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Probability Density Estimation

2/33

Parametric Methods for Density Estimation
Have been dealt with in the previous lecture
Advantage: Low number of parameters to estimate

Disadvantage: The resulting estimated density can be arbitrarily wrong if the underlying
distribution does not agree with the assumed parametric model.

Non-Parametric Methods for Density Estimation
Histogram

Nearest Neighbor approach
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Histogram as piecewise constant density estimate: @ -
Task formulation 3/33

Consider the following distribution ¢(x) on the interval [0, 1], and i.i.d. sampling from it.
We will fit the distribution by a 'histogram’ with B bins. More precisely, we will estimate a
piecewise-constant function on the interval [0, 1] with B segments of the same width.

For a given B, the parameters of this piecewise-constant function are the heights

dy,ds, ...,dp of the individual bins. This function is denoted p(x|{d1,ds,...,dB}).

A distribution ¢(x) | | p(x|{di,ds,..,dg}) to be
| estimated
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For the given number of bins B, dy,ds, ..., dB must conform to the constraint that the area
under the function must sum up to one,

bin Width
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Histogram as piecewise constant density estimate: @ IIIII o
Finding d;’s using Maximum Likelihood 4/33

Let us estimate {d;,i = 1,2, ..., B} by Maximum Likelihood (ML) approach. Let N; denote

the number of samples which belong the i-th bin (thus clearly, Zil N; = N). The
likelihood L(7T) of observing the samples T = {x1, x2, ..., xy} given the parameters

6 = {dl, dz, cees dB} IS points ig\j—th bin
N B [N, ) N
L(T) = p(T10) = | | p(x:16) = H 114 =114 (2)
i=1 j= k=1 j=1

The maximization task is then

B B
_ 1
= ZNj logd; — max, subject to 5 Zdj =1, (3)
71=1 71=1
where maximization has been formulated using the log-likelihood 6(7’) . The Lagrangian of
the optimization task and the conditions of optimality (using the derivative 0/0dy) are then:

B B
: 1
Lagrangian: jEZl Njlogd; 4+ A 3 E_ dj — 1 (4)
N A d N,
d — 0= — = const. = dj = B—~ . (5)

d—k+§ N, N
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Histogram as piecewise constant density estimate:
Example, different number of bins

CAm ¢

5/33
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g BNk 6 This result is in line with the common use of histograms for
F— 2N (6) approximating pdf's. Results for different B'’s:
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Histogram as piecewise constant density estimate: @ o
What number of bins produces closest pdf approximation?

6/33

4 o Distance from source distribution

Let us measure the differences between 2 el <L
the (actual) source distribution ¢(x) and 30 SSD
the piecewise-constant density estimate 25|
p(x) = p(x|{di,da,...,dg}) from the 2.0/
N = 1000 samples, using B bins. 1.5, ;o
1.0; \\ 4 ]
Measures used: 0_5,\\\\ / .
] ] 00L---_ Rt PSP CEEEL LSRN
Kullback-Leibler divergence Dxz;: o8 .
™3 7 15 30 60 120 250 10004000
B
> p(z)
Dx1(pllq) = p(x) log () dz. 0.06,detail of the minimum
— 00 : . ’//4
(7) 0.05 % ..
(Note that KL div. is not a metric.) 0.04 )
.
Sum of squared differences Dggp: 0.03 CUeee o
0.02|
o
9 0.01
Dssn(pa) = [ (vla) — a(a))"d.
C oo 0.00f -
(8) 15 30 60
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Histogram as piecewise constant density estimate: @ o

