Nonparametric Methods for Density Estimation Nearest Neighbour Classification

Lecturer: Ondřej Drbohlav

Authors: Ondřej Drbohlav, Jiří Matas

Centre for Machine Perception Czech Technical University, Prague http://cmp.felk.cvut.cz

Last update: Oct 2022

Parametric Methods for Density Estimation

- Have been dealt with in the previous lecture
- Advantage: Low number of parameters to estimate
- Disadvantage: The resulting estimated density can be arbitrarily wrong if the underlying distribution does not agree with the assumed parametric model.

Non-Parametric Methods for Density Estimation

- Histogram
- Nearest Neighbor approach

Histogram as piecewise constant density estimate: Task formulation

Consider the following distribution q(x) on the interval [0,1], and i.i.d. sampling from it. We will fit the distribution by a 'histogram' with B bins. More precisely, we will estimate a piecewise-constant function on the interval [0,1] with B segments of the same width. For a given B, the parameters of this piecewise-constant function are the heights $d_1, d_2, ..., d_B$ of the individual bins. This function is denoted $p(x|\{d_1, d_2, ..., d_B\})$.

For the given number of bins B, $d_1, d_2, ..., d_B$ must conform to the constraint that the area under the function must sum up to one,

$$1 = \int_{-\infty}^{\infty} p(x|\{d_1, d_2, ..., d_B\}) dx = \sum_{i=1}^{B} \int_{\frac{i-1}{B}}^{\frac{i}{B}} d_i dx = \sum_{i=1}^{B} d_i \frac{1}{W} = \sum_{i=1}^{B} \frac{d_i}{B}.$$
 (1)

Histogram as piecewise constant density estimate: Finding d_i 's using Maximum Likelihood

4/33

Let us estimate $\{d_i, i=1,2,...,B\}$ by Maximum Likelihood (ML) approach. Let N_i denote the number of samples which belong the i-th bin (thus clearly, $\sum_{i=1}^B N_i = N$). The likelihood $L(\mathcal{T})$ of observing the samples $\mathcal{T} = \{x_1, x_2, ..., x_N\}$ given the parameters $\boldsymbol{\theta} = \{d_1, d_2, ..., d_B\}$ is

$$L(\mathcal{T}) = p(\mathcal{T}|\boldsymbol{\theta}) = \prod_{i=1}^{N} p(x_i|\boldsymbol{\theta}) = \prod_{j=1}^{B} \left(\prod_{k=1}^{N_j} d_j\right) = \prod_{j=1}^{B} d_j^{N_j}.$$
 (2)

The maximization task is then

$$\ell(\mathcal{T}) = \sum_{j=1}^{B} N_j \log d_j \to \max, \quad \text{subject to } \frac{1}{B} \sum_{j=1}^{B} d_j = 1, \tag{3}$$

where maximization has been formulated using the log-likelihood $\ell(\mathcal{T})$. The Lagrangian of the optimization task and the conditions of optimality (using the derivative $\partial/\partial d_k$) are then:

Lagrangian:
$$\sum_{j=1}^{B} N_j \log d_j + \lambda \left(\frac{1}{B} \sum_{j=1}^{B} d_j - 1 \right)$$
 (4)

$$\frac{N_k}{d_k} + \frac{\lambda}{B} = 0 \Rightarrow \frac{d_k}{N_k} = \text{const.} \Rightarrow d_k = B \frac{N_k}{N} . \tag{5}$$

5/33

Histogram as piecewise constant density estimate: Example, different number of bins

$$d_k = B \frac{N_k}{N} \qquad (6)$$

This result is in line with the common use of histograms for approximating pdf's. Results for different B's:

Histogram as piecewise constant density estimate: What number of bins produces closest pdf approximation?

Let us measure the differences between the (actual) source distribution q(x) and the piecewise-constant density estimate $p(x) = p(x|\{d_1, d_2, ..., d_B\})$ from the N = 1000 samples, using B bins.

