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Introduction

Alternative name: Karhunene Loeve transform

Used for: data approximation, identifying sources of variance in the data
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Maximum variance formulation (1/3)

Let the data be {x; | i =1,2,..., N}, with sample mean X = %Zﬁ;l Xy, -

Let us find the unit vector u; to project to such that the variance J(u;) of the

(p)

projected data is maximized. The projection x;,” of an x,, to one-dimensional

subspace generated by u; is given by

pP) T T o
x\P) = u; (ulx,), uiu; =1.

The variance J(u;) of projected data is

N , 1
Z urx, —u;x) = N Z ul(x, — X)(x, — X) u; = ul Suy,

n=1

where S is the normalized scatter matrix:

1 < _ 7
:NZ(X”_X)(X”_X) :

n=1

(1)

(2)

(3)
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Maximum variance formulation (2/3) @

The Lagrangian of this optimization problem is

L(ug, A1) = J(ug) + A (1 - u?“@ =u;Suy + A\ (1 —ufw), (4)
con;c?aint

where A1 is the Lagrange multiplier. Taking the derivative w.r.t. the vector u; and
setting it to zero gives

a‘L(llla )\1)
8111

= SLI1 — )\1111 = O, (5)

and thus
Sul = )\1111 . (6)

This is the characteristic equation for the covariance matrix S. Any eigenvalue A; and
its corresponding eigenvector vy solves this equation, with variance J(u;) equal to:

J(u)) =uiSu; =ui Ajug = A . (7)

The maximum is attained if \; is the largest eigenvalue of the matrix S and u; is its
corresponding eigenvector.
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Example 1 - Iris dataset @ 0

Iris dataset: feature vectors are 4-dimensional, here dimensions 2 and 3 used (petal
length and sepal width). Data shown as crosses x.

5-0 | | | | | | |
4.5+ " (x—%)'S1(x—%)= -
—_ X (X—i)TUdiag[Ail,%]UT(x—i):1
El 4.0 I XX XX§ X X X | 9 10
S 351 L ] 1112
; XX§ XX X XX § X§
© 3.0 X ><><x§ X X ixxxxixix &~ XX X X . 13 14
8 X XX XXX § y X y
U::] 25 - X y X ><><X§ xx X X % X X - 15 16
8 X X X X
% X X 17|18
2.01 " mean x = (3.76, 3.05) |
A 19(20
1.5L | | | | | | | _
1 2 3 4 5 6 7 21|22
x1, petal length [cm]
S [ 3.09 —0.32 ] g, Uy [ A1 ] g, )" 23|24
— — 1, U2 1, U2
—0.32 0.19 Ao 25126
. _ | =099 -0.11 . _ B B
Eigenvectors: [up,us| = [ 0.11  —0.99 ] eigenvalues: A\ = 3.13, A\ = 0.15 27128
Variance is maximized when data are projected to direction uj;. 29130
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Maximum variance formulation (3/3) @

Recall: The variance of a 1-D projection is maximized when data are projected to the
direction of the eigenvector of S corresponding to the largest eigenvalue.

S is symmetric and positive semidefinite. The eigenvectors corresponding to different
eigenvalues are orthogonal.

It follows that the D-dimensional subspace maximizing the variance of the data is the
one formed by D eigenvectors of S corresponding the the D largest eigenvalues.

Note: "Variance" in the above sentence is the sum of variances in individual
orthogonal directions. For a 2-D subspace,
|
J(ug,uz) = [y (x5, — X)) + [uy (%, — X)]?. (8)
n=1
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Equivalence to Minimum error formulation (1/2) @ 0

Consider the complete orthogonal basis {u;} where ¢ =1,...,D. Thus

uTuj = 51’]' (9)

>

Each point can be represented as

D
Xp = ) Qpilly, (10) 11112
i=1
13(14
and

D . 15(16

n = 20U . 11
X ;(X u;)u (11) 17118

This is just expressing x,, in a rotated coordinate system given by orthonormal system |19[20
{u;}. Let us create an approximation to each x,, by truncating this expansion to only

M components, the remaining D — M components approximated by constants b;. 21|22
The approximation x,,: 2324
M D 25(26
¥ — T Vi1 1L
Xy = Z( S ;) + | Z biu; (12) 27108
1=1 1=M-+1

29(30
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Equivalence to Minimum error formulation (2/2) @

M D
1=1 1=M+1
Clearly,
b, =X'w;,,i=M+1,...,D (13)

