circle (-sphere in E3 or -hypersphere in

Ed) of each simplicial cell in the triangulation does not contain any input point p 2 P . Many

algorithms have been proposed for the DT of a set of sites in E2, E3 or Ed, and most of them

are reviewed in [1, 2].

Unfortunately there has been little research into implementations and performance eval-

uations of Delaunay triangulators. Few papers report evaluations of real implementations or

give experimental comparisons of di�erent algorithms. Worst case time complexities are gen-

erally given, but such analyses, from the point of view of the application programmer, are

not always su�cient to make the correct decisions. In fact, theoretically better algorithms can

sometimes be outperformed by more naive methods; the theoretical asymptotic worst case com-

plexity sometimes fails to consider the optimization techniques that can be applied to reduce

the expected complexity.

A new divide & conquer DT algorithm is proposed in this paper. The algorithm gives a

general and simple solution to DT in Ed space and makes use of accelerating techniques which

are speci�c to computer graphics.

The paper is organized as follows. De�nitions and a taxonomy of Delaunay triangulation

algorithms are presented in Section 2. The proposed algorithm is described in detail in Section 3,

together with some optimization techniques. The performances of the proposed solution are

evaluated on a number of datasets and compared with other solutions in Section 4. Conclusions

are drawn in the last section.

2 Delaunay Triangulation

Given a point set P in Ed, a k-simplex, with k � d, is de�ned as the convex combination of k+1

a�nely independent points in P , called vertices of the simplex (e.g., a triangle is a 2-simplex

and a tetrahedron is a 3-simplex). An s-face of a simplex is the convex combination of a subset

of s + 1 vertices of the simplex (i.e., a 2-face is a triangular facet, 1-face is an edge, 0-face is a

vertex).

2

A triangulation � de�ned on a point set P in Ed space is the set of d-simplices such that:

1. a point p in Ed is a vertex of a simplex � in � i� p 2 P ;

2. the intersection of two simplices in � is either empty or a common face.

3. the set � is maximal: there does not exist any simplex � that can be added to � without

violating the previous rules;

A triangulation � is a Delaunay Triangulation i� the hypersphere circumscribing each

simplex does not contain any point of the set P [3, 4]. The Delaunay triangulation of a given

point set P is unique if there do not exist in P d + 2 points lying on the same hypersphere.

Such cases, also known as degeneracies, can be managed by using local perturbation schemes

[5].

The duality between DTs and Voronoi diagrams is well known [4] and therefore algorithms

are given for the construction of DT from Voronoi diagrams. However, direct construction

methods are generally more e�cient because the Voronoi diagram does not need to be computed

and stored. Direct DT algorithms [1] can be classi�ed as follows:

� local improvement { starting with an arbitrary triangulation, these algorithms locally

modify the faces of pairs of adjacent simplices according to the circum-sphere criterion;

� on-line (or incremental insertion) { starting with a simplex which contains the convex

hull of the point set, these algorithms insert the points in P one at a time: the simplex

containing the currently added point is partitioned by inserting it as a new vertex. The

circum-sphere criterion is tested on all the simplices adjacent to the new ones, recursively,

and, if necessary, their faces are
ipped;

� incremental construction { the DT is constructed by successively building simplices whose

circum-hyperspheres contain no points in P ;

� higher dimensional embedding { these algorithms transform the points into the Ed+1 space

and then compute the convex hull of the transformed points; the DT is obtained by simply

projecting the convex hull into Ed; for a comparison of the di�erent approaches see [6];

� divide & conquer (D&C) { this is based on the recursive partition and local triangulation

of the point set, and then on a merging phase where the resulting triangulations are joined.

Current algorithms are not generalized to Ed space, but limited to E2 space alone.

3

On-line methods [7] hold the lower worst case time complexity, O(n log n + nd d
2
e) [8].

Moreover, these methods in their naive implementation are simple to program and can be

generalized to manage point sets in Ed space.

