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Consider a classification problem with 0/1 loss matrix. Recall that given an observation x,
the optimal Bayesian strategy ¢(x) decides for a class k£ which maximizes the posterior:

q(x) = argmaxp(k|x) = argmaxp(x, k) = argmax p(x|k)p(k) . (1)
k k k

For a binary (2-class) classification,

. p(1]x) p(1]x)
q(x)=1 if p(llx)>p2lx) <« (2%) >1 < lnp(2 X) >0, (2)
_ - p(1]x) p(1]x)
g(x)=2 if p(llx)<p2x) < (2% <l < lnp(2 %) <0 (3)

The ratio of posteriors P

p(1]x)
p(2[x)’

is called odds ratio, the logarithm of this

ratio, In

is called log odds.
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Why are we interested in log odds? Because for the following problems, the log odds are
linear (therefore simple) function of the observation variable x:

Normal distributions with equal variances
Independent features with binary outcomes
Multinomial naive Bayes

Normal distributions with equal covariance matrices

p(x|1) =N (x|py, ) = (2m) 7| B[ 72 e 20m) 37 o), (4)
p(x|2) =N (X|ptg, B) = (2m) 7| B[ 72 e 20 p2) B (xmpra), (5)
(1, py €ERP.ZeRPP B-0,2=3") (6)
The log odds:
1
W PO ) pxDp() | pe() | p(d) -
p(2l%) ~  px[2)p?2) px[2)  p(2)

‘_i p(2)

en=5ish :
2 o) T )~ (i) TS )y P (8)
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DT
lnp(l\x) :IHWe—%{(x—ul)Tz—l(x—ul)—(x—p,Q)Tz—l(x—,,,z)} +lnp(1) 9

p(2[x) p(2)
- — %(M—XTE_lul pl ST x4l 2 ) (10)
+ 3BT = x TRy — g B+ g B ) + In s (11)
(Note: x' X'y =y X7 x because X =2 ')
= —i(—2p =" X+l T — (2u BT X A g BT u2)+1np§§§ (12)
T 1 _ _ p(1
= = o) B xS By — B ) + lﬂ% (13)
" & P2
wWo
= w-x+wy, (weRP wyeR) (14)

Conclusion: When two classes are normally distributed with equal covariance matrices, the
log odds are a linear function of observation vector x.
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Example
10l —  p(x[1)
—  p(x[2)
0l
5_
~10 -5 0 5

@

Multinomial normal distribution,
two classes

Centers:
(07 O)' (17 _5)

Cov. matrices (are equal):

(33

6/44
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Priors: p(red) = 0.5, p(green) = 0.5

115
0

L -15

|30
~45

-8 -6 -4
Probabilities p(1|x) and p(2|x). Log odds, shown as a map with contour plot.

Note that the log odds are a linear function.
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Priors: p(red) = 0.1, p(green) = 0.9
—10L%k
115
—5f
- 10
ol - |-15
|30
. ~45
-8 -6 -4
Probabilities p(1|x) and p(2|x). Log odds, shown as a map with contour plot.

Note that the log odds are a linear function.
Also note the shift of the zero level w.r.t.
previous slide.
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posteriors log odds

p(x[1)

p(x[2) || 1o

—10}

O

T3
T3

L

p(1x)] |
p(2lx)

N
o N o
~ ~ ~ ~ ~ -
~ ~ ~ ~ -
b7 ~ ~ ~ ~ =
~ ~ ~ ~ ~ ~ =
N o N h N
N N N N o
N S N Y N S
~ ~ ~ - ~
~ ~ ~ a3 ~ -
~ ~ ~ N - ~
~ ~ ~ N X,
N : N
N @ .. s
N N N
_ N N N
S N N N
N S N N
N N N N
N S
3
4

~ ~
~ ~
~ N ~
— ~ ~
101~ N
N
~

T3

| NN
-8 -6 -4 - 0O 2 4 6

-10

It will soon be shown for linear log odds, a(x) = w - x 4 wy,

p(1

p(2

X)