Choosing the number of bins B by ML 7/33
How can we find the optimal number of bins B? Let us try to employ the ML approach
again: find the B which maximizes the likelihood. Recall that:
N, _
parameters d; : d; = B— (ML estimate) (9)
N
B B oA\ N
. . . o L j
likelihood L(T): L(T) = p(T|{dy,ds,...,dg}) = ]_]1 Hl( ~ ) (10)
B B _B a
log-likelihood 4(T): 4 = N;logd,; = N;1 J 11
og-likelihood £(T): - £(T) =} _ Njlogd, ZﬂogN (11)
1800— ‘ ‘ \ \ \ \ \ - For B = 4000, the
1288 o log-likelihood £ is the highest.
E 1200 P But the pdf estimate with this
e 12(3)88 o : B is poor, and very different
> 600 , | from the source distribution as
< ‘2188 e v )l | measured by Dy or Dssp.
oL_a" - For B = 10°, 4(T) ~ 4600.
3 7 15 30 60 120 250 1000 4000

number of bins What went wrong?
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Histogram, choosing the number of bins B: @ o
ML overfits and produces B = oo

8/33

When B grows, eventually it will reach a number B such that there is either no or one point
in every bin (assuming no two points in the data are identical), and this will stay true for any
B > B.

In such cases,

a; {ﬁ if the bin is populated by a point, (12)

0 if the bin is not populated.

As the number of bins B grows, the widths e
of occupied bins get narrower and the heights

d;'s higher. If B — oo then also d; — oo for f

the occupied bins, and therefore also °

¢(T) — oo. Thus, such an approach cannot

produce a “reasonable” answer to choosing B, E — -

as the solution it provides is B = oo. m

The problem is that the log-likelihood / is computed using the same data used for fitting the
model (computing d;'s). This is a similar concept to training a classifier on certain data and
testing on the same data, which is prone to over-fitting and poor generalization.
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Histogram, choosing the number of bins B: @ o
Employing cross-validation 0/33

Let us compute the log likelihood using the following procedure: remove a given point from
the dataset for computing d;'s and evaluate its contribution to the log-likelihood. Do this for
all the points. This approach is related to cross-validation technique (leave-one-out) for
choosing parameters of a classifier.

Let the point in question belong to the j-th bin. The ML estimate for d;, after removing
this point from the dataset, is

N;—1

N-—-1"
where the subtractions of 1 reflect the fact that the considered point is not used for
estimating d;. Computing the log likelihood ¢ this way produces the following result:

dj = B (Nj > 1), (13)

400 — ‘
300} o

300 | S

2 . 7 V= N;logd;,

2 -100| f j=1

2 -200| | N;>1

7 . N;—1
ooy S0 —S0 %~ % % —& | with d; = BR/—

3 7 15 30 60 120 250 1000 4000
number of bins

The 'failure’ for B > 7 is caused by singly-occupied bins (/N; = 1) for which the modified
ML estimate for d; becomes zero. This will be fixed by using different estimates for d;’s.
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Histogram, choosing the number of bins B: @ """ m p
More suitable estimates for d;’s

10/33
The problem of d; being estimated as 0 is similar to the one encountered previously: Recall
the example of tossing a coin three times, always getting heads (T = {H,H,H}). The ML
estimate is a fully unfair coin (probability of getting heads is 1, Theag = 1), thus making the
likelihood of any sequence containing tails zero. We have seen before that employing the

prior for the parameters to be estimated can mitigate this problem.

A (conjugate) prior for the histogram bin counts is the Dirichlet Distribution, with the pdf
p(dl, dz, cony dB‘Oél, g, ..., CVB) ~ H d?i_l.

MAP Estimate: Bayes Estimate:

Ni‘l'@z’—l
N+Y7 o,—B

N; + o,
N + Zle 87

Interpretation: The parameters o;'s can be interpreted as 'virtual’ observations, as if a;
points have already been assigned to the k-th bin.