D&C solutions hold in E2 the same complexity as on-line methods, but a general D&C

Ed (d > 2) solution has not been proposed yet. The main problem here is the design of the

merging phase. Due to the explicit ordering of the edges incident in a vertex (Figure 1), the

merging phase is simple in E2 [9], but hard to design in Ed where this ordering is not given.

The algorithm proposed in this paper bypasses this problem by reversing the order between

the solutions of sub{problems and the merging phase. The classical D&C algorithms recursively

subdivide the input points, construct two partial DTs and then merge them. Our solution is

based on a more complex division phase, in which the input dataset P is split into P1 and P2,

and a section of the DT is immediately built. This partial triangulation allows the algorithm

to recursively triangulate the two point sets P1 and P2, taking into account the border of the

partial triangulation and avoiding the need for a further merging phase. A \merging" simplex

set is thus built before the subproblems are solved: we partition the problem solution, instead of

its instance. The partial triangulation can be built very simply using a constructive rule similar

to Mc Lain's in its incremental construction approach [10]. This means we can specify a general

Ed D&C Delaunay triangulator. Its simple structure permits an e�cient implementation using

some well known optimization techniques.

3 The DeWall Algorithm

A new algorithm for the DT of a point set P in Ed is presented in this section. The algorithm

is based on the D&C paradigm, but this paradigm is applied in a di�erent way with respect

previous DT algorithms [9] [11]. The general structure of D&C algorithms is: divide the input

data into subset P1 and P2; recursively solve on P1 and P2; and merge the partial results S1

and S2 to build solution S.

In the case of triangulations, the input point set P can easily be divided using a cutting

plane such that the two associated halfspaces contain two point sets P1 and P2 of comparable

cardinality. The problem is how to implement the merging phase, i.e. how to build the union

of the two solutions S1 and S2. This union requires the triangulation of the space separating S1

and S2, and generally also requires a number of local modi�cations to S1 and S2. As previously

stated, this problem has been e�ciently solved for the E2 case [9] [11], but not for the general

4

Ed case.

Our approach to D&C is slightly di�erent. Instead of merging partial results, we apply a

more complex dividing phase which partitions the point set and builds, as �rst step, the merging

triangulation. The algorithm is then recursively applied to triangulate the two subsets of the

input dataset P .

The splitting plane � separates the point set P into two subsets P1 and P2. Analogously,

the splitting plane � divides a triangulation � into three disjoint subsets: the simplices that

are intersected by the plane, which we call the simplex wall ��, and the two sets of simplices

�1 and �2 that are completely contained in the two halfspaces de�ned by � (Figure 2). �� can

be choosen as a valid merging triangulation: (a) each � 2 �� is also in � and (b) subtracting

�� from � generates two disconnected simplicial complexes �1 and �2.

The DeWall (Delaunay Wall) algorithm, speci�ed in pseudo{pascal in Figure 3, consists

of the following steps:

� select the dividing plane �, split P into the two subsets P1 and P2 and construct ��;

� starting from ��, recursively apply DeWall on P1 and P2 to build �1 and �2;

� return the union of ��, �1 and �2.

The technique used to build the simplex wall �� is a slight variation on an incremental con-

struction algorithm; it is described in the next section.

3.1 Incremental construction of the simplex wall

The simplex wall can be simply computed by using an incremental construction approach: a

starting simplex is individuated and then � is built by adding a new simplex at each step

and without having to modify the current triangulation. This technique for DT was originally

proposed in E2 by Mc Lain [10], and then applied by Dobkin and Laszlo [12] for E3 subdivisions.