Measures used:

Kullback-Leibler divergence D_{KL} :

$$D_{\mathrm{KL}}(p||q) = \int_{-\infty}^{\infty} p(x) \log \frac{p(x)}{q(x)} \,\mathrm{d}x.$$
(7)

(Note that KL div. is not a metric.)

Sum of squared differences D_{SSD} :

$$D_{\text{SSD}}(p,q) = \int_{-\infty}^{\infty} (p(x) - q(x))^2 dx.$$
(8)

How can we find the optimal number of bins B? Let us try to employ the ML approach again: find the B which maximizes the likelihood. Recall that:

parameters
$$d_j$$
: $d_j = B \frac{N_j}{N}$ (ML estimate)

likelihood
$$L(\mathcal{T})$$
: $L(\mathcal{T}) = p(\mathcal{T} | \{d_1, d_2, ..., d_B\}) = \prod_{j=1}^{D} d_j^{N_j} = \prod_{j=1}^{D} \left(\frac{BN_j}{N}\right)^{N_j}$ (10)

likelihood
$$L(\mathcal{T})$$
: $L(\mathcal{T}) = p(\mathcal{T}|\{d_1, d_2, ..., d_B\}) = \prod_{j=1}^B d_j^{N_j} = \prod_{j=1}^B \left(\frac{BN_j}{N}\right)^{N_j}$ (10) log-likelihood $\ell(\mathcal{T})$: $\ell(\mathcal{T}) = \sum_{j=1}^B N_j \log d_j = \sum_{j=1}^B N_j \log \frac{BN_j}{N}$ (11)

For B=4000, the log-likelihood ℓ is the highest.

But the pdf estimate with this B is poor, and very different from the source distribution as measured by D_{KL} or D_{SSD} .

For
$$B=10^5$$
, $\ell(\mathcal{T})\sim 4600$.

What went wrong?

m p

B/33

Histogram, choosing the number of bins B: ML overfits and produces $B=\infty$

When B grows, eventually it will reach a number \hat{B} such that there is either *no* or *one* point in every bin (assuming no two points in the data are identical), and this will stay true for any $B > \hat{B}$.

In such cases,

$$d_j = \begin{cases} \frac{B}{N} & \text{if the bin is populated by a point,} \\ 0 & \text{if the bin is not populated.} \end{cases}$$
 (12)

As the number of bins B grows, the widths of occupied bins get narrower and the heights d_j 's higher. If $B \to \infty$ then also $d_j \to \infty$ for the occupied bins, and therefore also $\ell(\mathcal{T}) \to \infty$. Thus, such an approach cannot produce a "reasonable" answer to choosing B, as the solution it provides is $B = \infty$.

The problem is that the log-likelihood ℓ is computed using the same data used for fitting the model (computing d_i 's). This is a similar concept to training a classifier on certain data and testing on the same data, which is prone to over-fitting and poor generalization.

Histogram, choosing the number of bins B: Employing cross-validation

9/33

Let us compute the log likelihood using the following procedure: remove a given point from the dataset for computing d_i 's and evaluate its contribution to the log-likelihood. Do this for all the points. This approach is related to cross-validation technique (leave-one-out) for choosing parameters of a classifier.

Let the point in question belong to the j-th bin. The ML estimate for d_j , after removing this point from the dataset, is

$$d_j = B \frac{N_j - 1}{N - 1}, \qquad (N_j \ge 1), \tag{13}$$

where the subtractions of 1 reflect the fact that the considered point is not used for estimating d_j . Computing the log likelihood ℓ this way produces the following result:

$$\ell = \sum_{\substack{j=1\\N_j \ge 1}}^B N_j \log d_j,$$

with
$$d_j = B \frac{N_j - 1}{N - 1}$$

The 'failure' for B > 7 is caused by singly-occupied bins $(N_j = 1)$ for which the modified ML estimate for d_j becomes zero. This will be fixed by using different estimates for d_j 's.