The task is to find the optimal orthonormal basis {u;} which produces the best
approximation measured by

N

T({u)) = D [ — %l (14

n=1

The minimum error criterion is the complement of the maximum variance criterion,
and thus the solution to the set {u;} is the same.
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Multivariate Normal Model and PCA @

Recall that the ML estimate of the Multivariate Normal Distribution is defined by
sample mean X and sample covariance matrix S. The model is
x 1 %.8) = e { x2S x| (15)
X |X,S)= expl ——(x—X X — X
P \V |27S| P12

Denote stacked eigenvectors in descending order of their eigenvalues as U,
U = {u17u27"'7uD} (16)

Therefore (characteristic equation)

SU=UA=U ) , (17)

and
S = UAU". (18)
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Multivariate Normal Model and PCA

@

We approximate the data, as before, by projecting to first M eigenvectors. Thus,

given data point x we have

X —X= (517 527 ey 5M7 5M-|—17 ey 5D)

Note that we only can compute 01 .. 0,7, as often we don't or can't store all
eigenvectors for computing all ¢'s. However, we can easily compute

A=0%1+00sst . +0p=|x—X|"—07 -8 —...— %

and the exponent is then approximated as

R T 52 82 82 82, A
(x=%) 8 (x=%) = - ()\1+)\2+)\3+ Yor T2

Common choice: A = A\p;11q

(19)

(20)

(21)
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High-dimensional data (1/2) @ D

Dimensionality of data can be high, and even higher than number of samples.

Consider dimensionality D = 1M (one million) and number of samples N = 100. All
analysis still applies, but it would be wasteful to compute eigenvectors for the 1IMx1M
matrix, as its rank will anyway be at most N (thus 100). Let us define X to be a
matrix formed by stacking all the data vectors (after having subtracted the mean from

them): X = [x; — X, X2 — X, ..., XN — X|.

O I N1 W | =
(== T B =) T (" ~ N I\

Thus,
1 o S
S=+ Z;(xn ~X)(xn — %) = XX (22) |13|14
" 15(16
The characteristic equation is then 17118
1
WXXTu = \u. (23) 19120
21(22
Left-multiplying both sides by X! gives 23|24
W W 25(26
1 —~T —~T
NXTX (Xtu) =2 (X1u) . (24) 27|28
29|30
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High-dimensional data (2/2) @

Thus, XX, which is only 100 x 100, has exactly the same set of eigenvalues:
L xTx A (25)
— W = \wW.
N
Left-multiplying now by X, we get
1 T

Conclusion: If D > N, form the matrix T = %XTX and compute its eigenvalues
A's and eigenvectors w. Compute the eigenvectors of S = %XXT as

B Xw
[ Xwl|

A%

(27)
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Example 2 - Yale database (1/5)

images of 38 subjects, each under 64 different illumination conditions:

Subject 1, 64 illumination conditions
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Example 2 - Yale database (2/5)

images of 38 subjects, each under 64 different illumination conditions:

38 subjects
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Example 2 - Yale database (3/5) @ m p

images of 38 subjects, each under 64 different illumination conditions. Thus, there is 1|2

38 x 64 = 2432 images in total. Each of them is a feature vector with 3|4
192 x 168 = 32256 dimensions (pixels). PCA gives the following eigenvalues:

5(6

11. 718

9110

11(12

19(20
21|22
23|24

25|26

0 20 40 60 80 100 27108
eigenvalue index

29(30


http://cmp.felk.cvut.cz

Example 2 - Yale database (4/5)

| e

mean

1st ev 2nd ev 3rd ev

_/‘ \’
”"'

first 72 eigenvectors
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Example 2 - Yale database (5/5)

Reconstruction of original vector using eigenvectors

-

original mean and 3 evs mean and 10 evs

mean and 50 evs mean and 100 evs mean and 300 evs
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Linear Discriminant Analysis (LDA) @ D

Setting: Classification, training set: N7 points (class 1) and N> points (class 2) 112
Goal: Project data to a 1D subspace such that a low-error classifier can be 3|4
constructed.
Approach: Find a direction to project the data to such that the two classes are well 56
separated in this projection. 718
Example: Data as shown 9 (10
| | | | | 11(12
4l | ] 13|14
O 15(16
21
17k
° 19(20
—2| O 7 21(22
_al T 23(24
25(26
—6/ ,
-4 -2 0 2 4 6 8 27|28
29|30
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Linear Discriminant Analysis (LDA) @

Setting: Classification, training set: N7 points (class 1) and N> points (class 2)
Goal: Project data to a 1D subspace such that a low-error classifier can be
constructed.