The incremental construction approach can be easily generalized to Ed triangulations: for

each (d�1)-face f , which does not lie on the ConvexHull(P), there are exactly two simplices �1

and �2 in �, such that �1 and �2 share the (d�1)-face f . The algorithm starts by constructing

an initial simplex �i; then, it processes all of the (d � 1)-faces of �i: the simplex adjacent

to each of them (if it exists, i.e. the face does not belong to the Convex Hull of P) is built

and added to the current list of simplices in �. All of the new (d � 1)-faces of each new

simplex are used to update a data structure, here called Active Face List (AFL). Update of the

5

AFL is as follows: if a new face is already contained in AFL, then it is removed from AFL;

otherwise, it is inserted in AFL because its adjacent simplex has not yet been built. The process

continues iteratively (extract a face f from AFL, build the simplex � adjacent to f , update the

AFL with the (d� 1)-faces of �, and then again extract another face from AFL) until AFL is

empty. In the implementation of the AFL data structure, the e�ciency of the most common

operations (Insert, Extract, Delete, Member) has to be guaranteed. Our implementation of the

AFL data structure is based on hash indexing, making it possible to manage AFL in nearly

constant time (an average of 1.15 - 1.5 accesses to the hash table were measured with the current

implementation to solve a query).

Given this general incremental construction algorithm, we only need to specialize it for the

construction of ��. In particular we have to detail: (a) how to build the initial simplex (the

MakeFirstSimplex function), (b) how to build the simplex adjacent to a face f (the MakeSim-

plex function), and(c) how this construction process can be limited to the simplices in ��.

Construction of the �rst simplex

The function MakeFirstSimplex produces a Delaunay d-simplex which is intersected by the

plane �, in order to start from this simplex the incremental construction of the simplex wall

��.

MakeFirstSimplex selects the point p1 2 P nearest to the plane �. It then selects a second

point p2 such that p2 is the nearest point to p1 on the other side of �. Then, it searches the

point p3 such that the circum-circle around the 1-face (p1; p2) and the point p3 has the minimum

radius; (p1; p2; p3) is therefore a 2-face of �. The process continues until the required d-simplex

is built.

Construction of the generic simplex

Given a face f , the function MakeSimplex builds the adjacent simplex by applying the DT

de�nition. For each point p 2 P , MakeSimplex computes the radius of the hypersphere which

circumscribes p and the face f . We choose the point p which, generally speaking, minimizes

this radius to build the simplex adjacent to f .

MakeSimplex selects the point p which minimizes the function dd (Delaunay distance):

dd(f; p) =

8<
:

r if c 2 Halfspace(f,p)

�r otherwise

with r and c the radius and the center of the circumsphere around f and p; given the plane on

6

which f lies, Halfspace(f,p) returns the halfspace which contains the new tetrahedra.

Let us introduce the following example to illustrate the de�nition above. Let us assume that

there exists a subset of points Q, which are contained in Halfspace(f,p) and are located on a

straight line which intersects the face f . If these points are processed in order of decreasing

distances from f , and the centers of the circumspheres are computed, we can observe that these

circumsphere radii will decrease until we get the �rst point qi 2 Q whose circumsphere center is

located in the opposite halfspace (the one which do not contains the points in Q). Then, for all

successive points qk; k > i, the radii will start to increase. The dd distance de�ned previously

takes into account this decreasing{increasing behaviour of the circumsphere radius.

The analysis of the points p 2 P is limited to the points which lie in the outer halfspace with

respect to face f (i.e. the halfspace which does not contain the previously generated simplex

that originates face f).

The outer halfspace associated with f contains no point of P i� face f is part of the Convex

Hull of P (the faces on the Convex Hull are the only faces that belong to just one simplex in

the triangulation). In this case the algorithm correctly returns no adjacent simplex and, in this

case only, MakeSimplex returns null.

A simple solution to reduce the cost of MakeSimplex function is to take into account, for

each point p in P , the current triangulation progress status. As soon as all of the simplices

incident in p have been built, p may be removed from P and it will no longer be tested in the

further invocations of MakeSimplex. The control on the number of incident simplices was im-

plemented with a counter associated with each vertex p, increased each time a new face incident

in p is built and decreased for each invocation of MakeSimplex on an incident face; as soon as

the counter returns zero, p may be deleted from P .

