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Probability Density Estimation

Parametric Methods for Density Estimation

� Have been dealt with in the previous lecture

� Advantage: Low number of parameters to estimate

� Disadvantage: The resulting estimated density can be arbitrarily wrong if the underlying
distribution does not agree with the assumed parametric model.

Non-Parametric Methods for Density Estimation

� Histogram

� Nearest Neighbor approach
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Histogram as piecewise constant density estimate:
Task formulation

Consider the following distribution q(x) on the interval [0, 1], and i.i.d. sampling from it.
We will fit the distribution by a ’histogram’ with B bins. More precisely, we will estimate a
piecewise-constant function on the interval [0, 1] with B segments of the same width.
For a given B, the parameters of this piecewise-constant function are the heights
d1, d2, ..., dB of the individual bins. This function is denoted p(x|{d1, d2, ..., dB}).

0.0 0.2 0.4 0.6 0.8 1.00.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5 A distribution q(x)

0.0 0.2 0.4 0.6 0.8 1.0

N=1000 samples from q(x)

p(x|{d1, d2, .., dB}) to be
estimated

0.0 0.2 0.4 0.6 0.8 1.0

d1

d2

d3
d4 d5

d6
d7

For the given number of bins B, d1, d2, ..., dB must conform to the constraint that the area
under the function must sum up to one,

1 =

∫ ∞
−∞

p(x|{d1, d2, ..., dB})dx =

B∑
i=1

∫ i
B

i−1
B

di dx =

B∑
i=1

di

bin width
↓
w =

B∑
i=1

di
B
. (1)
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Histogram as piecewise constant density estimate:
Finding di’s using Maximum Likelihood

Let us estimate {di, i = 1, 2, ..., B} by Maximum Likelihood (ML) approach. Let Ni denote
the number of samples which belong the i-th bin (thus clearly,

∑B
i=1Ni = N). The

likelihood L(T ) of observing the samples T = {x1, x2, ..., xN} given the parameters
θ = {d1, d2, ..., dB} is

L(T ) = p(T |θ) =

N∏
i=1

p(xi|θ) =

B∏
j=1

points in j-th bin︷ ︸︸ ︷ Nj∏
k=1

dj

 =

B∏
j=1

d
Nj
j . (2)

The maximization task is then

`(T ) =

B∑
j=1

Nj log dj → max , subject to 1

B

B∑
j=1

dj = 1 , (3)

where maximization has been formulated using the log-likelihood `(T ) . The Lagrangian of
the optimization task and the conditions of optimality (using the derivative ∂/∂dk) are then:

Lagrangian:
B∑
j=1

Nj log dj + λ

 1

B

B∑
j=1

dj − 1

 (4)

Nk
dk

+
λ

B
= 0⇒ dk

Nk
= const.⇒ dk = B

Nk
N

. (5)
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Histogram as piecewise constant density estimate:
Example, different number of bins

dk = B
Nk
N

(6)
This result is in line with the common use of histograms for
approximating pdf’s. Results for different B’s:
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Histogram as piecewise constant density estimate:
What number of bins produces closest pdf approximation?

Let us measure the differences between
the (actual) source distribution q(x) and
the piecewise-constant density estimate
p(x) = p(x|{d1, d2, ..., dB}) from the
N = 1000 samples, using B bins.

Measures used:

Kullback-Leibler divergence DKL:

DKL(p‖q) =

∫ ∞
−∞

p(x) log
p(x)

q(x)
dx .

(7)
(Note that KL div. is not a metric.)

Sum of squared differences DSSD:

DSSD(p, q) =

∫ ∞
−∞

(p(x)− q(x))
2

dx .