Histogram, choosing the number of bins B: More suitable estimates for d_j 's

10/33

The problem of d_i being estimated as 0 is similar to the one encountered previously: Recall the example of tossing a coin three times, always getting heads ($\mathcal{T} = \{H, H, H\}$). The ML estimate is a fully unfair coin (probability of getting heads is 1, $\pi_{\text{head}} = 1$), thus making the likelihood of any sequence containing tails zero. We have seen before that employing the prior for the parameters to be estimated can mitigate this problem.

A (conjugate) prior for the histogram bin counts is the Dirichlet Distribution, with the pdf $p(d_1, d_2, ..., d_B | \alpha_1, \alpha_2, ..., \alpha_B) \sim \prod d_i^{\alpha_i - 1}$.

MAP Estimate:

Bayes Estimate:

$$d_{i} = B \frac{N_{i} + \alpha_{i} - 1}{N + \sum_{i=1}^{B} \alpha_{i} - B}$$
 (14)
$$d_{i} = B \frac{N_{i} + \alpha_{i}}{N + \sum_{i=1}^{B} \alpha_{i}}$$
 (15)

Interpretation: The parameters α_i 's can be interpreted as 'virtual' observations, as if α_k points have already been assigned to the k-th bin.

Example: The Bayes estimate using $\alpha_i = 1$ for all i = 1, 2, ..., B is

$$d_i = B \frac{N_i + 1}{N + B}. \tag{16}$$

Using this estimate will enable us to make reasonable computation of likelihood for all B's.

Histogram, choosing the number of bins B: ML to find B, cross-validation, Bayes esimate for d_j 's

Let us now return to the previous task. Compute the log likelihood using the following procedure: remove a given point from the dataset for computing d_i 's and evaluate its contribution to the log-likelihood. Do this for all the points.

Use the Bayes estimate for d_j from the previous example, $d_j = B \frac{N_j+1}{N+B}$. The modified estimation of d_i (omitting the point in question) will become

$$d_j = B \frac{N_j}{N - 1 + B} \,. \tag{17}$$

This leads to the following result:

$$\ell = \sum_{j=1}^B N_j \log d_j$$
, with $d_j = B \frac{N_j}{N-1+B}$

This result is in agreement with distribution differences as measured by $D_{\rm KL}$ or $D_{\rm SSD}$. In particular, B=30 is identified as the best-approximating number of bins.

Find K neighbors, the density estimate is then $p \sim 1/V$ where V is the volume of a minimum cell containing K NNs. Example ($p \sim \text{inverse distance to } K\text{-th NN, same}$ 1000 samples as before):

K-Nearest Neighbor Approach to Classification

13/33

Outline:

- Definition
- Properties
- Asymptotic error of NN classifier
- Error reduction by edit operation on the training class
- Fast NN search

K-NN Classification Definition

Assumption:

- Training set $\mathcal{T} = \{(x_1, k_1), (x_2, k_2), ..., (x_N, k_N)\}$. There are R classes (letter K is reserved for K-NN in this lecture)
- A distance function $d: X \times X \mapsto \mathbb{R}_0^+$

Algorithm:

1. Given x, find K points $S = \{(x'_1, k'_1), (x'_2, k'_2), ..., (x'_K, k'_K)\}$ from the training set \mathcal{T} which are closest to x in the metric d:

$$S = \{(x'_1, k'_1), (x'_2, k'_2), ..., (x'_K, k'_K)\} \equiv \{(x_{r_1}, k_{r_1}), (x_{r_2}, k_{r_2}), ..., (x_{r_K}, k_{r_K})\}$$
(18)

$$r_i$$
: the rank of $(x_i, k_i) \in \mathcal{T}$ as given by the ordering $d(x, x_i)$ (19)

2. Classify x to the class k which has majority in S:

$$k = \underset{l \in R}{\operatorname{argmax}} \sum_{i=1}^{K} [\![k_i' = l]\!] \qquad (x_i', k_i') \in S$$
 (20)

Consider the two distributions shown. The priors are assumed to be the same,

$$p(1) = p(2) = 0.5.$$

Bayesian optimal decision boundary is shown by the black circle.

