Non-Bayesian Methods

lecturer: Jiří Matas, matas@cmp.felk.cvut.cz
authors: Ondřej Drbohlav, Jiří Matas, Václav Hlaváč
Czech Technical University, Faculty of Electrical Engineering
Department of Cybernetics, Center for Machine Perception
12135 Praha 2, Karlovo nám. 13, Czech Republic
http://cmp.felk.cvut.cz

Oct 2023

Lecture Outline

1. Limitations of Bayesian Decision Theory
2. Neyman Pearson Task
3. Minimax Task
4. Wald Task

Bayesian Decision Theory

Recall:
X set of observations
K set of hidden states
D set of decisions
$p_{X K}: \quad X \times K \rightarrow \mathbb{R}$: joint probability
$W: K \times D \rightarrow \mathbb{R}$: loss function,
$q: \quad X \rightarrow D$: strategy
$R(q)$: risk:

$$
\begin{equation*}
R(q)=\sum_{x \in X} \sum_{k \in K} p_{X K}(x, k) W(k, q(x)) \tag{1}
\end{equation*}
$$

Bayesian strategy q^{*} :

$$
\begin{equation*}
q^{*}=\underset{q \in X \rightarrow D}{\operatorname{argmin}} R(q) \tag{2}
\end{equation*}
$$

Limitations of the Bayesian Decision Theory

The limitations follow from the very ingredients of the Bayesian Decision Theory - the necessity to know all the probabilities and the loss function.

- The loss function W must make sense, but in many tasks it wouldn't
- medical diagnosis task (W : price of medicines, staff labor, etc. but what penalty in case of patient's death?) Uncomparable penalties on different axes of X.
- nuclear plant
- judicial error
- The prior probabilities $p_{K}(k)$: must exist and be known. But in some cases it does not make sense to talk about probabilities because the events are not random.
- $K=\{1,2\} \equiv$ \{own army plane, enemy plane $\}$;
$p(x \mid 1), p(x \mid 2)$ do exist and can be estimated, but $p(1)$ and $p(2)$ don't.
- The conditionals may be subject to non-random intervention; $p(x \mid k, z)$ where $z \in Z=\{1,2,3\}$ are different interventions.
- a system for handwriting recognition: The training set has been prepared by 3 different persons. But the test set has been constructed by one of the 3 persons only. This cannot be done:

$$
\begin{equation*}
\text { (!) } p(x \mid k)=\sum_{z} p(z) p(x \mid k, z) \tag{3}
\end{equation*}
$$

Neyman Pearson Task

- $K=\{1,2\}$ (two classes, sometimes called $1=$ 'dangerous', $2=$ 'normal')
- X set of observations
- Conditionals $p(x \mid 1), p(x \mid 2)$ are given
- The priors $p(1)$ and $p(2)$ are unknown or do not exist
- $q: X \rightarrow K$ strategy

The Neyman Pearson Task looks for the optimal strategy q^{*} for which
i) the error of classification for class 1 is lower than a predefined threshold $\bar{\epsilon}_{1}\left(0<\bar{\epsilon}_{1}<1\right)$, while
ii) the classification error for class 2 is as low as possible.

This is formulated as an optimization task with an inequality constraint:

$$
\begin{array}{r}
\quad q^{*}=\underset{q: X \rightarrow K}{\operatorname{argmin}} \sum_{x: q(x) \neq 2} p(x \mid 2) \\
\text { subject to: } \sum_{x: q(x) \neq 1} p(x \mid 1) \leq \bar{\epsilon}_{1} . \tag{5}
\end{array}
$$

Neyman Pearson Task

(copied from the previous slide:)

$$
\begin{align*}
& \qquad q^{*}=\underset{q: X \rightarrow K}{\operatorname{argmin}} \sum_{x: q(x) \neq 2} p(x \mid 2) \tag{4}\\
& \text { subject to: } \sum_{x: q(x) \neq 1} p(x \mid 1) \leq \bar{\epsilon}_{1} \tag{5}
\end{align*}
$$