(15)

Example: The Bayes estimate using a; =1 forall : =1,2,.... B is

d; = BREL. (16)

Using this estimate will enable us to make reasonable computation of likelihood for all B's.
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Histogram, choosing the number of bins B: @ o

ML to find B, cross-validation, Bayes esimate for d;’s 11/33
Let us now return to the previous task. Compute the log likelihood using the following
procedure: remove a given point from the dataset for computing d;'s and evaluate its
contribution to the log-likelihood. Do this for all the points.
: : Ni+1 -
Use the Bayes estimate for d; from the previous example, d; = BNJJ:FB. The modified
estimation of d; (omitting the point in question) will become
N
di =B I 17
J N-1+1B (17)
This leads to the following result:
450— ‘ —
400} T e
o 350} o T
8 300| | B
e / \ — . .
Sod N £=2 5= Nylogd;
2150/ ! . N;
8 100 /,’ \\\\ . Wlth d] — BN—lj—FB
500 °
o¢

3 7 15 30 60 120 250 1000 4000
number of bins

This result is in agreement with distribution differences as measured by Dk or Dssp.
In particular, B = 30 is identified as the best-approximating number of bins.
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K -Nearest Neighbor Approach to Density Estimation
12/33

Find K neighbors, the density estimate is then p ~ 1/V where V is the volume of a
minimum cell containing K NNs. Example (p ~ inverse distance to K-th NN, same
1000 samples as before):

25 K=2 20 ? K=5
20; 15 g»
15 »
10t 4|
10 3|
51 9 4
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K-Nearest Neighbor Approach to
13/33

Outline:
Definition
Properties
Asymptotic error of NN classifier
Error reduction by edit operation on the training class

Fast NN search
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K-NN Classification Definition

Assumption:

Training set T = {(x1, k1), (x2, k2), ..., (xn, kn)}. There are R classes (letter K is
reserved for K-NN in this lecture)

A distance function d : X x X — RE)L

Algorithm:

1. Given z, find K points S = {(z, k}), (x5, k3), ..., (¢, k%) } from the training set T
which are closest to x in the metric d:

SZ{('xllak/) (:Cé,ké) (x,Kvk/K)} = {(xﬁ?k"“l) (xm?k?“z) (xTK7kTK)} (18)
r;: the rank of (x;, k;) € T as given by the ordering d(x, x;) (19)

2. Classify x to the class £ which has majority in S

k= argmaxZ[[k' = {] (z}, k) e S (20)
I€R
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K-NN Example (1)

3.7e-04 7.3e-04
‘ |
3.2e-05 6.4e-05
—  p(z1)
—  p(z]2)

optimal decision
boundary

@

Consider the two distributions
shown. The priors are assumed

to be the same,
p(1) = p(2) =0.5.

Bayesian optimal decision
boundary is shown by the black

circle.
Bayesian error is eg = 0.026.

15/33
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K-NN Example (2)

16/33

K =1, error e=0.044 K =3, error e =0.034 K =5, error e =0.032

N = 100 samples for each class. Bayes error eg = 0.026.
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K-NN Example (3) C
T T T 17/33

K =1, error e=0.044 K =1, error e=0.038 K =1, error e=0.043

The results depend on the training set (result of a random process.)
Each of the training sets 71, T2, 73 contain 100 points for each class.
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K-NN Example (4)

18/33
K-NN error for different K and different sizes of the training set (/N samples per class). 10

training sets have been generated randomly for each setting of K and IN. Average error and
its std is shown. Minimum average error is highligted for each N. Bayes err. eg = 2.58%.

10l 9:69 17.04 23.85
+3.44 +3.26 +3.16

Error (in %)

20_6.02 6.61 9.78 11.36 18.08
+212 +211 +343 £2.70 +£3.53

50! 422 416 3.93 413 460 574 886 17.84
+0.44 +051 +0.65 =£0.62 +1.35 +£1.12 £2.66 +2.59

100. 425 3.30  3.29 3.25 333 351 388 4.62 6.54
+0.58 +£0.26 +£0.18 +£0.12 +0.27 +0.27 4+0.37 4052 +1.72

—
£3
~N b
© 00

200l 419 323 305 3.03 304 3.07 3.01 318 351 358 483 6.72 |
+0.52 +0.21 +0.22 +£0.16 +0.16 +0.13 +£0.13 +0.17 +£0.20 +0.17 +0.44 +£1.91

5001 404 310 297 288 283 281 2.79 280 285 292 298 3.21 |
+0.28 +0.14 +0.10 £0.09 +0.06 +0.06 +0.08 +0.07 +£0.08 +0.08 =+0.11 £0.12