(8)

3 7 15 30 60 120 250 10004000
B

0.5
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0 Distance from source distribution

KL
SSD

15 30 60
B

0.00

0.01

0.02

0.03

0.04

0.05

0.06 detail of the minimum

http://cmp.felk.cvut.cz


7/33

Histogram as piecewise constant density estimate:
Choosing the number of bins B by ML

How can we find the optimal number of bins B? Let us try to employ the ML approach
again: find the B which maximizes the likelihood. Recall that:

parameters dj : dj = B
Nj
N

(ML estimate) (9)

likelihood L(T ): L(T ) = p(T |{d1, d2, ..., dB}) =

B∏
j=1

d
Nj
j =

B∏
j=1

(
BNj
N

)Nj
(10)

log-likelihood `(T ): `(T ) =

B∑
j=1

Nj log dj =

B∑
j=1

Nj log
BNj
N

(11)
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For B = 4000, the
log-likelihood ` is the highest.
But the pdf estimate with this
B is poor, and very different
from the source distribution as
measured by DKL or DSSD.
For B = 105, `(T ) ∼ 4600.
What went wrong?
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Histogram, choosing the number of bins B:
ML overfits and produces B = ∞

When B grows, eventually it will reach a number B̂ such that there is either no or one point
in every bin (assuming no two points in the data are identical), and this will stay true for any
B > B̂.

In such cases,

dj =

{
B
N if the bin is populated by a point,
0 if the bin is not populated.

(12)

As the number of bins B grows, the widths
of occupied bins get narrower and the heights
dj’s higher. If B → ∞ then also dj → ∞ for
the occupied bins, and therefore also
`(T ) → ∞. Thus, such an approach cannot
produce a “reasonable” answer to choosing B,
as the solution it provides is B =∞.

→ → →→ → →

The problem is that the log-likelihood ` is computed using the same data used for fitting the
model (computing di’s). This is a similar concept to training a classifier on certain data and
testing on the same data, which is prone to over-fitting and poor generalization.
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Histogram, choosing the number of bins B:
Employing cross-validation

Let us compute the log likelihood using the following procedure: remove a given point from
the dataset for computing di’s and evaluate its contribution to the log-likelihood. Do this for
all the points. This approach is related to cross-validation technique (leave-one-out) for
choosing parameters of a classifier.

Let the point in question belong to the j-th bin. The ML estimate for dj, after removing
this point from the dataset, is

dj = B
Nj − 1

N − 1
, (Nj ≥ 1) , (13)

where the subtractions of 1 reflect the fact that the considered point is not used for
estimating dj. Computing the log likelihood ` this way produces the following result:
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−∞ −∞ −∞ −∞ −∞ −∞ −∞

` =

B∑
j=1
Nj≥1

Nj log dj,

with dj = B
Nj−1
N−1

The ’failure’ for B > 7 is caused by singly-occupied bins (Nj = 1) for which the modified
ML estimate for dj becomes zero. This will be fixed by using different estimates for dj’s.
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Histogram, choosing the number of bins B:
More suitable estimates for dj’s

The problem of di being estimated as 0 is similar to the one encountered previously: Recall
the example of tossing a coin three times, always getting heads (T = {H,H,H}). The ML
estimate is a fully unfair coin (probability of getting heads is 1, πhead = 1), thus making the
likelihood of any sequence containing tails zero. We have seen before that employing the
prior for the parameters to be estimated can mitigate this problem.
A (conjugate) prior for the histogram bin counts is the Dirichlet Distribution, with the pdf
p(d1, d2, ..., dB |α1, α2, ..., αB) ∼

∏
dαi−1i .

MAP Estimate:

di = B
Ni + αi − 1

N +
∑B
i=1αi −B

(14)

Bayes Estimate:

di = B
Ni + αi

N +
∑B
i=1αi

(15)

Interpretation: The parameters αi’s can be interpreted as ’virtual’ observations, as if αk
points have already been assigned to the k-th bin.

Example: The Bayes estimate using αi = 1 for all i = 1, 2, ..., B is

di = BNi+1
N+B . (16)

Using this estimate will enable us to make reasonable computation of likelihood for all B’s.
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Histogram, choosing the number of bins B:
ML to find B, cross-validation, Bayes esimate for dj’s

Let us now return to the previous task. Compute the log likelihood using the following
procedure: remove a given point from the dataset for computing di’s and evaluate its
contribution to the log-likelihood. Do this for all the points.