Construction of simplices in �� alone

A slight modi�cation to the canonical incremental construction approach is needed to build

only those simplices intersected by the splitting plane �. Instead of using a single list of active

faces (AFL), the algorithm uses three disjoint lists containing:

� AFL� : the (d� 1)-faces intersected by plane �;

� AFL1 : the (d� 1)-faces with all of the vertices in P1;

� AFL2 : the (d� 1)-faces with all of the vertices in P2;

7

For each simplex �, the algorithm inserts its (d � 1)-faces in the suitable face list. It then

extracts faces (on which the next simplices will be built) from the AFL� alone; this ensures

that each simplex built is part of the simplex wall ��.

The simplex wall construction process terminates when AFL� is empty. This process

returns both �� and the pair of active face lists AFL1 and AFL2. DeWall is then recursively

applied to the pairs (P1, AFL1) and (P2, AFL2), unless all the active face lists are empty. The

splitting plane � is cyclically selected as a plane orthogonal to the axes of the Ed space (X, Y

or Z in E3), in order to recursively partition the space with a regular pattern. Two-dimensional

examples of the simplex wall construction and of the recursive application of the algorithm are

shown in Figures 4 and 5, respectively.

3.2 Uniform grid

The DeWall algorithm is simple and easy to implement although in its naive implementation

the asymptotic time complexity is not optimal nor is its practical e�ciency good. An analysis

of the algorithm shows that the main ine�ciency is in the MakeSimplex function.

Each simplex is constructed from an adjacent simplex face, by �nding the dd-nearest point

(i.e. the nearest according to the dd metric). This search entails performing an O(n) test for

each simplex, where n is the number of sites in P . However, the construction of a new simplex

in expected constant time is possible.

The concept of local processing is often adopted in computer graphics either to speed up

sequential algorithms or to achieve parallelism. The speed up technique proposed here is based

on the Ed extension of the uniform grid (UG) [13]; for simplicity, the use of the UG is described

here for the case of DT in E3, supporting a regular partition of the space into hexahedral cells:

UG = fcijkg; i; j; k 2 [0::N] (1)

The main reason why uniform grid techniques are e�ective in geometric computations is that

two points, which are far apart, generally have little or no e�ect on each other. A large class of

geometric algorithms possess this property, ranging from visibility, to modeling (boolean oper-

ations, intersection detection, etc.) and computational geometry (point location, triangulation,

etc.) [14].

The uniform grid is used as an indexing scheme for the fast detection of the dd-nearest

point. A similar technique was also used by Fang and Piegl [15, 16] to speedup incremental 2D

8

and 3D Delaunay triangulation.

The space E3 is partitioned into cubic cells following a regular pattern. The UG structure

is built in a preprocessing phase, by computing for each cell cijk the subset of points in P

contained in cijk.

The MakeSimplex function is designed such that, analogously to Maus's proposal [17], the

UG is scanned in order of increasing distance from f . Given this partial ordering of the sites,

not all the points in P have to be analyzed for each face f . In fact, given a point p1 such

that dd(f; p1) = d1, all the points which are not contained in the sphere around f and p1

will certainly have a dd value greater than d1, and it is pointless to evaluate their dd value.

The analysis of the cells of UG can be stopped when there are no more cells contained in the

circumsphere around f and the current dd-nearest point (Figure 6).

The cells scanning order used is simpler than that proposed by Maus. Indeed we do not

test the cells contained in circumspheres with increasing radius (the sphere to cells conversion

is not a simple task) but we simply select and test all of the cells contained in the smallest

cube circumscribed to each circumsphere. This method is simpler because it avoid the scan{

convertion of spheres, and the number of cells selected is not much higher. Note that if the sphere

radius selected is small (up to three times the cell edge length) the discretized circumsphere

and the circum-cube are identical.