X)

the posteriors can be written as

1

- (15)
1

- ——& (16)

The idea of logistic regression is that posteriors are modeled this way directly, without first

estimating the priors and conditionals.
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Other models with linear log odds (1)

Independent features with binary outcomes.
Feature vector x = (71,23, ...,2p) € RV x; € {0,1} (binary outcomes)
Each feature: plzs = 1) = m,

ple; =0)=1—m,

= can be written as: p(x) = w11 — )t %

Conditional probabilities for two classes 1, 2:
plx|1) = [[ w1 = m)' =

p(x]2) = H 71— k)% (my, ki € (0,1), 2 € {0,1})

~—~~
| —
00)
~—

(20)

(21)
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p(x[1) = Hﬂfi(l — ;) T (22)
p(x]2) = H 71— k)'7T% (mg, ki € (0,1), 25 € {0,1}) (23)

The log odds are:

a(x) = lniézlgigi = Z {r;Inm; + (1 —z;)In(1 —7m;) —x;Ink; — (1 — ;) In(1 — k;) }
= (24)
—I—ln%: W - X + W (w € RP, wg € R) (25)

Note that the assumption that the features are independent may be quite strong. If this
assumption is true (or anyway adopted), we talk about naive Bayes approach.
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Example
Problem: male/female classification
x1 : hair length > 5cm

To . shoe size > 41
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Multinomial naive Bayes

The analysis is similar to the case of binary outcomes. Here, the feature components z; are
not binary but they represent counts, summing to certain constant n (Zfil x; =n). The
probabilities of observing the counts {x;,i = 1,2,.., D} are

p(x1) = —5— ][ =7 (26)

n! |
2) = v i € Ng,m; > 0,k; >0,
p(x]2) .'Hlﬁl (x 0y T K

Y m=1> k=LY z=n) (27

It is easy to see that the log odds a(x) are again linear in x.
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Example

Two factories produces smarties. One of them (k = 1) is in Spain, the other (kK = 2) is in
Finland.

. (28)
r;/Spain factory 0.05 0.05
7;/Finland factory 0.05 0.05 0.1 0.5 0.3
n! ﬁ
p(x[1) = —5- L (29)
[1izy zd i
n! D
p(X|2) = —5 : Hl{f@ (miENO,m>O,ﬁ;i>O,
| | P 22 i

Zﬂ'izl,Zlﬁlizl,zi’;lxi:n) (30)

)
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Idea: Let us look for the log of the ratio of posteriors (log odds) a(x) directly as a linear

function of the input vector x = (z1, s, ...,zp) € RP (D is the dimensionality of the
feature space):

p(1x) D
a(x) =In =W X+ wy, w = (Wi, wa, ..., wp) € R,
(%) (2 ]%) ( )
wy € R, (31)
where wyq is the bias term.
Let us rewrite this as
o
a(x) = wp - 14w - X = [wg, Wi, W2, ..., Wp] :13:1 =w' -x. (kg = 1) (32)
/I\ .
o —~ LD -

Note: From now on, we will drop the dash sign and write again only 'x" or 'w’, with the
understanding that these include the zero-index components o =1 and wg € R
implementing the bias.

15/44
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Here is the relationship between the the log odds a(x) and the posterior probabilities p(1|x)
and p(2]x).

The log odds a(x) is (remember the bias term is consumed in the x and w)

_ o Palx
a(x) =1 P(2[%) . (33)
From this, it follows that

PO _ PR
p(2x) ~ P p(il) — W (34)
p(1]x) = p(2[x) exp(w - x) p(2[x) = p(1]x) exp(—w - x) (35)
1 =p(1]x) +p(2]x) = p(1[x) (1 + ™) = p(2|x) (1 +*™) (36)
pIX) = T pIN) = (37)
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Again,
i PAx)
a(x) =1 (2 1%) (38)
p(11X) = Tz = 0w x) (39)
pEIX) = T = 0w ) (40)

where o(u) = 1/(1 + exp (—u)) is the logistic sigmoid function.