Use the Bayes estimate for dj from the previous example, dj = B
Nj+1

N+B . The modified
estimation of dj (omitting the point in question) will become

dj = B
Nj

N − 1 +B
. (17)

This leads to the following result:
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j=1Nj log dj,

with dj = B
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This result is in agreement with distribution differences as measured by DKL or DSSD.
In particular, B = 30 is identified as the best-approximating number of bins.

http://cmp.felk.cvut.cz


12/33
K-Nearest Neighbor Approach to Density Estimation

Find K neighbors, the density estimate is then p ∼ 1/V where V is the volume of a
minimum cell containing K NNs. Example (p ∼ inverse distance to K-th NN, same
1000 samples as before):
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K-Nearest Neighbor Approach to Classification

Outline:

� Definition

� Properties

� Asymptotic error of NN classifier

� Error reduction by edit operation on the training class

� Fast NN search
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K-NN Classification Definition

Assumption:

� Training set T = {(x1, k1), (x2, k2), ..., (xN , kN)}. There are R classes (letter K is
reserved for K-NN in this lecture)

� A distance function d : X ×X 7→ R+
0

Algorithm:

1. Given x, find K points S = {(x′1, k′1), (x′2, k′2), ..., (x′K, k′K)} from the training set T
which are closest to x in the metric d:

S ={(x′1, k′1), (x′2, k′2), ..., (x′K, k′K)} ≡ {(xr1, kr1), (xr2, kr2), ..., (xrK , krK)} (18)
ri : the rank of (xi, ki) ∈ T as given by the ordering d(x, xi) (19)

2. Classify x to the class k which has majority in S:

k = argmax
l∈R

K∑
i=1

Jk′i = lK (x′i, k
′
i) ∈ S (20)

http://cmp.felk.cvut.cz


15/33
K-NN Example (1)

x1

x
2

optimal decision
boundary

p(x|1)

p(x|2)

x1

p(x|1)

p(x|2)

0 3.7e-04 7.3e-04

0 3.2e-05 6.4e-05

the profile of the distributions along the shown line

Consider the two distributions
shown. The priors are assumed
to be the same,

p(1) = p(2) = 0.5.

Bayesian optimal decision
boundary is shown by the black
circle.
Bayesian error is εB = 0.026.
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K-NN Example (2)

K = 1, error ε=0.044 K = 3, error ε=0.034 K = 5, error ε=0.032

K = 7, error ε=0.030 K = 9, error ε=0.031 K = 11, error ε=0.032

N = 100 samples for each class. Bayes error εB = 0.026.
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K-NN Example (3)

T1 T2 T3
K = 1, error ε=0.044 K = 1, error ε=0.038 K = 1, error ε=0.043

K = 7, error ε=0.030 K = 7, error ε=0.031 K = 7, error ε=0.036

The results depend on the training set (result of a random process.)
Each of the training sets T1, T2, T3 contain 100 points for each class.
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K-NN Example (4)

K-NN error for different K and different sizes of the training set (N samples per class). 10
training sets have been generated randomly for each setting of K and N . Average error and
its std is shown. Minimum average error is highligted for each N . Bayes err. εB = 2.58%.
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K-NN Properties

� Trivial implementation (→ good baseline method)

� 1-NN: Bayes error εB is the lower bound on error of classification εNN (in the
asymptotic case N →∞.) Upper bounds can also be constructed, e.g. εNN ≤ 2εB

� Slow when implemented naively, but can be sped up (Voronoi, k-D trees)

� High computer memory requirements (but training set can be edited and its cardinality
decreased)

� How to construct the metric d? (problem of scales in different axes)

http://cmp.felk.cvut.cz
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K-NN : Speeding Up the Classification

� Sophisticated algorithms for NN search:

• Classical problem in Comp. Geometry

• k-D trees

� Removing the samples from the training class T which do not change the result of
classification

• Exactly: using Voronoi diagram

• Approximately: E.g. use Gabriel graph instead of Voronoi

• Condensation algorithm: iterative, also approximate.

http://cmp.felk.cvut.cz
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K-d Tree

k-d tree decomposition for the point set (2,3), (5,4), (9,6), (4,7), (8,1), (7,2)
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Condensation Algorithm

Input: The training set T .