Bayesian error is $\epsilon_B = 0.026$.

K-NN Example (2)

K = 1, error ϵ = 0.044 K = 3, error $\epsilon = 0.034$ K = 5, error $\epsilon = 0.032$ K = 7, error ϵ = 0.030 K = 9, error $\epsilon = 0.031$ K = 11, error $\epsilon = 0.032$

N=100 samples for each class. Bayes error $\epsilon_B=0.026$.

K-NN Example (3)

The results depend on the training set (result of a random process.) Each of the training sets \mathcal{T}_1 , \mathcal{T}_2 , \mathcal{T}_3 contain 100 points for each class.

K-NN Example (4)

18/33

K-NN error for different K and different sizes of the training set (N samples per class). 10 training sets have been generated randomly for each setting of K and N. Average error and its std is shown. Minimum average error is highlighted for each N. Bayes err. $\epsilon_B = 2.58\%$.

K-NN Properties

19/33

- lacktriangle Trivial implementation (ightarrow good baseline method)
- 1-NN: Bayes error ϵ_B is the lower bound on error of classification ϵ_{NN} (in the asymptotic case $N \to \infty$.) Upper bounds can also be constructed, e.g. $\epsilon_{NN} \le 2\epsilon_B$
- ◆ Slow when implemented naively, but can be sped up (Voronoi, k-D trees)
- High computer memory requirements (but training set can be edited and its cardinality decreased)
- \bullet How to construct the metric d? (problem of scales in different axes)

$K ext{-NN}$: Speeding Up the Classification

- Sophisticated algorithms for NN search:
 - Classical problem in Comp. Geometry
 - k-D trees
- lacktriangle Removing the samples from the training class ${\mathcal T}$ which do not change the result of classification
 - Exactly: using Voronoi diagram
 - Approximately: E.g. use Gabriel graph instead of Voronoi
 - Condensation algorithm: iterative, also approximate.

k-d tree decomposition for the point set (2,3), (5,4), (9,6), (4,7), (8,1), (7,2)

Condensation Algorithm

Input: The training set \mathcal{T} .

Algorithm

- 1. Create two lists, A and B. Insert a randomly selected sample from \mathcal{T} to A. Insert the rest of the training samples to B.
- 2. Classify samples from B using 1NN with training set A. If an $x \in B$ is mis-classified, move it from B to A.
- 3. If a move has been triggered in Step 2., goto Step 2.

Output: A (the condensed training set for 1NN classification)

Condensation Algorithm, Example

The training dataset

The dataset after the condensation. Shown with the new decision boundary.

1-NN Classification Error

Recall that a classification error $\overline{\epsilon}$ for strategy $q\colon X\to R$ is computed as

$$\overline{\epsilon} = \int \sum_{k:q(x)\neq k} p(x,k) dx = \int \underbrace{\sum_{k:q(x)\neq k} p(k|x)}_{\epsilon(x)} p(x) dx = \int \epsilon(x) p(x) dx. \tag{21}$$

We know that the Bayesian strategy q_B decides for the highest posterior probability $q(x) = \operatorname{argmax}_k p(k|x)$, thus the partial error $\epsilon_B(x)$ for a given x is

$$\epsilon_B(x) = 1 - \max_k p(k|x). \tag{22}$$

Assume the asymptotic case. We will show that the following bounds hold for the partial error $\epsilon_{NN}(x)$ and classification error $\bar{\epsilon}_{NN}$ in the 1-NN classification,

$$\epsilon_B(x) \le \epsilon_{NN}(x) \le 2\epsilon_B(x) - \frac{R}{R-1}\epsilon_B^2(x)$$
, (23)

$$\bar{\epsilon}_B \le \bar{\epsilon}_{NN} \le 2\bar{\epsilon}_B - \frac{R}{R-1}\bar{\epsilon}_B^2 \,, \tag{24}$$

where $\bar{\epsilon}_B$ is the Bayes classification error and R is the number of classes.