1000 394 312 291 283 283 275 271 2.70 274 272 277 2.80 |
+0.15 +0.13 +0.05 =£0.07 +0.04 +0.06 +0.05 +0.04 +0.04 +0.04 =+0.05 =£0.05

N: number of training data (per class)

100001 390 3.08 287 280 275 269 267 264 263 262 261 2.60
+0.04 +0.07 +£0.04 +£0.03 +0.03 +0.01 +0.01 +0.01 +0.01 +0.01 +0.01 =0.01

1 3 5 7 9 13 17 23 31 41 53 69
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K-NN Properties C

Trivial implementation (— good baseline method)

1-NN: Bayes error €p is the lower bound on error of classification eny (in the
asymptotic case N — o0.) Upper bounds can also be constructed, e.g. eny < 2€p

Slow when implemented naively, but can be sped up (Voronoi, k-D trees)

High computer memory requirements (but training set can be edited and its cardinality
decreased)

How to construct the metric d? (problem of scales in different axes)



http://cmp.felk.cvut.cz

© Wk
K-NN : Speeding Up the Classification
20/33

Sophisticated algorithms for NN search:
e Classical problem in Comp. Geometry
o k-D trees

Removing the samples from the training class 7 which do not change the result of
classification

e Exactly: using Voronoi diagram
e Approximately: E.g. use Gabriel graph instead of Voronoi

e Condensation algorithm: iterative, also approximate.
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K-d Tree
21/33

k-d tree decomposition for the point set (2,3), (5,4), (9,6), (4,7), (8,1), (7,2)

10
gl
°
or °
X—— == = = — — — (7,2)
N
4 ®
S Y- ———— @ Qg 6)
2+ ®
° X— — ((2,3) (4,7) (8,1)
0
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Condensation Algorithm
22/33

Input: The training set 7.

Algorithm

1. Create two lists, A and B. Insert a randomly selected sample from 7 to A. Insert the
rest of the training samples to B.

2. Classify samples from B using 1NN with training set A. If an x € B is mis-classified,
move it from B to A.

3. If a move has been triggered in Step 2., goto Step 2.

Output: A (the condensed training set for INN classification)
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Condensation Algorithm, Example

The dataset after the condensation.

The training dataset Shown with the new decision boundary.

23/33
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1-NIN Classification Error

Recall that a classification error € for strategy q: X — R is computed as

= [ Y sabde= [ Y pla)pe)ds = [ c@pds. (@)

kiq(a) £k kiq(x) 7k

€(x)

We know that the Bayesian strategy gp decides for the highest posterior probability
q(x) = argmax;, p(k|x), thus the partial error eg(x) for a given x is

eg(r) =1— mgxp(k\a:) : (22)

Assume the asymptotic case. We will show that the following bounds hold for the partial
error ey () and classification error €xy in the 1-NN classification,

ep(r) < enn(z) < 2ep(e) — grgep(a), (23)
€B§€NN§2€B—%€QB, (24)

where €g is the Bayes classification error and R is the number of classes.
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1-NN Classification Error, Example (1) C
25/33

i

Consider two distributions as shown, a small interval d on an x-axis, and a point s € 0. Let
the class priors be p(1) = p(2) = 0.5. Assume § — 0 and number of samples N — oc.

Observe the following:

p(l]s) =0.8, p(2]s) =0.2, (25)
p(NN=1]s) =p(1l]s) =0.8, p(NN=2]s)=p(2|s) =0.2, (26)

where p(NN =k|s) is the probability that the 1-NN of s is from class k (k = 1,2) and thus
s is classified as k.
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1-NN Classification Error, Example (2) C 2

26/33
1{s) =0.80
g&;s;:ogo J — )
— —_— p(il?’Q)
The error enn(s) at s is

enn(s) = p(1[s) p(NN =2[s) + p(2]s) p(NN =1[s) (27)
— 1= p(1]s) (NN =1s) — p(2]s) p(NN =2]5) (28)
=1-p*(1]s) —p*(2]s). (29)