A strategy is characterized by the classification error values ϵ_{2} and ϵ_{1} :

$$
\begin{align*}
& \epsilon_{1}=\sum_{x: q(x) \neq 1} p(x \mid 1) \tag{6}\\
& \epsilon_{2}=\sum_{x: q(x) \neq 2} p(x \mid 2) \tag{7}
\end{align*}
$$

Example: Male/Female Recognition (Neyman Pearson) (1)

A hotel has an advertising screen in an elevator. Based on recognition of gender, it wants to display a relevant advert for a shopping mall located at the ground floor. The shopping mall is primarily designed to be interesting for female customers. For this reason, the female classification error threshold is set to $\bar{\epsilon}_{1}=0.2$. At the same time, the objective is to minimize mis-classification of male customers.

- $K=\{1,2\} \equiv\{\mathrm{F}, \mathrm{M}\}$ (female, male)
- measurements $X=$ height \times weight (height sensor $=$ simple optical sensor, weight sensor $=$ standard component of elevators)
height $\in\left\{h_{1}, h_{2}, h_{3}\right\}$, weight $\in\left\{w_{1}, w_{2}, w_{3}, w_{4}\right\}\left(h_{1}<h_{2}<h_{3}\right)$, $\left(w_{1}<w_{2}<w_{3}<w_{4}\right)$
- Prior probabilities do not exist.
- Conditionals are given as follows:

$p(x \mid \mathbf{F})$				
h_{1}	.197	.145	.094	.017
h_{2}	.077	.299	.145	.017
h_{3}	.001	.008	.000	.000
	w_{1}	w_{2}	w_{3}	w_{4}

$p(x \mid \mathrm{M})$				
h_{1}	.011	.005	.011	.011
h_{2}	.005	.071	.408	.038
h_{3}	.002	.014	.255	.169
	w_{1}	w_{2}	w_{3}	w_{4}

Neyman Pearson : Solution

The optimal strategy q^{*} for a given $x \in X$ is constructed using the likelihood ratio $\frac{p(x \mid 2)}{p(x \mid 1)}$.
Let there be a constant $\mu \geq 0$. Given this μ, a strategy q is constructed as follows:

$$
\begin{align*}
& \frac{p(x \mid 2)}{p(x \mid 1)}>\mu \quad \Rightarrow \quad q(x)=2 \tag{9}\\
& \frac{p(x \mid 2)}{p(x \mid 1)} \leq \mu \quad \Rightarrow \quad q(x)=1 \tag{10}
\end{align*}
$$

The optimal strategy q^{*} is obtained by selecting the minimal μ for which there still holds that $\epsilon_{1} \leq \bar{\epsilon}_{1}$.

Let us show this on an example.

Example: Male/Female Recognition (Neyman Pearson) (2)

$p(x \mid 1)$				
h_{1}	.197	.145	.094	.017
h_{2}	.077	.299	.145	.017
h_{3}	.001	.008	.000	.000
	w_{1}	w_{2}	w_{3}	w_{4}

$r(x)=p(x \mid 2) / p(x \mid 1)$				
h_{1}	0.056	0.034	0.117	0.647
h_{2}	0.065	0.237	2.814	2.235
h_{3}	2.000	1.750	∞	∞
	w_{1}	w_{2}	w_{3}	w_{4}

$p(x \mid 2)$				
h_{1}	.011	.005	.011	.011
h_{2}	.005	.071	.408	.038
h_{3}	.002	.014	.255	.169
	w_{1}	w_{2}	w_{3}	w_{4}

Here, different μ 's can produce 11 different strategies.
First, let us take $2.814<\mu<\infty$, e.g. $\mu=3$. This produces a strategy $q^{*}(x)=1$ everywhere except where $p(x \mid 1)=0$. Obviously, classification error $\epsilon_{1}=0$, and $\epsilon_{2}=1-.255-.169=.576$.