It will be advantageous to rename the clases from (1,2) to (1,—1). Then we can rewrite the
equations (39, 40) as

1
klx) = kEei1—1,1 41
pklx) = T ke {-11) (41
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How do we find w?

We apply the Maximum Likelihood approach for finding w. Let us have the training set
T = {(x1, k1), (X2, k2), ..., (xn, kn)}. The optimal w* would be the one maximizing the

log-likelihood [(w),

l(w) = Z Inp(x, k)w = Z Inp(k|x)w] + Z In p(xX) w5 (43)

(x,k)eT (x,k)eT (x,k)eT

where for the sake of clarity, dependence on w is denoted by a subscript [w].

As there are no assumptions about the form of p(x) as a function of w, logistic regression
employs instead the maximization of conditional log-likelihood I'(w)

(w)= )  Inpk|x)mw=— Y In(l+e ™)  (conditional log likelihood)
(x,k)eT (x,k)eT
(44)
w* = argmax!’'(w) (optimal w*) (45)

w
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(copied from previous slide)
U(w)= )  Inpk|x)mw=— » In(l+e ™)  (conditional log likelihood)
(x,k)eT (x,k)ET
(46)
w* = argmax!'(w) (optimal w*) (47)

w

In order for the optimization to fit into the minimization framework, we define the objective
function E(w) as the negative conditional log likelihood, F(w) = —I’(w). This objective
function corresponds to cross entropy. Let us now analyze the properties of F(w).
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E(w)=— Z In p(k|x) Z In(1 4 e *Wx) (48)
(x,k)eT (x,k)eT
(49)
The gradient vector g(w) of E is:
OF(w) e~ WX 1
(x,k)eT (x,k)ET S
(— x)
= — ) (1-pklx)) kx. (51)
(x,k)eT

We require g(w) = 0 (the necessary condition for optimality). However, it seems that these
equations cannot be solved analytically. We will need to resort to the numerical
optimization methods. Let us continue and check the second order derivatives.
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The Hessian matrix H(w) of the objective function E is
O’°E(x) 0g(w) 9, 1
H = = = —— k 52
(w) ow? ow ow Z | 1 ehwx" (52)
(x,k)ET
kw-x
_ € 2 oo _ T
- Z mn ekw-X)Qk XX = Z p(—1|x)p(1]|x) xx (53)
(x,k)ET N -~ / (x,k)eT
> 0

This is a very important result. It shows that the Hessian matrix H(w) is positive definite

in every point w and, therefore, the function E(w) is convex. As a consequence, F/(w) has
a unique minimum.

Note. Can you show that H(w) is positive definite?
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Any method of convex optimization can be used to find the optimal w*. For the examples in
this lecture, the following gradient descent method with adaptive step size has been used:

# input: x (observations), k (class labels), w_init (initial w)

# init:

W = w_init

step_size = 1.0

E, g = compute_E_and_gradient(x, k, w)

# iterate:
while not TERMINATION CONDITION:
E_new, g_new = compute_E_and_gradient(x, k, w - step_size * g)

if E new < E: Notes:
# success. i) Iteration is accepted if F/(w) decreases. If it
w —= step_size * g hasn't decreased, either the step size is too high
g = g_new (thus it is halved), or optimum has been already
E = E_new

. _ found.

step_size *= 2 . _ _

clse. i) We normalize the gradient by the number of
step_size /= 2 training data N because otherwise its magnitude

scales linearly with N, causing the necessity for
return w smaller step sizes with higher V.
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p(]1) = N (2l = —3,01 = 1.5)
p(x|2) =N (z|uz = 0,09 = 1.5)
p(1) = p(2) = 0.5. Bayesian error is e¢g = 0.16
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Initial state.
Training set: 1000 samples from each of the distributions.