The choice of the right resolution for the uniform grid space crucially a�ects the e�ciency

of the algorithm. In the reported implementation, the resolution of the UG is de�ned such that

the number of cells is equal to the number of sites.

3.3 DeWall Time Complexity

The worst-case time complexity of the DeWall algorithm may be misleading: both the two

techniques used (D&C strategy and Uniform Grid optimization) does not guarantee worst

case optimality while o�ering good performances in pratical situations. It is possible to de�ne

patological datasets which cancel the e�ciency of both the D&C strategy and the UG: if DeWall

is applied to the dataset depicted in Figure 7, the construction of the �rst wall originates

the entire triangulation (all the simplices in the triangulation intersect the splitting plane �);

analogously, it is possible to choose site distributions that make the Uniform Grid not useful

at all. In these pathological situations the DeWall algorithm reduces itself to an incremental

construction algorithm, yielding a O(nd d
2
e+1) worst case time complexity. In spite of this

result, the algorithm behaves well in pratical cases (as shown in Section 4) yielding, in the

9

three-dimensional case, a plain subquadratic behaviour versus a O(n3) worst case complexity.

3.4 DeWall Space Complexity

The algorithm space requirements are bounded by the space complexity of:

� the point set P ;

� the active face list AFL; each AFL(n; d) is always a set of connected (d�1)-faces forming

a unique (d � 1) surface in Ed. Recalling that the number of (d� 1)-faces of a polytope

in Ed of n vertices is at most O(nb d
2
c) [18], the worst case space complexity of AFL(n; d)

is O(nb d
2
c);

� the outcoming triangulation; however, like the incremental construction algorithms, De-

Wall can return each simplex as soon as it is built, avoiding explicitely storing the trian-

gulation at run time.

Therefore, the worst case space complexity of DeWall is O(nb d
2
c). The worst case size of

the triangulation � in Ed is O(nd d
2
e), so it is interesting to note that the maximum space

required by the algorithm in this worst case is lower than (or at most equal to in E2) the

size of the outcoming triangulation. On the other hand, on line triangulators need the current

triangulation to be stored which is generally represented by the use of a hierarchical structure

which holds the history of the construction process for fast point{in{triangle computations.

4 Results and empirical evaluation

The performance of the algorithm was tested on two classes of datasets. The �rst class consists

of uniform datasets, where the locations of sites are generated using a uniform probability

distribution function (Figure 8). In the second dataset class, the sites are organized into a

number of bubbles with the density of sites decreasing as the distance from the bubble center

increases (Figure 8). The sites in each bubble are generated using an approximation of a normal

probability distribution function.

For each dataset class and for each resolution (number of sites), a number of di�erent

datasets were generated in E3; the times reported in Tables 1 and 2 are the means of the

run times measured on each dataset. The machine used for the timings was an SGI Indigo

workstation (MIPS R4000 cpu); the times include the uniform grid preprocessing. The results

obtained show an empirically estimated complexity which is clearly subquadratic in E3.

10

Uniform dataset

(No. of sites) 2000 4000 6000 8000 10000

DeWall

times (no opt.) 32.7 100.3 211.1 352.7 516.4

times (UG opt.) 4.4 9.4 14.8 20.7 26.5

#(� 2 �) 12,642 25,736 39,024 52,390 65,469

#(� 2 first ��) 1,497 2,396 3,106 3,666 4,385

#(cells visited) 12.86 13.15 14.43 14.15 14.15

max(sites per cell) 8 8 9 8 10

Incode

times (no opt.) 218.8 976. 2306. 4433. -

times (UG opt.) 5.8 13.8 22.7 32.6 43.1

Qhull

times 5.34 23.33 29.88 44.64 71.96

Detri

times 33.11 64.59 101.36 144.87 169.41

Table 1: Processing times, in seconds, required to triangulate the uniform dataset with various

triangulators, plus statistical information [#(� 2 �): number of tetrahedra in the �nal triangu-

lation; #(� 2 first ��): number of tetrahedra on the �rst simplex wall; #(cells visited): mean

number of cells visited to build a single tetrahedra; max(sites per cell): maximum number of

sites contained in each UG cell].