Approach: Find a direction to project the data to such that the two classes are well
separated in this projection.

Example: Projection direction producing good separation

0.6}

0.1t

6 -4 -2 0 2 4 6 8
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Linear Discriminant Analysis (LDA) @

Setting: Classification, training set: N7 points (class 1) and N> points (class 2)
Goal: Project data to a 1D subspace such that a low-error classifier can be
constructed.

Approach: Find a direction to project the data to such that the two classes are well
separated in this projection.

Example: Projection direction producing bad separation

0.6
4|
0.5
2,
0.4
Or m
g 0.3
—2|
! 0.2
_4/?’ ,
; O 0.1}
-4 -2 0 2 4 6 8 06— =20 2 4 & s

Lproj
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LDA: What makes a good separation?

Training set: xj,..x} (class 1), x{,...x%;, (class 2).
Separation is higher when:
the means of projected data are farther apart, and/or

the scatters of the projected data are smaller.

These two observations combined suggest the following criterion to optimize:

(p1 — ,LL2)2
S1 + So

— Mmax

{41, 2: mean of projected data

L
T . k
k=) VX k=1,2
T Nk;ﬂ ( )

S1, So: scatter of projected data

Ny,

=S (VTxE—)? (R =1,2)

8 i=1

(28)

(29)

(30)

i
i
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LDA: Criterion

@

Ny,
(1 — p2)’ T< Tk 2
— max, =V X, S—g vV X, — k=12
51 + 59 Mk ky Sk 7;:1( pi)” ( )

Let us rewrite the criterion in terms of unprojected entities. The nominator:

(11 = ) = [VE (1 =3 = v (= %) (51 = %) v

-~

Sy,
The scatters:
Ny
_\T
slzg (VTX,L—V X1)? E vi i —X1)(x; —X1) Vv
i=1
N1
T
=v! E (x; —X1)(x; —X1)" | v
i=1
S1
So = VISyv S1,S5 : scatter matrices for classes 1, 2

(31)

(32)

(33)

(34)

(35)
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LDA: Criterion @ D

1|2
(1 — p2)? o
T Tk 2
— max, =V X, Sp= VX — k=12 36 34
S1 + S HE ks Ok ;( i = ) ) (36)
Therefore, the criterion can be rewritten as 5|6
718
(1 — po)? B vIiS,v B vIiS,v (37)
S1 + So B VT<Sl + SQ)V B VTSwV7 910
where everything except the to-be-found vector v is computed from the training data: 11112
T 13|14
Sy : between-class scatter matrix, Sy = (X1 — X3)(X1 — X2) (38)
15|16
S., : within-class scatter matrix, S, = S; + S» (39)
N 17|18
d T
Sk=) (xI—Xp)(xf-x) , (k=1,2) (40) |19(20
i=1
Let us now solve the maximization task:
vIiS,v
— 41
\a1 argrvnax VTS,V (41)
27|28
Note that there is no need to contrain v to e.g. unit length, as the scaling in
denominator and nominator cancels out. 2930
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LDA: Criterion maximization @

'S
V1 = argmax MM (42)

v VIS,V
Note that Sy is symmetric, positive semi-definite (rank 1) matrix.
Matrix S,, is symmetric, positive semi-definite.

1

Assume that S,, has full rank, thus S;Ul exists. Let S2, be the symmetric,
1 1

11 1
positive-definite matrix such that S,, = S, S%,. Let its inverse be denoted S~
Define a substitution

1 Symmetric, positive definite S:
7z =S2v. (43) S = Udiag[Ay, ..., A\p] U"*
U orthogonal, unit columns
_ T
Using the variable z, the criterion becomes S2 Ud'ag[\/ 1y ey VA ]UT
S— Udlag[\/_, . \/7] U
1 1 .
vIS,v B 21S.,2S:S.,27 (44) S—! Udlag[)\—l, cens ,\D] U'
vIS, v 71z

Let us fix the length of z to 1 (z'z = 1). The denomimator is then a constant, and
the criterion is maximized when the nominator is ma%dmizecii. The latter achieves

maximum for the largest eigenvalue \; of matrix S.,2S;,S+? and the corresponding
eigenvector z:
1 1
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LDA: Criterion maximization @ D