Example: Male/Female Recognition (Neyman Pearson) (3)

$p(x \mid 1)$				
h_{1}	.197	.145	.094	.017
h_{2}	.077	.299	.145	.017
h_{3}	.001	.008	.000	.000
	w_{1}	w_{2}	w_{3}	w_{4}

$r(x)=p(x \mid 2) / p(x \mid 1)$				
h_{1}	0.056	0.034	0.117	0.647
h_{2}	0.065	0.237	2.814	2.235
h_{3}	2.000	1.750	∞	∞
	w_{1}	w_{2}	w_{3}	w_{4}

rank, and $q^{*}(x)=\{1,2\}$ for $\mu=2.5$

h_{1}	2	1	4	6
h_{2}	3	5	10	9
h_{3}	8	7	11	12
	w_{1}	w_{2}	w_{3}	w_{4}

Next, take μ which satisfies

$$
\begin{equation*}
r_{9}<\mu<r_{10} \quad(\text { e.g. } \mu=2.5) \tag{11}
\end{equation*}
$$

(where r_{i} is the likelihood ratios indexed by its rank.) Here, $\epsilon_{1}=.145$, and $\epsilon_{2}=1-.255-.169-.408=.168$.

Example: Male/Female Recognition (Neyman Pearson) (4)

$p(x \mid 1)$				
h_{1}	.197	.145	.094	.017
h_{2}	.077	.299	.145	.017
h_{3}	.001	.008	.000	.000
	w_{1}	w_{2}	w_{3}	w_{4}

$r(x)=p(x \mid 2) / p(x \mid 1)$				
h_{1}	0.056	0.034	0.117	0.647
h_{2}	0.065	0.237	2.814	2.235
h_{3}	2.000	1.750	∞	∞
	w_{1}	w_{2}	w_{3}	w_{4}

$p(x \mid 2)$				
h_{1}	.011	.005	.011	.011
h_{2}	.005	.071	.408	.038
h_{3}	.002	.014	.255	.169
	w_{1}	w_{2}	w_{3}	w_{4}

rank, and $q^{*}(x)=\{1,2\}$ for $\mu=2.1$

h_{1}	2	1	4	6
h_{2}	3	5	10	9
h_{3}	8	7	11	12
	w_{1}	w_{2}	w_{3}	w_{4}

Do the same for μ satisfying

$$
\begin{equation*}
r_{8}<\mu<r_{9} \quad(\text { e.g. } \mu=2.1) \tag{12}
\end{equation*}
$$

$\Rightarrow \epsilon_{1}=.162$, and $\epsilon_{2}=0.13$.

Example: Male/Female Recognition (Neyman Pearson)

Classification errors for 1 and 2 , for $\mu_{i}=\frac{r_{i}+r_{i+1}}{2}$ and $\mu_{0}=0$.

The optimum is reached for $r_{5}<\mu<r_{6} ; \epsilon_{1}=.188, \epsilon_{2}=.103$

Neyman Pearson : Simple Case (1)

Consider a simple case when $p\left(x_{i} \mid 1\right)=$ const. Possible values for ϵ_{1} are $0, \frac{1}{8}, \frac{2}{8}, \ldots, 1$. If a strategy q classifies P observations as normal then $\epsilon_{1}=\frac{P}{8}$.
If $P=1$ then $\epsilon_{1}=\frac{1}{8}$ and it is clear that ϵ_{2} will attain minimum if the (one) observation which is classified as normal is the one with the highest $p\left(x_{i} \mid 2\right)$. Similarly, if $P=2$ then the two observations to be classified as normal are the one with the first two highest $p\left(x_{i} \mid 2\right)$. Etc.

\uparrow cumulative sum of sorted $p\left(x_{i} \mid 2\right)$ shows the classification success rate for 2 , that is, $1-\epsilon_{2}$, for $\epsilon_{1}=\frac{1}{8}, \frac{2}{8}, \ldots, 1$. For example, for $\epsilon_{1}=\frac{2}{8}(P=2), \epsilon_{2}=1-0.45=0.55$ (as shown, dashed.)