Tter: 0, E(w)=1.56e +03, €, =0.38

1.0}

0.5¢

0.0

p(1|x) : The actual conditional for the 1st class.
prr(1|x) : The conditional for the 1st class predicted by logistic regression.
E(w) : the value of cross entropy.

€4 © the training error (error on the training set.)
(initial w = [1,—1] ")
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1.0}
0.5}

0.0¢

1.0t
0.5}

0.0}

1.0¢
0.5}

0.0t

Tter: 1, E(w)=1.33¢ + 03, ¢, =0.36

1.0}

Tter: 2, E(w)=1.03¢ 403, €, =0.28

25/44
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1.0}
0.5}

0.0¢

1.0t
0.5}

0.0}

1.0¢
0.5}

0.0t

Iter: 7, E(W) =17.22¢+02, ¢,=0.14

1.0}

0.5}

0.0¢

1.0}

0.5}

0.0¢

1.0

0.5}

0.0}

Iter: 8, E(w)=17.10e+02, ¢, =0.14

26/44

p(l]z)
prr(1l]z)
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Example 1, Two Normal Distribs with Equal Variance

Objective function F(w

(5)

9000
8000
7000
6000
5000
4000
3000
2000

1000

The cross-entropy F(w) and the progress of w with iterations.

27/44
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Example 1, Two Normal Distribs with Equal Variance (6)

1600 E(w)
1400
1200
1000|
800!
600, 50 100 150 200
eltr
0 50 100 150 200
5 step Size
41
3 i
2
1
% 50 100 150 200

iter

28/44
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Things to note:
e: does not monotonically decrease with iterations. E(w) does.

Some intermediate ¢;,.'s as well as the final one are lower than the
Bayesian error eg = 0.16. This is not a contradiction of the theory.

Converged state:
w=[—2.07,-1.35] ",

Iter: 188, F(w) =6.94e + 02, ¢, =0.14

1.0}

0.5¢

0.0



http://cmp.felk.cvut.cz

& 0
Example 2, Non-Equal Variance but Different Mean (1) C
30/44

p(z[1) = N (z|p = 3,01 = 1.5)
p(x|2) =N (z|pz = 0,09 = 0.5)
p(1) = p(2) = 0.5. Bayesian error is e = 0.057.
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Example 2, Non-Equal Variance but Different Mean (2)

Initial state.
w=I[1,-1]".
Training set: 1000 samples from each of the distributions.

Iter: 0, F(w)=1.39¢ +03, ¢,,=0.49

1.0}
— 1|x
05l p(1|z)
=== prr(llz)
0.0t oo TTETT oo

31/44
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Example 2, Non-Equal Variance but Different Mean (3)

1.0
0.5¢

0.0}

1.0t
0.5¢

0.0t

1.0t
0.5¢

0.0t

Iter: 1,

E(w)=1.17e +03, ¢,,=0.47

—  p(1]z)
== prr(llz)

-...
~

~ .
g e

— p(1|z)

== prr(1llx)

@

32/44

1.0

Iter: 2, E(w) =8.66e +02, ¢, =0.28

0.0t

1.0

0.5¢

0.0t

p(1|z)
prr(1llx)
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1400 E(w)

1200t
1000t

0 10 20 30 40 50

r T

0 10 20 30 40 50

step size

0 10 20 30 40 50
iter
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Things to note:

® The logistic regression cannot provide the two thresholds the optimal
decision strategy requires. But it provides the one threshold which
matters more in reducing the classification error (here the left one.)

Converged state.

w=[—2.88,—2.85] .

Iter: 53, F(w) =3.75¢ +02, ¢,,=0.05

1.0}

— p(1lx)

0.5}
-TT pLR(1|CU)

00F - TETE T e e

-3 0
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—  p(z1)
—  p(z|2)

p(]1) = N (2l = —3,01 = 1.5)
p(x|2) =N (z|pz = —3,02 = 0.5)
p(1) = p(2) = 0.5. Bayesian error is e = 0.26.
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Initial state.
w=I[1,-1]".
Training set: 1000 samples from each of the distributions.