1-NN Classification Error, Example (1)

Consider two distributions as shown, a small interval δ on an x-axis, and a point $s \in \delta$. Let the class priors be p(1) = p(2) = 0.5. Assume $\delta \to 0$ and number of samples $N \to \infty$.

Observe the following:

$$p(1|s) = 0.8, \quad p(2|s) = 0.2,$$
 (25)

$$p(NN=1|s) = p(1|s) = 0.8, \quad p(NN=2|s) = p(2|s) = 0.2,$$
 (26)

where p(NN=k|s) is the probability that the 1-NN of s is from class k (k=1,2) and thus s is classified as k.

1-NN Classification Error, Example (2)

The error $\epsilon_{NN}(s)$ at s is

$$\epsilon_{NN}(s) = p(1|s) p(NN=2|s) + p(2|s) p(NN=1|s)$$

$$= 1 - p(1|s) p(NN=1|s) - p(2|s) p(NN=2|s)$$

$$= 1 - p^2(1|s) - p^2(2|s) .$$
(27)
$$= 1 - p^2(1|s) - p^2(2|s) .$$
(28)

Generally, for R classes, the error will be

$$\epsilon_{NN}(s) = 1 - \sum_{k \in R} p^2(k|s).$$
 (30)

m

27/33

1-NN Classification Error, Example (3)

The two distributions and the partial errors (the Bayesian error $\epsilon_B(x)$ and the 1-NN error $\epsilon_{NN}(x)$)

1-NN Classification Error Bounds (1)

Let us now return to the inequalities and prove them:

$$\epsilon_B(x) \le \epsilon_{NN}(x) \le 2\epsilon_B(x) - \frac{R}{R-1}\epsilon_B^2(x),$$
(31)

The **first** inequality follows from the fact that Bayes strategies are optimal.

To prove the **second** inequality, let P(x) denote the maximum posterior for x:

$$P(x) = \max_{k} p(k|x) \tag{32}$$

$$\Rightarrow \quad \epsilon_B(x) = 1 - P(x) \,. \tag{33}$$

Let us rewrite the partial error $\epsilon_{NN}(x)$ using the Bayesian entities P(x) and q(x):

$$\epsilon_{NN}(x) = 1 - \sum_{k \in R} p^2(k|x) = 1 - P^2(x) - \sum_{k \neq q(x)} p^2(k|x). \tag{34}$$

We know that p(q(x)|x) = P(x), but the remaining posteriors can be arbitrary. Let us consider the worst case. i.e. set p(k|x) for $k \neq q(x)$ such that Eq. (34) is maximized. This will provide the upper bound.

1-NN Classification Error Bounds (2)

There are the following constraints on p(k|x) $(k \neq q(x))$:

$$\sum_{k \neq q(x)} p(k|x) + P(x) = 1 \qquad \text{(posteriors sum to 1)} \tag{35}$$

$$\sum_{k \neq q(x)} p^2(k|x) \to \min \tag{36}$$

It is easy to show that this optimization problem is solved by setting all the posteriors to the same number. Thus,

$$p(k|x) = \frac{1 - P(x)}{R - 1} = \frac{\epsilon_B(x)}{R - 1} \qquad (k \neq q(x))$$
(37)

The upper bound can then be rewritten in terms of the Bayes partial error $\epsilon_B(x) = 1 - P(x)$:

$$\epsilon_{NN}(x) \le 1 - P^2(x) - \sum_{k \ne q(x)} p^2(k|x) = 1 - (1 - \epsilon_B(x))^2 - (R - 1) \frac{\epsilon_B^2(x)}{(R - 1)^2}.$$
(38)