Generally, for R classes, the error will be

env(s) =1-) p(kls). (30)

keR
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1-NN Classification Error, Example (3)

The two distributions and the partial errors
(the Bayesian error eg(x) and the 1-NN error enn(z))

0.5

0.4}
0.3}
0.2}
0.1

0.0

— €p(2)

enn(T)

27/33
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1-NN Classification Error Bounds (1) C

28/33
Let us now return to the inequalities and prove them:
ep(z) < enn(z) < 2ep(z) — sogep(x), (31)
The first inequality follows from the fact that Bayes strategies are optimal.
To prove the second inequality, let P(x) denote the maximum posterior for x:
P(x) = mgxp(k\:c) (32)
= ep(x)=1— P(x). (33)

Let us rewrite the partial error ey () using the Bayesian entities P(x) and g(x):

enn (T —1—217 (klz) =1— P*(x Z p*(k|x) (34)

keR k#q(x)

We know that p(q(x)|z) = P(x), but the remaining posteriors can be arbitrary. Let us
consider the worst case. i.e. set p(k|x) for k # q(x) such that Eq. (34) is maximized. This
will provide the upper bound.
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1-NN Classification Error Bounds (2) C i

29/33
There are the following constraints on p(k|x) (k # q(x)):
Z p(klx)+ P(z) =1 (posteriors sum to 1) (35)
k#q(x)
> p*(k|z) — min (36)
k#q(x)

It is easy to show that this optimization problem is solved by setting all the posteriors to the
same number. Thus,

1—P(x) ep(x)

plkle) = ——— = P (k£ g(x) (37)

The upper bound can then be rewritten in terms of the Bayes partial error
eg(r) =1— P(x):

(@) <1 Pa)— Y pA(klr) =1 (1 - ep(a))? — (R— )20 (39
k#q(z)
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1-NN Classification Error Bounds (3) C 2

30/33
() S 1= P2a) = Y 2kle) =1 (1 ep@)? - 20 (39)
After expanding this, we get o
nv() < 1- (1 = ena))? — 20 (40
=11+ 2e5(2) — () ~ o) (41)
= 2e(e) — o) (@)

Note that for R = 2, the bound is tight because using eg(z) =1 — P(x) in Eq. (39) gives

(1 - P(x))’

eNN(x) S 1—P2(£U)— 1

= ENN(ZL‘) . (43)


http://cmp.felk.cvut.cz

L
&
1-NN Classification Error Bounds (4) C

The inequality for the local errors has been proven:

enn () < 2ep(x) — eQB(J;)% (44)
Is there a similar upper bound for the classification error éxy = [ enn(z)p(x)dx, based on
the Bayes error ég = [ ep(x)p(z)dz?
Multiplying Eq. (45) by p(x), and integrating, gives

enn < 25(1) — —— [ 2 (2)p(x)da (45)

Let us use the known identity and inequality (where F (-) is the expectation operator)

var(z) = E (z%) — E* (x), var(z) > 0 = E(x*) > E*(2) (46)

Thus, [ €% (z)p(x)de > ([ EB(ZU)p(ZIZ‘)dZC)Q, and

R R
eny < 2€p(x) — 1 e5(z)p(x)dr < 2ep(z) — 7 1623 :

(47)
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K-NN Classification Error Bound
32/33

It can be shown that for K-NN, the following inequality holds:

EXNN < € + E]_NN/V K const (48)
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Edit algorithm

33/33

The primary goal of this method is to reduce the classification error (not the speed-up of
classification.)

Input: The training set 7.

Algorithm
1. Partition 7 to two sets, Aand B (7T =AUB, ANB=10.)

2. Classify samples in B using K-NN with training set A. Remove all samples from B
which have been mis-classified.

Output: B the training set for 1-NN classification.

Asymptotic property: .

Cedit = EB1 _ (49)
— EKNN
If €xnn is small (e.g. 0.05) then the edited 1NN is quasi-Bayes (almost the same

performance as Bayesian Classification.)
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