Neyman Pearson : Towards General Case (2)

In general, $p\left(x_{i} \mid 1\right) \neq$ const. Consider the following example:

$p\left(x_{i} \mid 1\right)$		
x_{1}	x_{2}	x_{3}
0.5	0.25	0.25

$p\left(x_{i} \mid 2\right)$		
x_{1}	x_{2}	x_{3}
0.6	0.35	0.05

But this can easily be converted to the previous special case by (only formally) splitting x_{1} to two observations x_{1}^{\prime} and $x_{1}^{\prime \prime}$:

x_{1}^{\prime}	$x_{1}^{\prime \prime}$	$\left.x_{2} \mid 1\right)$	
0.25	0.25	0.25	x_{3}

$p\left(x_{i} \mid 2\right)$			
x_{1}^{\prime}	$x_{1}^{\prime \prime}$	x_{2}	x_{3}
0.3	0.3	0.35	0.05

which would result in ordering the observations by decreasing $p\left(x_{i} \mid 2\right)$ as: x_{2}, x_{1}, x_{3}.
Obviously, the same ordering is obtained when $p\left(x_{i} \mid 2\right)$ is 'normalized' by $p\left(x_{i} \mid 1\right)$, that is, using the likelihood ratio

$$
\begin{equation*}
r\left(x_{i}\right)=\frac{p\left(x_{i} \mid 2\right)}{p\left(x_{i} \mid 1\right)} . \tag{13}
\end{equation*}
$$

Neyman Pearson : General Case Example (3)

Neyman Pearson Solution : Illustration of Principle

Lagrangian of the Neyman Pearson Task is

$$
\begin{align*}
L(q) & =\underbrace{\sum_{x: q(x)=1} p(x \mid 2)}_{=}+\mu\left(\sum_{x: q(x)=2} p(x \mid 1)-\bar{\epsilon}_{D}\right) \tag{14}\\
& =\overbrace{1-\sum_{x: q(x)=2} p(x \mid 2)}+\mu\left(\sum_{x: q(x)=2} p(x \mid 1)\right)-\mu \bar{\epsilon}_{1} \\
& =1-\mu \bar{\epsilon}_{1}+\sum_{x: q(x)=2} \underbrace{\{\mu p(x \mid 1)-p(x \mid 2)\}}_{T(x)}
\end{align*}
$$

If $T(x)$ is negative for an x then it will decrease the objective function and the optimal strategy q^{*} will decide $q^{*}(x)=2$. This illustrates why the solution to the Neyman Pearson Task has the form

$$
\begin{align*}
& \frac{p(x \mid 2)}{p(x \mid 1)}>\mu \quad \Rightarrow \quad q(x)=2 \tag{9}\\
& \frac{p(x \mid 2)}{p(x \mid 1)} \leq \mu \quad \Rightarrow \quad q(x)=1 \tag{10}
\end{align*}
$$

Neyman Pearson : Derivation (1)

$$
\begin{equation*}
q^{*}=\min _{q: X \rightarrow K} \sum_{x: q(x) \neq 2} p(x \mid 2) \quad \text { subject to: } \sum_{x: q(x) \neq 1} p(x \mid 1) \leq \bar{\epsilon}_{1} . \tag{17}
\end{equation*}
$$

Let us rewrite this as

$$
\begin{align*}
q^{*}=\min _{q: X \rightarrow K} \sum_{x \in X} \alpha(x) p(x \mid 2) \quad \text { subject to: } & \sum_{x \in X}[1-\alpha(x)] p(x \mid 1) \leq \bar{\epsilon}_{1} . \tag{18}\\
\text { and: } & \alpha(x) \in\{0,1\} \forall x \in X \tag{19}
\end{align*}
$$

This is a combinatorial optimization problem. If the relaxation is done from $\alpha(x) \in\{0,1\}$ to $0 \leq \alpha(x) \leq 1$, this can be solved by linear programming (LP). The Lagrangian of this problem with inequality constraints is:

$$
\begin{array}{r}
L\left(\alpha\left(x_{1}\right), \alpha\left(x_{2}\right), \ldots, \alpha\left(x_{N}\right)\right)=\sum_{x \in X} \alpha(x) p(x \mid 2)+\mu\left(\sum_{x \in X}[1-\alpha(x)] p(x \mid 1)-\bar{\epsilon}_{1}\right) \\
- \tag{21}\\
-\sum_{x \in X} \mu_{0}(x) \alpha(x)+\sum_{x \in X} \mu_{1}(x)(\alpha(x)-1)
\end{array}
$$