Algorithm

1. Create two lists, A and B. Insert a randomly selected sample from T to A. Insert the
rest of the training samples to B.

2. Classify samples from B using 1NN with training set A. If an x ∈ B is mis-classified,
move it from B to A.

3. If a move has been triggered in Step 2., goto Step 2.

Output: A (the condensed training set for 1NN classification)

http://cmp.felk.cvut.cz
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Condensation Algorithm, Example

The training dataset The dataset after the condensation.
Shown with the new decision boundary.
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1-NN Classification Error

Recall that a classification error ε̄ for strategy q : X → R is computed as

ε̄ =

∫ ∑
k:q(x) 6=k

p(x, k)dx =

∫ ∑
k:q(x) 6=k

p(k|x)︸ ︷︷ ︸
ε(x)

p(x)dx =

∫
ε(x)p(x)dx . (21)

We know that the Bayesian strategy qB decides for the highest posterior probability
q(x) = argmaxk p(k|x), thus the partial error εB(x) for a given x is

εB(x) = 1−max
k

p(k|x) . (22)

Assume the asymptotic case. We will show that the following bounds hold for the partial
error εNN(x) and classification error ε̄NN in the 1-NN classification,

εB(x) ≤ εNN(x) ≤ 2εB(x)− R
R−1ε

2
B(x) , (23)

ε̄B ≤ ε̄NN ≤ 2ε̄B − R
R−1ε̄

2
B , (24)

where ε̄B is the Bayes classification error and R is the number of classes.
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1-NN Classification Error, Example (1)

s
             x

δp(1|s) =0.80
p(2|s) =0.20

p(x|1)

p(x|2)

Consider two distributions as shown, a small interval δ on an x-axis, and a point s ∈ δ. Let
the class priors be p(1) = p(2) = 0.5. Assume δ → 0 and number of samples N →∞.

Observe the following:

p(1|s) = 0.8 , p(2|s) = 0.2 , (25)
p(NN=1|s) = p(1|s) = 0.8 , p(NN=2|s) = p(2|s) = 0.2 , (26)

where p(NN=k|s) is the probability that the 1-NN of s is from class k (k = 1, 2) and thus
s is classified as k.
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1-NN Classification Error, Example (2)

s
             x

δp(1|s) =0.80
p(2|s) =0.20

p(x|1)

p(x|2)

The error εNN(s) at s is

εNN(s) = p(1|s) p(NN=2|s) + p(2|s) p(NN=1|s) (27)
= 1− p(1|s) p(NN=1|s)− p(2|s) p(NN=2|s) (28)

= 1− p2(1|s)− p2(2|s) . (29)

Generally, for R classes, the error will be

εNN(s) = 1−
∑
k∈R

p2(k|s) . (30)
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1-NN Classification Error, Example (3)

The two distributions and the partial errors
(the Bayesian error εB(x) and the 1-NN error εNN(x))

p(x|1)

p(x|2)

x
0.0

0.1

0.2

0.3

0.4

0.5
εB (x)

εNN(x)
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1-NN Classification Error Bounds (1)

Let us now return to the inequalities and prove them:

εB(x) ≤ εNN(x) ≤ 2εB(x)− R
R−1ε

2
B(x) , (31)

The first inequality follows from the fact that Bayes strategies are optimal.