(copied from previous slide:) 112
. . 3|4
Sw2SpSw?z1 = A 46
b Z 121 (46) 5|6
1
Taking this zq, and substituting back, gives the solution vi = S,,?z;. But 78
_1
left-multiplying the previous equation by S,,#, we see that 910
1 _1
S=18,(Su?z1) = M(Su?z1), = S3'Syvi= vy (47) 1112
13|14
Thus vy can be computed directly as the elgenvector of S 1S, corresponding to the
highest eigenvalue, \; (note that S;1S; and S,, 2SwaZ share the eigenvalues). 1516
17|18
Moreover, S, has rank 1. There holds S, = (X; — X2)(X1 — X2) ", and
19|20
S,'Siz =S, (X1 — %) (% —§2>TZJ, (48) [57l0o
a scalar
23|24
thus the dominant eigenvector (the only one with non-zero eigenvalue) must be @
vi =S (%) — Xa). (49) |27|28

29(30
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LDA: Examples (1)

T2
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11(12

13|14
15|16
17|18
19(20
21|22
23(24
25|26

LDA: Examples (2)
4} 4>
2f 2>
Of 0»
| 8
-2t |
—4| |
—6! ‘ ) ‘ ‘ /I
| | 4 4 -2 0 2 4
: |
4t | 47
2,
0,
S
=2t
-4t
—4|
-6/ ‘ ‘ ‘
) O 2 " 8 -6}
1 —4 —2 0

28
29(30
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LDA: Invariance to linear transformations

Consider the case that the data points x's are transformed by a non-singular linear
transformation A. The entities appearing in formulation and solution of LDA are then

transformed as follows:

points | scatter matrix | inv. scatter m.
original X S S—!
transformed Ax ASA" A-TS-TA-T

Thus, vi = S;}(X; — X2) transforms to

The original projected coordinates are

Vri[‘X — (fl — XQ)TS

and do not change under A, as

/Ty
VX =

(X1 —X2) 'S

A TAx =

vi=ATTS TATIA(X - %) = ATIS (X — %)

wX7

(50)

(51)

(52)

O I N1 W | =
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Multiple Discriminant Analysis (MDA)

Generalization of LDA to multiple classes K

Define:

K
S, = Z S;  (sum of class scatters)
i=1

K
Sy =) Ni(X; —X)(X; — X)
=1
1 o
X = m;xf (mean of class k data)
| N
X = NZXZ (mean of all data)
i=1

Goal: find matrix V stacking L < K vectors such that

det(VTS,V)
det(VTS, V)

— 1IMax

(53)

(54)

(55)

(56)

(57)
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Multiple Discriminant Analysis (MDA) @

Solution: L most significant eigenvectors for the generalized eigenvalue problem:

S, v = \S,,V (58)

Note: S; can have rank at most K — 1, thus at most K — 1 projection directions will
be produced.

Employing MDA:

Useful e.g. when the number of classes K and/or number of data is very high and
thus the only information about data which can be used is stored in means and
scatters of classes. These are computed in incremental fashion.

(== T B =) T (" ~ N I\

O I N1 W | =

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27
29

28



http://cmp.felk.cvut.cz

	First page
	Introduction
	Maximum variance formulation (1/3)
	Maximum variance formulation (2/3)
	Example 1 - Iris dataset
	Maximum variance formulation (3/3)
	Equivalence to Minimum error formulation (1/2)
	Equivalence to Minimum error formulation (2/2)
	Multivariate Normal Model and PCA
	Multivariate Normal Model and PCA
	High-dimensional data (1/2)
	High-dimensional data (2/2)
	Example 2 - Yale database (1/5)
	Example 2 - Yale database (2/5)
	Example 2 - Yale database (3/5)
	Example 2 - Yale database (4/5)
	Example 2 - Yale database (5/5)
	Linear Discriminant Analysis (LDA)
	Linear Discriminant Analysis (LDA)
	Linear Discriminant Analysis (LDA)
	LDA: What makes a good separation?
	LDA: Criterion
	LDA: Criterion
	LDA: Criterion maximization
	LDA: Criterion maximization
	LDA: Examples (1)
	LDA: Examples (2)
	LDA: Invariance to linear transformations
	Multiple Discriminant Analysis (MDA)
	Multiple Discriminant Analysis (MDA)
	Last page