Neyman Pearson : Derivation (2)

$$
\begin{align*}
L\left(\alpha\left(x_{1}\right), \alpha\left(x_{2}\right), \ldots, \alpha\left(x_{N}\right)\right)= & \sum_{x \in X} \alpha(x) p(x \mid 2)+\mu\left(\sum_{x \in X}[1-\alpha(x)] p(x \mid 1)-\bar{\epsilon}_{1}\right) \tag{20}\\
& -\sum_{x \in X} \mu_{0}(x) \alpha(x)+\sum_{x \in X} \mu_{1}(x)(\alpha(x)-1) \tag{21}
\end{align*}
$$

The conditions for optimality are $(\forall x \in X)$:

$$
\begin{array}{r}
\frac{\partial L}{\partial \alpha(x)}=p(x \mid 2)-\mu p(x \mid 1)-\mu_{0}(x)+\mu_{1}(x)=0, \\
\mu \geq 0, \mu_{0}(x) \geq 0, \mu_{1}(x) \geq 0, \quad 0 \leq \alpha(x) \leq 1, \\
\mu_{0}(x) \alpha(x)=0, \mu_{1}(x)(\alpha(x)-1)=0, \mu\left(\sum_{x \in X}[1-\alpha(x)] p(x \mid 1)-\bar{\epsilon}_{1}\right)=0 . \tag{24}
\end{array}
$$

Case-by-case analysis:

case	implications
$\mu=0$	L minimized by $\alpha(x)=0 \quad \forall x$
$\mu \neq 0, \alpha(x)=0$	$\mu_{1}(x)=0 \Rightarrow \mu_{0}(x)=p(x \mid 2)-\mu p(x \mid 1) \Rightarrow p(x \mid 2) / p(x \mid 1) \leq \mu$
$\mu \neq 0, \alpha(x)=1$	$\mu_{0}(x)=0 \Rightarrow \mu_{1}(x)=-[p(x \mid 2)-\mu p(x \mid 1)] \Rightarrow p(x \mid 2) / p(x \mid 1) \geq \mu$
$\mu \neq 0$, $0<\alpha(x)<1$	$\mu_{0}(x)=\mu_{1}(x)=0 \Rightarrow p(x \mid 2) / p(x \mid 1)=\mu$

Neyman Pearson : Derivation (3)

Case-by-case analysis:

case	implications
$\mu=0$	L minimized by $\alpha(x)=0 \quad \forall x$
$\mu \neq 0, \alpha(x)=0$	$\mu_{1}(x)=0 \Rightarrow \mu_{0}(x)=p(x \mid 2)-\mu p(x \mid 1) \Rightarrow p(x \mid 2) / p(x \mid 1) \leq \mu$
$\mu \neq 0, \alpha(x)=1$	$\mu_{0}(x)=0 \Rightarrow \mu_{1}(x)=-[p(x \mid 2)-\mu p(x \mid 1)] \Rightarrow p(x \mid 2) / p(x \mid 1) \geq \mu$
$\mu \neq 0$, $0<\alpha(x)<1$	$\mu_{0}(x)=\mu_{1}(x)=0 \Rightarrow p(x \mid 2) / p(x \mid 1)=\mu$

Optimal Strategy for a given $\mu \geq 0$ and particular $x \in X$:
$\frac{p(x \mid 2)}{p(x \mid 1)}\left\{\begin{aligned}<\mu & \Rightarrow q(x)=1(\text { as } \alpha(x)=0) \\ >\mu & \Rightarrow q(x)=2(\text { as } \alpha(x)=1) \\ =\mu & \Rightarrow \text { LP relaxation does not give the desired solution, as } \alpha \notin\{0,1\}\end{aligned}\right.$

Neyman Pearson : Note on Randomized Strategies (1)

Consider:

$p(x \mid 1)$		
x_{1}	x_{2}	x_{3}
0.9	0.09	0.01

$p(x \mid 2)$		
x_{1}	x_{2}	x_{3}
0.09	0.9	0.01

$r(x)=p(x \mid 2) / p(x \mid 1)$		
x_{1}	x_{2}	x_{3}
0.1	10	1

and $\bar{\epsilon}_{1}=0.03$.
$q_{1}:\left(x_{1}, x_{2}, x_{3}\right) \rightarrow(1,1,1) \quad \Rightarrow \quad \epsilon_{1}=0.00, \epsilon_{2}=1.00$

- $q_{2}:\left(x_{1}, x_{2}, x_{3}\right) \rightarrow(1,1,2) \quad \Rightarrow \quad \epsilon_{1}=0.01, \epsilon_{2}=0.99$
- no other deterministic strategy q is feasible, that is all other ones have $\epsilon_{1}>\bar{\epsilon}_{1}$
- q_{2} is the best deterministic strategy but it does not comply with the previous basic result of constructing the optimal strategy because it decides for 2 for likelihood ratio 1 but decides for 1 for likelihood ratios 0.01 and 10 . Why is that?
- we can construct a randomized strategy which attains $\bar{\epsilon}_{1}$ and reaches lower ϵ_{2} :

$$
q\left(x_{1}\right)=q\left(x_{3}\right)=1, \quad q\left(x_{2}\right)= \begin{cases}2 & 1 / 3 \text { of the time } \tag{26}\\ 1 & 2 / 3 \text { of the time }\end{cases}
$$

For such strategy, $\epsilon_{1}=0.03, \epsilon_{2}=0.7$.

Neyman Pearson : Note on Randomized Strategies (2)

- This is not a problem but a feature which is caused by discrete nature of X (does not happen when X is continuous).
- This is exactly what the case of $\mu=p(x \mid 2) / p(x \mid 1)$ is on slide 18 .

Neyman Pearson : Notes (1)

- The task can be generalized to 3 hidden states, of which 2 are dangerous, $K=\left\{2, \mathrm{D}_{1}, \mathrm{D}_{2}\right\}$. It is formulated as an analogous problem with two inequality constraints and minimization of classification error for 2.
- Neyman's and Pearson's work dates to 1928 and 1933.
- A particular strength of the approach lies in that the likelihood ratio $r(x)$ or even $p(x \mid 2)$ need not be known. For the task to be solved, it is enough to know the $p(x \mid 1)$ and the rank order of the likelihood ratio (to be demonstrated on the next page)

Minimax Task

- $K=\{1,2, . ., N\}$
- X set of observations
- Conditionals $p(x \mid k)$ are known $\forall k \in K$
- The priors $p(k)$ are unknown or do not exist
- $q: X \rightarrow K$ strategy

The Minimax Task looks for the optimum strategy q^{*} which minimizes the classification error of the worst classified class:

$$
\begin{align*}
q^{*} & =\underset{q: X \rightarrow K}{\operatorname{argmin}} \max _{k \in K} \epsilon(k), \quad \text { where } \tag{27}\\
\epsilon(k) & =\sum_{x: q(x) \neq k} p(x \mid k) \tag{28}
\end{align*}
$$

- Example: A recognition algorithm qualifies for a competition using preliminary tests. During the final competition, only objects from the hardest-to-classify class are used.
- For a 2-class problem, the strategy is again constructed using the likelihood ratio.
- In the case of continuous observations space X, equality of classification errors is attained: $\epsilon_{1}=\epsilon_{2}$
- The derivation can again be done using Linear Programming.

Example: Male/Female Recognition (Minimax)

Classification errors for 1 and 2 , for $\mu_{i}=\frac{r_{i}+r_{i+1}}{2}$ and $\mu_{0}=0$.

The optimum is attained for $i=8, \epsilon_{1}=.162, \epsilon_{2}=.13$. The corresponding strategy is as shown on slide 11.