1-NN Classification Error Bounds (3)

30/33

$$\epsilon_{NN}(x) \le 1 - P^2(x) - \sum_{k \ne q(x)} p^2(k|x) = 1 - (1 - \epsilon_B(x))^2 - \frac{\epsilon_B^2(x)}{R - 1}.$$
(39)

After expanding this, we get

$$\epsilon_{NN}(x) \le 1 - (1 - \epsilon_B(x))^2 - \frac{\epsilon_B^2(x)}{(R - 1)}$$
(40)

$$= 1 - 1 + 2\epsilon_B(x) - \epsilon_B^2(x) - \epsilon_B^2(x) \frac{R}{R - 1}$$
(41)

$$= 2\epsilon_B(x) - \epsilon_B^2(x) \frac{R}{R-1} \tag{42}$$

Note that for R=2, the bound is tight because using $\epsilon_B(x)=1-P(x)$ in Eq. (39) gives

$$\epsilon_{NN}(x) \le 1 - P^2(x) - \frac{(1 - P(x))^2}{1} = \epsilon_{NN}(x).$$
 (43)

1-NN Classification Error Bounds (4)

The inequality for the local errors has been proven:

$$\epsilon_{NN}(x) \le 2\epsilon_B(x) - \epsilon_B^2(x) \frac{R}{R-1} \tag{44}$$

Is there a similar upper bound for the classification error $\bar{\epsilon}_{NN} = \int \epsilon_{NN}(x) p(x) \mathrm{d}x$, based on the Bayes error $\bar{\epsilon}_B = \int \epsilon_B(x) p(x) \mathrm{d}x$?

Multiplying Eq. (45) by p(x), and integrating, gives

$$\bar{\epsilon}_{NN} \le 2\bar{\epsilon}_B(x) - \frac{R}{R-1} \int \epsilon_B^2(x) p(x) dx$$
 (45)

Let us use the known identity and inequality (where $E(\cdot)$ is the expectation operator)

$$var(x) = E(x^2) - E^2(x), var(x) \ge 0 \Rightarrow E(x^2) \ge E^2(x)$$
 (46)

Thus, $\int \epsilon_B^2(x)p(x)\mathrm{d}x \geq \left(\int \epsilon_B(x)p(x)\mathrm{d}x\right)^2$, and

$$\bar{\epsilon}_{NN} \le 2\bar{\epsilon}_B(x) - \frac{R}{R-1} \int \epsilon_B^2(x) p(x) dx \le 2\bar{\epsilon}_B(x) - \frac{R}{R-1} \bar{\epsilon}_B^2$$
 (47)

K-NN Classification Error Bound

m p

It can be shown that for K-NN, the following inequality holds:

$$ar{\epsilon}_{K\!N\!N} \leq ar{\epsilon}_B + ar{\epsilon}_{1\!N\!N}/\sqrt{K} \operatorname{const}$$

(48)

The primary goal of this method is to reduce the classification error (not the speed-up of classification.)

Input: The training set \mathcal{T} .

Algorithm

- 1. Partition \mathcal{T} to two sets, A and B ($\mathcal{T} = A \cup B, A \cap B = \emptyset$.)
- 2. Classify samples in B using **K**-NN with training set A. Remove all samples from B which have been mis-classified.

Output: B the training set for **1**-NN classification.

Asymptotic property:

$$\bar{\epsilon}_{edit} = \bar{\epsilon}_B \frac{1 - \bar{\epsilon}_B}{1 - \bar{\epsilon}_{KNN}} \tag{49}$$

If $\bar{\epsilon}_{KNN}$ is small (e.g. 0.05) then the edited 1NN is quasi-Bayes (almost the same performance as Bayesian Classification.)