11

Another way to empirically evaluate DeWall is to compare it with other implementations.

We tested DeWall against two e�cient Delaunay triangulators that are publicly available:

� Incode: a totally incremental construction algorithm, with and without the use of the

UG optimization technique1. Incode was implemented by using most of the DeWall's

code;

� Qhull: a general dimension code for computing convex hulls and Delaunay triangulations.

It is an implementation of the Quickhull algorithm [19] for computing the convex hull2.

It was chosen because it quali�es as the fastest convex hull code for large datasets de�ned

in low dimension spaces;

� Detri: as part of the alpha-shape software, Detri builds the 3D DT by adopting an

incremental insertion and
ip approach [7]3.

The results in Tables 1 and their graphical representation in Figure 9 show that DeWall

is the most e�cient of the four software programs on regularly distributed datasets, while it

gives slightly slower times than Qhull on the bubble datasets. This is justi�ed by the lower

speedup obtained by adopting a UG on irregularly distributed datasets; the bubble datasets

contains the worst distribution of sites for algorithms that use a UG (and therefore the DeWall

algorithm).

Some statistics on the execution of the DeWall algorithm on the uniform dataset are also

reported in Table 1. The total number of tetrahedra returned is considerably lower than the

theoretical upper bound in E3, O(n2): it was linear with the number of sites (approximately

7 � n) in our experiments. The growth of the number of tetrahedra in the �rst wall is clearly

sublinear (approximately O(n
2

3)).

The mean number of cells visited for the construction of each simplex is not constant but

shows a low increase with the dataset resolution. This is due to the fact that, for each face f on

the ConvexHull(P) all of the cells contained in the positive halfspace of f have to be tested.

1
Incode and DeWall are available in public domain at the address

http://miles.cnuce.cnr.it/cg/swOnTheWeb.html
2
Qhull is provided by the Geometry Center, University of Minnesota; the Qhull software may be

downloaded from the WWW site http://freeabel.geom.umn.edu/software/download/qhull.html
3
Detri is provided by the Software Development Group at the National Center for Supercomputing

Applications (NCSA); info may be downloaded from the WWW site

http://www.ncsa.uiuc.edu/SDG/Software/Brochure/Overview/ALVIS.overview.html

12

Bubble datasets

(No. of sites) 2000 4000 6000 8000 10000

DeWall

times (UG opt.) 8.3 20.6 24.6 31.1 56.0

#(cells visited) 14.70 13.55 13.21 12.40 16.47

max(sites per cell) 250 496 1,178 536 200

Incode

times (UG opt.) 10.7 33.0 38.9 53.3 96.2

Qhull

times 5.10 12.00 18.04 23.15 30.47

Detri

times 32.55 67.51 105.82 156.00 188.14

Table 2: Triangulation of the bubble datasets using di�erent triangulators (processing times in

seconds).

The simplices which do not lie on the ConvexHull(P) need, on average, a constant number of

cell tests. The increase in the mean number of cells visited is therefore justi�ed by the increase

in the faces on the ConvexHull(P). Finally, the maximum number of sites per cell is reported

in Tables 1 and 2.

5 Conclusions

The DeWall algorithm has been presented as an original solution to Delaunay triangulation,

based on a particular interpretation of the D&C paradigm. This new approach has greatly

simpli�ed the merging phase and makes it possible to de�ne a general D&C solution for point

sets de�ned in any dimension.

Optimization techniques have been designed to speed up the proposed algorithm. Our

results show how common computer graphics techniques (e.g. data indexing and optimized

point selection) can dramatically increase the e�ciency of a typical computational geometry

task. The optimality of the DeWall algorithm from the viewpoint of asymptotic complexity

is hard to prove. However, the experimental results are interesting and show an empirically

13

estimated complexity which is clearly subquadratic in E3.