Iter: 0, F(w)=4.08¢ +03, ¢,,=0.50

1.0}
— 1|x
0.5/ p(1|x)
=== prr(llx)
0.0t £ P
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Iter: 1, B(w)=1.63¢ +03, ¢, =0.45

1.0

0.5¢

0.0}

1.0t

0.5¢

0.0t

Iter: 3, B(w)=1.41e +03, ¢, =0.51

p(1|z)

prr(1llx) |

1.0t

0.5¢

0.0t

p(1|z)

prr(1llx) |

37/44

Iter: 2, B(w)=1.42¢ +03, ¢, =0.51

1.0

— p(llz) |
=== prr(llz)

1.0t

0.5¢

0.0t

p(ljz) |
prr(1llx)

1.0

0.5¢

0.0t

p(llz) |
prr(1llx)
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Example 3, Non-Equal Variance and the Same Mean (4)

aPbNDNOWEA DN
(@]é)[=]e) (e]é) (el
OO OOOOO
OooOOOOOO

OoO00000
O ANWAOION

E(w)
300 400
. elfr
0 300 400
step size

o »n ©

o
&)

o

OO

300 400
iter
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Things to note:

¢ Failure case. The logistic regression cannot provide a good fit to the log odds in this
case.

Final state:
w = [—0.161, —0.053] .

Iter: 610, F(w)=1.39¢ +03, ¢,,=0.48

1.0}
— 1|lx
0.5/ p(1|x)
=== prr(llz)
0.0} et ettt
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The logistic regression can be generalized to multiple classes as follows.
Each class k € {1,2,.., K} has an associated weight vector wy.

The conditional probability for the k-th function is computed using the softmax function:

eWk-X

p(k|x) = - (54)

er’X _|_ 6W2'X _|_ . _|_ GWK’X

Things to note:
The above term sums to 1 (summing over k.)

For two classes only, we get the same terms as previously, with w = w{ — wa:

eV1x 1

P = s ~ Tr e — (Wi wa) %) (55)
eV 1

p(2|x) = = o(— (W1 —w2) - x) (56)

eW1'X | eW2'X 1+ e(Wi—wa)-x —
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Conditional probabilities:

eWk,-X

k = 57
plkIX) = (57)

The training set T = {(x1, k1), (X2, k2), ..., (XN, kn)} (as before);
The set of parameters to find: W = [wy, wo, ..., W]

The conditional log likelihood I"(W):

'W)= ) Ipklx)= ) wp-x— Y In(eV" 4"+ . +e"EX) (58)

(x,k)eT (x,k)eT (x,k)eT

Optimal parameters W*:

W* = argmax I'(W) = argmin E(W) (59)
W W

(E(W) is cross entropy, as before)
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R Each class: 500 samples from multivariate
R A _ normal distribution.

"v:-:sf*;.-,e:-;‘g-.-.,:.i._:’.";. s - Centers:
.-3'5'75:",:3“'.'53::":‘:?-'a;,.:r&'g;,;...j& o (0,0), (2,1), (0,3).

T A Cov. matrices:

RS 10 2 —0.7 107
’ ' o 1] |-07 1 |"[07 1 |
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Logistic Regression with Multiple Classes, Example (2)

_Decision probabilities

Conditional probabilities p(k|x) (coded by
color intensity)

Z2

De;ision s‘urface‘

.“ ..o .

Decisions, coded by class’ colors.
the linearity of decision boundaries.

43/44
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Logistic regression is a discriminative classifier.

Output of logistic regression are posterior probabilities and it is trained using gradient
optimization of cross entropy objective. We will talk later about Neural Nets (NNs) and

see the similarities.

The learnt weights are interpretable; they tell how their corresponding features
contribute to the decision.
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