To prove the second inequality, let P (x) denote the maximum posterior for x:

P (x) = max
k

p(k|x) (32)

⇒ εB(x) = 1− P (x) . (33)

Let us rewrite the partial error εNN(x) using the Bayesian entities P (x) and q(x):

εNN(x) = 1−
∑
k∈R

p2(k|x) = 1− P 2(x)−
∑

k 6=q(x)

p2(k|x) . (34)

We know that p(q(x)|x) = P (x), but the remaining posteriors can be arbitrary. Let us
consider the worst case. i.e. set p(k|x) for k 6= q(x) such that Eq. (34) is maximized. This
will provide the upper bound.

http://cmp.felk.cvut.cz
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1-NN Classification Error Bounds (2)

There are the following constraints on p(k|x) (k 6= q(x)):∑
k 6=q(x)

p(k|x) + P (x) = 1 (posteriors sum to 1) (35)

∑
k 6=q(x)

p2(k|x)→ min (36)

It is easy to show that this optimization problem is solved by setting all the posteriors to the
same number. Thus,

p(k|x) =
1− P (x)

R− 1
=
εB(x)

R− 1
(k 6= q(x)) (37)

The upper bound can then be rewritten in terms of the Bayes partial error
εB(x) = 1− P (x):

εNN(x) ≤ 1− P 2(x)−
∑

k 6=q(x)

p2(k|x) = 1− (1− εB(x))2 − (R− 1)
ε2B(x)

(R− 1)2
. (38)
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1-NN Classification Error Bounds (3)

εNN(x) ≤ 1− P 2(x)−
∑

k 6=q(x)

p2(k|x) = 1− (1− εB(x))2 − ε2B(x)

R− 1
. (39)

After expanding this, we get

εNN(x) ≤ 1− (1− εB(x))2 − ε2B(x)

(R− 1)
(40)

= 1− 1 + 2εB(x)− ε2B(x)− ε2B(x)
R

R− 1
(41)

= 2εB(x)− ε2B(x) R
R−1 (42)

Note that for R = 2, the bound is tight because using εB(x) = 1− P (x) in Eq. (39) gives

εNN(x) ≤ 1− P 2(x)− (1− P (x))2

1
= εNN(x) . (43)
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1-NN Classification Error Bounds (4)

The inequality for the local errors has been proven:

εNN(x) ≤ 2εB(x)− ε2B(x) R
R−1 (44)

Is there a similar upper bound for the classification error ε̄NN =
∫
εNN(x)p(x)dx, based on

the Bayes error ε̄B =
∫
εB(x)p(x)dx?

Multiplying Eq. (45) by p(x), and integrating, gives

ε̄NN ≤ 2ε̄B(x)− R

R− 1

∫
ε2B(x)p(x)dx (45)

Let us use the known identity and inequality (where E (·) is the expectation operator)

var(x) = E
(
x2
)
− E2 (x) , var(x) ≥ 0 ⇒ E(x2) ≥ E2(x) (46)

Thus,
∫
ε2B(x)p(x)dx ≥

(∫
εB(x)p(x)dx

)2, and
ε̄NN ≤ 2ε̄B(x)− R

R− 1

∫
ε2B(x)p(x)dx ≤ 2ε̄B(x)− R

R− 1
ε̄2B . (47)
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K-NN Classification Error Bound

It can be shown that for K-NN, the following inequality holds:

ε̄KNN ≤ ε̄B + ε̄1NN/
√
K const (48)
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Edit algorithm

The primary goal of this method is to reduce the classification error (not the speed-up of
classification.)

Input: The training set T .

Algorithm

1. Partition T to two sets, A and B (T = A ∪B, A ∩B = ∅.)

2. Classify samples in B using K-NN with training set A. Remove all samples from B
which have been mis-classified.

Output: B the training set for 1-NN classification.

Asymptotic property:
ε̄edit = ε̄B

1− ε̄B
1− ε̄KNN

(49)

If ε̄KNN is small (e.g. 0.05) then the edited 1NN is quasi-Bayes (almost the same
performance as Bayesian Classification.)
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