References

[1] F. Aurenhammer. Voronoi diagrams - A survey of a fundamental geometric data structure.

ACM Computing Survey, 23(3):345{405, September 1991.

[2] P. Su and R. L. Scot Drysdale. A comparison of sequential delaunay traingulation algo-

rithms. In 11th ACM Computational Geometry Conf. Proc. (Vancouver, Canada), pages

61{70. ACM Press, 1995.

[3] B. Delaunay. Sur la sphere vide. Bull. Acad. Science USSR VII: Class. Sci. Mat. Nat.,

pages 793{800, 1934.

[4] F.P. Preparata and M.I. Shamos. Computational Geometry: an Introduction. Springer-

Verlag, 1985.

[5] H. Edelsbrunner and E.P. M�ucke. Simulation of simplicity: a technique to cope with

degenerate cases in geometric algorithms. ACM Transaction on Graphics, 9(1):66{104,

Jan 1990.

[6] D. Avis and D. Bremner. How good are convex hull algorithms? In Proceedings 11th

A.C.M. Symposium on Computational Geometry, pages 20{28, Vancouver, Canada, 1995.

ACM Press.

[7] H. Edelsbrunner and N. R. Shah. Incremental topological
ipping works for regular trian-

gulations. In Proceedings of the 8th Annual ACM Symposium on Computational Geometry,

pages 43{52, June 1992.

[8] L.J. Guibas, D. E. Knuth, and M. Sharir. Randomized incremental construction of De-

launay and Voronoy diagrams. In Automata, Languages and Programming, LNCS N.443,

pages 414{431. Springer-Verlag, 1990.

[9] D.T Lee and B.J. Schachter. Two algorithms for constructing a Delaunay triangulation.

Int. J. of Computer and Information Science, 9(3):219{242, 1980.

[10] D.H. McLain. Two dimensional interpolation from random data. The Computer J.,

19(2):178{181, 1976.

14

[11] R.A. Dwyer. A faster divide and conquer algorithm for constructing Delaunay triangula-

tions. Algorithmica, 2:137{151, 1987.

[12] D.P. Dobkin and M.J. Laszlo. Primitives for the manipulation of three{dimensional sub-

divisions. Algorithmica, 4:3{32, 1989.

[13] V. Akman, W.R. Franklin, M. Kankanhalli, and C. Narayanaswami. Geometric computing

and uniform grid technique. Computer-Aided Design, 21(7):410{420, Sept. 1989.

[14] C. Narayanaswami. Parallel Processing for Geometric Applications. PhD thesis, Rensselaer

Polytechnic Institute, Troy, NY, December 1990.

[15] T.P. Fang and L.A. Piegl. Delaunay triangulation using a Uniform Grid. IEEE Computer

Graphics & Applications, 13(3):36{47, May 1993.

[16] T.P. Fang and L.A. Piegl. Delaunay triangulation in three dimensions. IEEE Computer

Graphics & Applications, 15(5):62{69, Sept. 1995.

[17] A. Maus. Delaunay triangulation and the convex hull of n points in expected linear time.

Bit, 24:151{163, 1984.

[18] H. Edelsbrunner. Algorithms in Combinatorial Geometry. Springer-Verlag, Berlin, 1987.

[19] C. Bradford Barber, D.P. Dobkin, and H. Huhdanpaa. The quickhull algorithm for convex

hull. Tech. Rep. GCG53-93, Geometry Center, University of Minnesota, July 1993.

15

Figure 1: Merging of two partial DT in E2 space.

Authors' biographies

Paolo CIGNONI is research scientist at the Istituto di Elaborazione della Informazione

of the National Research Council in Pisa, Italy. His research interests include computational

geometry and its interaction with computer graphics, scienti�c visualization, volume rendering.

Cignoni received in 1992 an advanced degree (Laurea) in Computer Science from the University

of Pisa where he is currently a PhD student.