Minimax: Comparison with Bayesian Decision with Unknown Priors

- Consider the same setting as in the Minimax task, but let the priors $p(k)$ exist but be unknown.
- The Bayesian error ϵ for strategy q is

$$
\begin{equation*}
\epsilon=\sum_{k} \sum_{x: q(x) \neq k} p(x, k)=\sum_{k} p(k) \underbrace{\sum_{x: q(x) \neq k} p(x \mid k)}_{\epsilon(k)} \tag{29}
\end{equation*}
$$

- We want to minimize ϵ but we do not know $p(k)$'s. What is the maximum it can attain? Obviously, the $p(k)$'s do the convex combination of the class errors $\epsilon(k)$; the maximum Bayesian error will be attained when $p(k)=1$ for the class k with the highest class error $\epsilon(k)$.
- Thus, to minimize the Bayesian error ϵ under this setting, the solution is to minimize the error of the hardest-to-classify class.
- Therefore, Minimax formulation and the Bayesian formulation with Unknown Priors lead to the same solution.

Wald Task (1)

- Let us consider classification with two states, $K=\{1,2\}$.
- We want to set a threshold ϵ on the classification error of both of the classes: $\epsilon_{1} \leq \epsilon$, $\epsilon_{2} \leq \epsilon$.
- It is clear that there may be no feasible solution if ϵ is set too low.
- That is why the possibility of decision "do not know" is introduced. Thus $D=K \cup\{?\}$
- A strategy $q: X \rightarrow D$ is characterized by:

$$
\begin{align*}
& \epsilon_{1}=\sum_{x: q(x)=2} p(x \mid 1) \tag{30}\\
& \left.\epsilon_{2}=\sum_{x: q(x)=1} p(x \mid 2) \quad \text { (classification error for } 1\right) \tag{31}\\
& \left.\kappa_{1}=\sum_{x: q(x)=?} p(x \mid 1) \quad \text { (undecided rate for } 1\right) \tag{32}\\
& \kappa_{2}=\sum_{x: q(x)=?} p(x \mid 2) \quad \text { (undecided rate for 2) } \tag{33}
\end{align*}
$$

Wald Task (2)

- The optimal strategy q^{*} :

$$
\begin{array}{r}
q^{*}=\underset{q: X \rightarrow D}{\operatorname{argmin}} \max _{i=\{1,2\}} \kappa_{i} \\
\text { subject to: } \epsilon_{1} \leq \epsilon, \epsilon_{2} \leq \epsilon \tag{35}
\end{array}
$$

- The task is again solvable using LP (even for more than 2 classes)
- The optimal solution is again based on the likelihood ratio

$$
\begin{equation*}
r(x)=\frac{p(x \mid 1)}{p(x \mid 2)} \tag{36}
\end{equation*}
$$

- The optimal strategy is constructed using suitably chosen thresholds μ_{l} and μ_{h} such that:

$$
q(x)= \begin{cases}2 & \text { for } r(x)<\mu_{l} \tag{37}\\ 1 & \text { for } r(x)>\mu_{h} \\ ? & \text { for } \mu_{l} \leq r(x) \leq \mu_{h}\end{cases}
$$

Example: Male/Female Recognition (Wald)

Solve the Wald task for $\epsilon=0.05$.

$p(x \mid \mathrm{F})$				
h_{1}	.197	.145	.094	
.017				
h_{2}	.077	.299	.145	
.017				
h_{3}	.001	.008	.000	
.000				
	w_{1}	w_{2}	w_{3}	
w_{4}				

$p(x \mid \mathrm{M})$				
h_{1}	.011	.005	.011	.011
h_{2}	.005	.071	.408	.038
h_{3}	.002	.014	.255	.169
	w_{1}	w_{2}	w_{3}	w_{4}

$r(x)=p(x \mid 2) / p(x \mid 1)$				
h_{1}	0.056	0.034	0.117	0.647
h_{2}	0.065	0.237	2.814	2.235
h_{3}	2.000	1.750	∞	∞
	w_{1}	w_{2}	w_{3}	w_{4}

rank, and $q^{*}(x)=\{1,2, ?\}$

h_{1}	2	1	4	6
h_{2}	3	5	10	9
h_{3}	8	7	11	12
	w_{1}	w_{2}	w_{3}	w_{4}

Result: $\epsilon_{2}=0.032, \epsilon_{1}=0, \kappa_{2}=0.544, \kappa_{1}=0.487$
$\left(r_{4}<\mu_{l}<r_{5}, r_{10}<\mu_{h}<\infty\right)$