Claudio MONTANI is a research director with the Istituto di Elaborazione della Infor-

mazione of the National Research Council in Pisa, Italy. His research interests include data

structures and algoritms for volume visualization and rendering of regular or scattered datasets.

Montani received an advanced degree (Laurea) in Computer Science from the University of Pisa

in 1977. He is member of IEEE.

Roberto SCOPIGNO is senior scientist at the Istituto CNUCE of the National Research

Council in Pisa, Italy; since 1990 he has a joint appointment at the Department of Computer

Engineering of the University of Pisa. His research interests include interactive graphics, scien-

ti�c visualization, volume rendering, parallel processing. Scopigno received an advanced degree

(Laurea) in Computer Science from the University of Pisa in 1984. He is member of IEEE and

Eurographics.

16

Figure 2: An example of DT in E2: � is the dividing line, and �� (the set of gray triangles)

is the associated simplex wall; �1 and �2 are the triangulations returned by the recursive

invocation of the DeWall algorithm on the two point set partitions.

17

Function DeWall (P : point set, AFL : (d-1)face list) : d-simplex list;

var f : (d-1)face; AFL�, AFL1, AFL2 : (d-1)face list;

t : d-simplex; � : d-simplex list; � : splitting plane;

begin

AFL�, AFL1, AFL2:=emptylist;

Pointset Partition(P, �, P1, P2);

/* Simplex Wall Construction */

if AFL = ; then

t:=MakeFirstSimplex(P, �);

AFL:=(d-1)faces(t); Insert(t,�);

for each f 2 AFL do

if IsIntersected(f,�) then Insert(f, AFL�);

if V ertices(f) � P1then Insert(f, AFL1);

if V ertices(f) � P2 then Insert(f, AFL2);

while AFL� 6= ; do

f:=Extract(AFL�);

t:=MakeSimplex(f, P);

if t 6= null then

�:=� [ftg;

for each f 0: f 0 2 (d� 1)faces(t) AND f 0 6= f do

if IsIntersected(f 0,�) then Update(f 0,AFL�)

if V ertices(f 0
) � P1 then Update(f 0,AFL1)

if V ertices(f 0
) � P2 then Update(f 0,AFL2);

/* Recursive Triangulation */

if AFL1 6= ; then �:=� [DeWall(P1,AFL1);

if AFL2 6= ; then �:=� [DeWall(P2,AFL2);

DeWall:=�;

end;

Procedure Update (f :face, L : face list);

begin;

if Member(f,L) then Delete(f, L)

else Insert(f, L);

end;

Figure 3: DeWall algorithm.

18

Figure 4: Incremental construction of the simplex wall (�rst steps in a 2D example).

Figure 5: Some steps of the DeWall algorithm on a point set in E2.

19

Figure 6: On the left a 2D example of the cell visiting order of Maus (sphere scan conversion)

and, on the right, our technique (based on the analysis of all the UG cells contained in the

bounding box of each sphere).

Figure 7: The worst-case input dataset for the DeWall algorithm.

20

Figure 8: Spatial distribution of the sites: uniform dataset on the left, bubbles on the right.

0

50

100

150

200

2000 3000 4000 5000 6000 7000 8000 9000 10000

site number

Uniform Dataset

Detri
Qhull

Incode
Dewall

0

50

100

150

200

2000 3000 4000 5000 6000 7000 8000 9000 10000

site number

Uniform Dataset

Detri
Qhull

Incode
Dewall

0

50

100

150

200

2000 3000 4000 5000 6000 7000 8000 9000 10000

site number

Bubble Datasets

Detri
Qhull

Incode
Dewall

0

50

100

150

200

2000 3000 4000 5000 6000 7000 8000 9000 10000

site number

Bubble Datasets

Detri
Qhull

Incode
Dewall

Figure 9: The algorithm times in seconds: uniform datasets on the left, bubble on the right.

21

